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Abstract

While the time-varying volatility of financial returns has been extensively modelled, most

existing stochastic volatility models either assume a constant degree of return shock asymme-

try or impose symmetric model innovations. However, accounting for time-varying asymmetry

as a measure of crash risk is important for both investors and policy makers. This paper ex-

tends a standard stochastic volatility model to allow for time-varying skewness of the return

innovations. We estimate the model by extensions of traditional Markov Chain Monte Carlo

(MCMC) methods for stochastic volatility models. When applying this model to the returns

of four major exchange rates, skewness is found to vary substantially over time. In addition,

stochastic skewness can help to improve forecasts of risk measures. Finally, the results sup-

port a potential link between carry trading and crash risk.
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1 Introduction

Stochastic volatility models are widely used in order to model time variation in the volatility

of financial returns. In addition, previous work suggests that returns are neither symmetrically

distributed nor is the degree of asymmetry invariant over time. This paper develops an empirical

model to capture time-varying skewness within a stochastic volatility framework.

Among financial time series, the return distributions of exchange rates show particularly pro-

nounced time-varying asymmetry (see e.g. Bakshi et al., 2008; Carr and Wu, 2007; Johnson, 2002).

Brunnermeier et al. (2008) suggest that time-varying crash (or downside) risk is linked to the cur-

rency carry trade. This investment strategy relies on borrowing in a low interest rate (‘funding’)

currency and investing in a high interest rate (‘investment’) currency. The uncovered interest rate

parity (UIP) implies that this strategy should not be profitable as the interest rate differential is

expected to be offset by a depreciation of the investment currency. Empirically, the reverse holds

(‘forward premium puzzle’), thus making the carry a profitable trading strategy (Fama, 1984).

When the carry trade ‘unwinds’, i.e. investors start to suddenly sell the investment currency, this

can lead to extreme exchange rate movements. Brunnermeier et al. (2008) find that high interest

rate differentials predict negative skewness across currencies and over time. Following the authors,

the carry trade ‘unwinds’, i.e. currencies crash, when speculators face funding constraints.

From a theoretical perspective, previous work has shown that investors prefer positively skewed

return distributions and that an asset’s own skewness can be priced (Arditti, 1967; Scott and

Horvath, 1980; Brunnermeier and Parker, 2005; Barberis and Huang, 2008). In principle, excess

carry trade returns can thus be rationalized if they are viewed as investors’ compensation for

holding an asset that exhibits negative skewness, i.e. that carries significant crash risk. Following

the same idea, Farhi et al. (2015) develop a structural exchange rate model that accounts for

disaster risk where a disaster is defined as a hypothetical large increase in the stochastic discount

factor. When fitting the model using monthly data they provide evidence that disaster risk

accounts for more than a third of the average carry trade risk premium in G10 currencies. Burnside

et al. (2011) compare an unhedged carry trade with its hedged counterpart that protects investors

against large losses. Since the latter has a smaller payoff than the former they conclude that excess

carry returns are explained by ‘Peso problems’.

Unlike in the stochastic volatility (SV) literature, time-varying skewness or, more generally,

higher moment dynamics of return innovations, have been extensively modelled in (generalized)

autoregressive conditional heteroscedasticity (GARCH) models starting off from Hansen (1994).

The author extends the ARCH model of Engle (1982) so that not only the conditional variance

but also the shape parameters of the standardized innovation distribution evolve as a function of

conditioning information. When modelling the U.S. term structure and the USD/CHF exchange

rate, he finds that models with (skewed) Student-t innovations and conditional shape parameters

have a significantly improved in-sample fit compared to restricted model versions. Numerous pa-

pers have followed using different innovation distributions and applications (see e.g. Harvey and

Siddique, 1999; Jondeau and Rockinger, 2003; Christoffersen et al., 2006).1 Overall, it is found

1The class of jump models, possibly with time-varying jump intensities, is a popular alternative (instead of skewed
innovation distributions) to model skewness dynamics, especially in option pricing. Examples of such models
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that allowing for conditional skewness is beneficial for modelling stock returns, exchange rate re-

turns and for option pricing. However, as noted by Feunou and Tedongap (2012), these GARCH

approaches have limited flexibility as both volatility and skewness remain deterministic and are

assumed to undergo the same return shocks. An alternative is to introduce asymmetry in a SV

framework, where both volatility and skewness are independent stochastic processes. Only few

papers have followed this path.2 Feunou and Tedongap (2012) develop an affine multivariate latent

factor model for returns. In their model the return shocks have a standardized inverse-Gaussian

distribution conditional on the factors. While the model offers a great deal of flexibility, stochastic

volatility and skewness are still generated by the same underlying factors and hence not completely

independent stochastic processes. Nakajima (2013) introduces a stochastic volatility model with

leverage where the innovations are distributed according to the generalized hyperbolic skew Stu-

dent t-distribution. Stochastic skewness is modelled by specifying the asymmetry parameter as

a first-order Markov switching process. When estimating the model using daily Euro and Yen

exchange rates versus the U.S. Dollar over the period 01/01/2001–30/12/2008, the author finds

the corresponding skewness regime probabilities to vary over time but to generally evolve slowly,

suggesting that the underlying skewness process is fairly persistent.

Our model allows for a flexible evolution of skewness over time. A standard stochastic volatil-

ity model is extended to allow for stochastic skewness. To this end, the assumption of Gaussian

shocks is replaced by shocks coming from the noncentral t-distribution.3 This distribution fea-

tures asymmetry and excess kurtosis both of which have been documented in financial returns.

To capture time-varying skewness, the asymmetry parameter of this distribution is specified as

an autoregressive process. The resulting stochastic volatility - stochastic skewness (SVSS) model

treats volatility and skewness on an equal footing by allowing both to evolve according to indepen-

dent and flexible stochastic processes. The SVSS model generates a simple instantaneous skewness

measure for a single time series. This is different from previous work that has studied skewness

of financial returns either by computing it within (overlapping) periods (e.g. Amaya et al., 2015;

Brunnermeier et al., 2008) or by relying on more complex option pricing models (e.g. Bakshi et al.,

2008; Carr and Wu, 2007). We show that the SVSS model can be estimated by straightforward

extensions of standard Markov Chain Monte Carlo (MCMC) techniques for stochastic volatility

models (Kim et al., 1998; Omori et al., 2007). To speed up computation when applying the model

to daily data, where often T > 10, 000, recently developed fast sparse matrix algorithms are used

(Chan and Jeliazkov, 2009; McCausland et al., 2011).

The results of Monte Carlo experiments indicate that the proposed model performs generally

well for sample sizes typically encountered when analysing financial returns at daily frequency.

When applying the SVSS model to daily nominal exchange rate returns of four major currencies

relative to the U.S. Dollar over the period 01/01/1977–31/10/2017, evidence is found in favour of

time-varying asymmetry. First, in-sample the model outperforms alternative (nested) SV models

for currencies that are heavily ‘carry-traded’ whereas a jump specification dominates for currencies

including applications to currencies can be found in, e.g. Carr and Wu (2007) and Chernov et al. (2018).
2Univariate SV models with skewed error distributions but constant asymmetry have been discussed, for example,
in Cappuccio et al. (2004), Nakajima and Omori (2012), Tsiotas (2012) and Abanto-Valle et al. (2015).

3Harvey and Siddique (1999) use the same distribution to introduce conditional skewness in a GARCH framework.
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that are less involved in carry trading. Second, the SVSS model forecasts risk measures, on average,

more precisely than the alternative specifications. Third, skewness is largely negative in typical

‘investment currencies’ such as the Australian Dollar and positive in ‘funding currencies’ such as

the Japanese Yen.4 Fourth, interest rate differentials can predict future skewness suggesting that

carry trading acts at least as an amplifier of crash risk in exchange rates. Finally, the results

support the notion that skewness is priced.

The remainder of the paper is structured as follows: Section 2 presents the SVSS model and

discusses estimation. Afterwards, Monte Carlo evidence is shown in Section 3. Section 4 applies

the model to exchange rate returns and discusses the results. Finally, Section 5 concludes.

2 A stochastic volatility - stochastic skewness model

In this section, we develop an empirical model to estimate time-varying skewness. First, we con-

sider its main building block, the noncentral t-distribution. Afterwards, the full model specification

is described and estimation using MCMC methods is discussed.

2.1 The noncentral t-distribution

Since the goal is to statistically model (time-varying) asymmetry, the assumption of normally

distributed shocks to the dependent variable is dropped. Instead, a distribution is used that allows

for asymmetric shocks, i.e. nonzero skewness, as well as for higher probabilities of tail events than

implied by the normal distribution, i.e. excess kurtosis. While in principal a large number of

distributions allows for these features and has been previously used, a particularly simple choice

for computational implementation is the noncentral t-distribution (see Johnson et al., 1995, for

an overview). A random variable X is noncentral t-distributed with ν degrees of freedom and

noncentrality parameter δ, i.e. X ∼ NCT (ν, δ), if it has the following stochastic representation:

X =
√
λ(z + δ), where λ ∼ IG(ν/2, ν/2) and z ∼ N (0, 1), (1)

where IG(α, ζ) denotes the inverse-gamma distribution with shape parameter α and scale param-

eter ζ. For δ = 0 the noncentral t-distribution collapses to its symmetric counterpart, the Student

t-distribution. If, in addition, ν → ∞, it simplifies further to the standard normal distribution.

All moments of the noncentral t-distribution are jointly determined by the parameters ν and δ. In

particular, the central moments of the noncentral t-distribution can be expressed as polynomials of

δ whose coefficients are functions of ν (Hogben et al., 1961). Using their formulas, mean, variance,

skewness and kurtosis can be straightforwardly computed.

To illustrate the shape of the noncentral t-distribution, Figure 1 shows density plots depending

on ν and δ in comparison with the standard normal distribution. For δ > 0, the distribution is

positively skewed which implies a larger right than left tail whereas δ < 0 causes the distribution to

be negatively skewed. The moments of this distribution are strongly linked, i.e. positive (negative)

skewness mechanically goes along with a positive (negative) mean. This is an undesirable feature

4Throughout, we interpret a lower skewness value as higher crash risk and use the terms interchangeably.
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for the purpose of this paper as, later on, variations in δ are supposed to capture changes in the

asymmetry of the distribution rather than changes in the mean. To ensure that δ does not affect

the mean, in what follows we consider the de-meaned version of the noncentral t-distribution.

Figure 1: (De-meaned) Noncentral t-distribution vs. standard normal distribution
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2.2 Model specification

We start from the following univariate stochastic volatility model,

yt = eht/2εt, t = 1, ..., T, (2)

ht = µh + φh(ht−1 − µh) + ηht , ηht ∼ N (0, σ2
h), |φh| < 1, (3)

where ht is the latent (log-)volatility process assumed to evolve according to a stationary AR(1)

process and εt is a zero mean shock term. Depending on the distributional assumption about εt,

various SV models arise. If εt is, for example, assumed to be standard normal, one obtains the

well-known standard normal stochastic volatility model as among others discussed in Kim et al.

(1998). In order to allow for deviations from normality, Tsiotas (2012) proposes the noncentral

t-distribution as discussed in Section 2.1. We follow this suggestion but additionally allow the

noncentrality parameter δ to vary stochastically over time to model time-varying skewness. The

error term of the SVSS model is thus assumed to follow a de-meaned noncentral t-distribution

with ν degrees of freedom and time-varying noncentrality parameter δt:

εt = ut − E[ut], with ut ∼ NCT (ν, δt), and E[ut] = c11(ν)δt, if ν > 1. (4)
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The exact functional form of the coefficient c11(ν) is given in Appendix A. The law of motion for

the noncentrality parameter δt is, analogous to ht, given by:

δt = µδ + φδ(δt−1 − µδ) + ηδt , ηδt ∼ N (0, σ2
δ ), |φδ| < 1. (5)

Hence, the SVSS model is composed of the observation equation obtained by merging Equations

(2) and (4) and the state Equations (3) and (5). In order to make this specification operational

for Bayesian estimation, the stochastic representation in Equation (1) is explored while taking

into account the de-meaning of the error term. The observation equation of the SVSS model is

therefore re-written as

yt = eht/2εt = eht/2
(√

λt(zt + δt)− c11(ν)δt

)
, (6)

where again λt ∼ IG(ν/2, ν/2) and zt ∼ N (0, 1). A few remarks on this specification are appro-

priate: First, exploring the stochastic representation in Equation (6) is preferable to working with

the relatively complex probability density function of the noncentral t-distribution. It explores

the principle of data augmentation (Tanner and Wong, 1987) by introducing the latent variable λt

which facilitates the implementation of a MCMC algorithm in Section 2.4.5 Second, the choices for

the stochastic volatility and skewness processes require motivation. Assuming a stationary AR(1)

process for (log-)volatility is common in the literature. The persistence parameter φh is typically

close to one indicating strong volatility clustering. The general version of the SVSS model adopts

the same stochastic process for the noncentrality state δt. The simulation experiments in Sec-

tion 3 show that the parameters of the AR(1) process in Equation (5) can be precisely estimated

provided that stochastic skewness in the data generating process is not too weak. In contrast,

especially the persistence parameter φδ turns out to be difficult to pin down when the signal in

the time-varying noncentrality parameter δt is not very strong. For this reason, we also consider

a more parsimonious (restricted) version of the SVSS model where the noncentrality parameter δt

is specified as a (driftless) random walk, i.e. µδ = 0 and φδ = 1. The random walk specification

has been a popular choice in time-varying parameter models and recent work has also discussed

robustness in case of misspecification (see e.g. Antolin-Diaz et al., 2017, for a discussion). To

complete the model specification, we assume the following independent prior distributions for the

parameters µh, φh, σ2
h, µδ, φδ, σ

2
δ , and ν:

µh ∼ N (µh0, Vµh), φh ∼ T N (−1,1)(φh0, Vφh), σ2
h ∼ IG(ch0, Ch0), (7)

µδ ∼ N (µδ0, Vµδ), φδ ∼ T N (−1,1)(φδ0, Vφδ), σ2
δ ∼ IG(cδ0, Cδ0),

ν ∼ U(0, ν̄),

where T N (a,b)(µ, σ
2) denotes the truncated normal distribution with support over the inter-

val (a, b). Using the expressions for the second and third central moment of the noncentral t-

distribution derived by Hogben et al. (1961), the time-varying variance and skewness of the SVSS

5This is because conditional on the latent variable λt, the noncentral t-distribution can be expressed as a location-
scale mixture of normal distributions such that standard estimation methods for Gaussian models remain applicable
(Tsionas, 2002).
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model are given by

V ar[yt|ht, δt, ν] = eht
[
c22(ν)δ2t + c20(ν)

]
, if ν > 2, (8)

Skew[yt|δt, ν] =
c33(ν)δ3t + c31(ν)δt

[c22(ν)δ2t + c20(ν)]3/2
, if ν > 3, (9)

where the functional forms of the coefficients c20(ν), c22(ν), c31(ν) and c33(ν) can be found in

Appendix A.6 Technically, δt induces time variation in all higher moments. In particular, given a

certain value for ν, an increase in the absolute size of δ results in a larger kurtosis of the noncentral

t-distribution thus reinforcing our crash risk interpretation.7 However, when fitting the model to

the data, dynamics in the lower order moments dominate the higher order ones. Since the error

term of the SVSS model has zero mean and the scale parameter ht captures changes in the (log-

)second moment, the shape parameter δt adjusts to reflect changes in the third moment. Finally,

for future use, define y = (y1, ..., yT )′, h = (h1, ..., hT )′, δ = (δ1, ..., δT )′, and λ = (λ1, ..., λT )′.

2.3 An extended mixture representation

Before describing the Bayesian estimation approach for the SVSS model presented in Section 2.2, a

crucial aspect for estimation is pointed out. In their seminal paper Kim et al. (1998) have developed

the so-called auxiliary sampler. This approach to estimate the unobserved (log-)volatility series

h has become a widely used tool in the Bayesian estimation of stochastic volatility models. The

authors assume that εt ∼ N (0, 1) and apply the following transformation to Equation (2),

log(y2t + c) = ht + ε̃t, (10)

with ε̃t = log(ε2t ) and where ht enters the model now in a linear manner and could, in principle, be

estimated using, for example, the Kalman filter. c = 0.001 is an offset constant to ensure numerical

stability for small values of y2t . However, the transformed error term is no longer standard normal

but log-χ2 distributed. Kim et al. (1998) approximate ε̃t with a seven component mixture of normal

distributions. Conditional on the mixture indicators s = (s1, ..., sT )′, which are sampled together

with the other parameters, the model is Gaussian and the Kalman filter becomes applicable. This

paper builds on the approach of Kim et al. (1998) but extends their method to deal with the

different specification of the error term. In particular, the transformed error term of the SVSS

model in Equation (6) is

ε̃t = log

[(√
λt(zt + δt)− c11(ν)δt)

)2]
, (11)

where ε̃t is now log-noncentral-t-squared distributed. This implies that a single mixture of normal

distributions is no longer sufficient but that the specific approximation to be used depends on the

6The error term in Equation (4) could, in principle, be standardized to have unit variance, which would simplify the
expression of the conditional variance to eht . However, this complicates the sampling of the asymmetry parameter
δ within the MCMC algorithm since deriving a state space model that is linear in δ is no longer straightforward.

7See Appendix A for the expression of the fourth central moment.
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values of ν and δt:

f(ε̃t|ν, δt) =

M∑
j=1

qj(ν, δt)fN (ε̃t|mj(ν, δt), v
2
j (ν, δt)), (12)

where qj(ν, δt) is the component probability of a specific normal distribution with mean mj(ν, δt)

and variance v2j (ν, δt) given a certain parameter combination [ν, δt]. This mixture can equivalently

be expressed in terms of component probabilities,

ε̃t|(st = j) ∼ N
(
mj(ν, δt), v

2
j (ν, δt)

)
, P r(st = j) = qj(ν, δt). (13)

To implement this extended mixture approximation, samples from the log-noncentral-t-squared

distribution in Equation (11) are generated and mixtures of normal distributions are fitted for

a large grid of combinations of ν (3 to 50 with step size 0.1) and δ (-5 to 5 with step size

0.01).8 We follow Omori et al. (2007) and use M = 10 mixture components. Experimenting with

different numbers of mixture components suggests that M = 10 approximates the log-noncentral-

t-squared distribution sufficiently well across the grid of values for ν and δ. However, if desired,

the approximation could be made more precise by choosing a larger M . Importantly, generating

the mixtures is a one time computation cost and hence does not affect sampling efficiency.

2.4 MCMC algorithm

The stochastic volatility - stochastic skewness model, like the standard normal SV model, does not

permit to write down the likelihood function in closed form making standard maximum likelihood

estimation infeasible. Instead, the SVSS model presented in the previous section is estimated

using Markov Chain Monte Carlo (MCMC) methods. In particular, we simulate draws from the

intractable joint and marginal posterior distributions of the parameters and unobserved states

using Gibbs sampling, which only exploits conditional distributions. These are usually easy to

derive and belong to well-known distributional families from which samples can be readily obtained.

However, some of the conditional distributions are non-standard and sampling can be achieved by

implementing a Metropolis-Hastings step. What follows is only a brief overview of the estimation

procedure. Details on the conditional distributions and sampling techniques can be found in

Appendix B. The SVSS model is split up into the following blocks:

1. Sample s from p(s|y, h, δ, ν);

2. Sample h from p(h|y, s, δ, ν, µh, φh, σ2
h);

3. Sample λ from p(λ|y, h, δ, ν);

4. Sample v from p(ν|λ);

5. Sample δ from p(δ|y, h, λ, ν, µδ, φδ, σ2
δ );

6. Sample µh from p(µh|h, φh, σ2
h) and µδ from p(µδ|δ, φδ, σ2

δ );

7. Sample φh from p(φh|h, µh, σ2
h) and φδ from p(φδ|δ, µδ, σ2

δ );

8This leads to a total of around 470,000 mixture approximations each of which has ten Gaussian components.
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8. Sample σ2
h from p(σ2

h|h, µh, φh) and σ2
δ from p(σ2

δ |δ, µδ, φδ).

Block 1 samples the mixture indicators via the inverse-transform method (Kim et al., 1998). The

different mixture components for each period t and each Gibbs iteration i are selected depending

on the corresponding (rounded) values of νi and δt,i. The series of (log-)volatilities h (block 2) and

noncentrality parameters δ (block 5) could in principle be sampled from the corresponding state

space models using Kalman filter-based algorithms (e.g. Carter and Kohn, 1994). Instead, this

paper relies on recently developed fast sparse matrix algorithms to sample h and δ which speed

up the algorithm significantly (Chan and Hsiao, 2014; Chan and Jeliazkov, 2009). Moreover, the

conditional posterior distributions of λ (block 3), ν (block 4) and φ = [φh, φδ] (block 7) are non-

standard and a Metropolis-Hastings step needs to be included as described in Tsionas (2002),

Chan and Hsiao (2014) and Kim et al. (1998), respectively. Finally, the conditional posterior

distributions of µ = [µh, µδ] (block 6) and σ2 = [σ2
h, σ

2
δ ] (block 8) are normal and inverse-gamma

such that sampling is standard.

If the model in Equation (6) includes a linear specification for the conditional mean, an addi-

tional block to sample the regression coefficients as in Tsionas (2002) is included (see Appendix

B). Starting from an arbitrary set of initial values, sampling from these blocks is iterated J times

and after a sufficiently long burn-in period B, the sequence of draws (B + 1, ..., J) can be taken

as a sample from the joint posterior distribution of interest f(h, δ, λ, ν, φh, µh, σ
2
h, φδ, µδ, σ

2
δ |y).

A MATLAB program implementing this algorithm and replicating parts of the results can be

downloaded from https://sites.google.com/view/martiniseringhausen.

3 Monte Carlo simulations

This section assesses the SVSS model and the proposed estimation technique using simulation

experiments. The goal is to check the MCMC algorithm’s ability to accurately estimate the un-

derlying model dynamics while also highlighting potential obstacles when estimating time-varying

skewness. To this end, samples of different size are generated from the model given by Equations

(2)-(5). We simulate 1,000 datasets for each of the Monte Carlo experiments and estimate the

SVSS model with 100,000 Gibbs iterations where 50,000 draws are discarded as burn-in.

Table 1 contains the prior parameters used in the estimations. Given that the large samples

considered are supposed to mimic financial returns at the daily frequency, these prior values can be

considered almost uninformative. The upper bound of the uniform prior for the degrees of freedom

parameter ν is based on the consideration that for ν > 50 the noncentral t-distribution becomes

indistinguishable from the normal distribution. Most of these relatively flat prior distributions are

centered around the true values so that any potential imprecision must originate from a too small

signal in the data or problems with the algorithm presented in Section 2.4. Appendix D contains

additional simulation results when using prior distributions that are not centered around the true

values.

Table 2 presents the simulation results of the general version of the SVSS model where δt is

generated and estimated as a stationary AR(1) process. The data generating process (DGP) as-

sumes a high degree of volatility and asymmetry persistence (φh = φδ = 0.99), identical innovation

8

https://sites.google.com/view/martiniseringhausen


variances of volatility and asymmetry (σ2
h = σ2

δ = 0.12) and moderately fat-tailed shocks (ν = 10).

Table 1: Prior distributions: Monte Carlo simulation

Name Description Density Specification

a0
√
A0

µh Intercept volatility N (a0, A0) 0.0 1.0

µδ Intercept asymmetry N (a0, A0) 0.0 1.0

φh AR parameter volatility T N (−1,1)(a0, A0) 0.99 0.1

φδ AR parameter asymmetry T N (−1,1)(a0, A0) 0.99 0.1

c0 C0

σ2
h Variance of volatility shocks IG(c0, C0) 2.5 0.025

σ2
δ Variance of asymmetry shocks IG(c0, C0) 2.5 0.025

¯
ν ν̄

ν Degrees of freedom U(
¯
ν, ν̄) 0 50

Note: The parameters of the inverse-gamma prior distributions are taken from Kim et al. (1998)

and imply a prior expectation of 0.017 and a prior standard deviation of 0.024.

As can be seen from Table 2, overall the model estimates the parameters of the (log-)volatility

and noncentrality process accurately, even in a relatively small sample of T = 1, 000. Biases for

most parameters are either zero or quite small.9 With respect to the convergence of the Markov

chains, the diagnostic of Geweke (1992) indicates that the chains of all parameters have converged.

In order to assess the mixing properties of the chain, the so-called inefficiency factor is reported

(see e.g. Chib, 2001). An inefficiency factor of m indicates, that one needs to draw m times as many

MCMC samples as uncorrelated samples. We find that mixing is poor for some of the parameters,

especially the asymmetry shock variance σ2
δ . However, the simulation results are robust to changes

in the number of Gibbs iterations.10

The degrees of freedom parameter ν however, is significantly upward biased for T = 1, 000.

Moreover, there is large uncertainty surrounding the estimate as indicated by the large Monte

Carlo standard error. Both bias and uncertainty vanish with increasing sample size. This result

is not surprising as pinning down tail risk precisely is a difficult exercise when the number of

observations is limited and the tails are not extremely fat (see for example Huisman et al., 2001).

In addition, the persistence parameter of the time-varying asymmetry process δt, φδ, is down-

ward biased even for T = 10, 000. While a bias of -0.04 does not appear large at first glance,

a slightly lower persistence parameter has severe consequences in large samples resulting in an

estimated noncentrality parameter δt (and thus also estimated skewness series) that is too flat

and does not properly capture the true dynamics. However, the problem discussed here is not

related to the model itself but reflects a signal in the data that is too weak to allow for a precise

9Even though bias usually refers to the property of a frequentist estimator, we use the term to describe the average
deviation of the estimated posterior mean from the true mean of the parameter’s distribution. The parameters
are fixed over Monte Carlo runs. Thus, they can be considered as being drawn from a degenerate distribution.

10Alternatively, the approach outlined in Yu and Meng (2011) could be used to increase sampling efficiency.
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estimation of the persistence parameter of δt.

Table 2: Monte Carlo simulation results: δt specified as AR(1)

Sample size Parameter Mean SE 2.5% 97.5% Bias CD IF

T = 1,000

µh 0.02 0.27 −0.51 0.55 0.02 0.49 8.50

φh 0.98 0.01 0.96 0.99 −0.01 0.48 78.48

σ2
h 0.01 0.00 0.01 0.02 0.00 0.47 167.61

µδ −0.02 0.46 −0.93 0.96 −0.02 0.46 116.96

φδ 0.92 0.01 0.90 0.96 −0.07 0.47 56.88

σ2
δ 0.01 0.00 0.01 0.02 0.00 0.42 378.38

ν 17.67 7.55 7.18 33.27 7.67 0.47 205.05

T = 5,000

µh 0.01 0.13 −0.23 0.27 0.01 0.47 6.48

φh 0.99 0.00 0.98 0.99 0.00 0.48 95.59

σ2
h 0.01 0.00 0.01 0.02 0.00 0.47 212.23

µδ −0.01 0.19 −0.38 0.37 −0.01 0.46 83.28

φδ 0.93 0.02 0.90 0.99 −0.06 0.44 274.06

σ2
δ 0.01 0.01 0.01 0.03 0.00 0.30 1037.04

ν 11.01 2.14 8.04 16.00 1.01 0.47 161.67

T = 10,000

µh 0.02 0.10 −0.18 0.22 0.02 0.42 6.39

φh 0.99 0.00 0.98 0.99 0.00 0.45 97.62

σ2
h 0.01 0.00 0.01 0.01 0.00 0.45 219.19

µδ 0.00 0.13 −0.25 0.25 0.00 0.45 62.75

φδ 0.95 0.03 0.90 0.99 −0.04 0.38 482.12

σ2
δ 0.01 0.01 0.01 0.03 0.00 0.22 1294.10

ν 10.36 1.18 8.56 13.06 0.36 0.44 140.63

True values: µh = 0, φh = 0.99, σ2
h = 0.01, µδ = 0, φδ = 0.99, σ2

δ = 0.01, ν = 10. Notes: Mean,

SE, 2.5%, 97.5% and bias are the Monte Carlo mean, standard error, 2.5% and 97.5% percentiles and

bias, respectively. CD refers to the p-value of the Geweke (1992) convergence diagnostic where the null

hypothesis is convergence. IF is the inefficiency factor (Chib, 2001).

To further underpin this point, Table 3 presents results for an experiment that is identical to

the previous one except for the degrees of freedom parameter that is now set to ν = 5. First, this

results in a more precise estimation of ν since the tails now contain more information. But second,

this also comes along with a more accurate estimation of the asymmetry persistence parameter φδ.

When considering the de-meaned noncentral t-distribution, identification of δt depends crucially

on ν. In the extreme case of ν → ∞, δt is not identified. Hence, lower values of ν lead to

more precise estimates of δt and its parameters. Table 3 confirms this as the bias of φδ is now

significantly smaller and even entirely gone for T = 10, 000. These results highlight that, if δt is

to be specified as an AR(1) process, this is in principle possible but demands a strong skewness

signal in the underlying DGP.
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Table 3: Monte Carlo simulation results: δt specified as AR(1) and smaller ν

Sample size Parameter Mean SE 2.5% 97.5% Bias CD IF

T = 1,000

µh 0.02 0.27 −0.53 0.52 0.02 0.48 7.17

φh 0.98 0.01 0.95 0.99 −0.01 0.47 88.78

σ2
h 0.01 0.00 0.01 0.02 0.00 0.47 182.94

µδ 0.01 0.32 −0.61 0.64 0.01 0.48 25.57

φδ 0.94 0.03 0.90 0.99 −0.05 0.48 68.04

σ2
δ 0.02 0.02 0.01 0.05 0.01 0.43 373.97

ν 6.05 2.06 3.93 11.55 1.05 0.46 81.60

T = 5,000

µh 0.01 0.13 −0.26 0.26 0.01 0.41 6.93

φh 0.99 0.00 0.98 0.99 0.00 0.47 112.70

σ2
h 0.01 0.00 0.01 0.02 0.00 0.47 236.88

µδ 0.00 0.15 −0.27 0.30 0.00 0.46 8.09

φδ 0.98 0.01 0.94 0.99 −0.01 0.36 371.70

σ2
δ 0.02 0.03 0.01 0.03 0.01 0.34 849.95

ν 5.16 0.48 4.41 6.18 0.16 0.48 59.12

T = 10,000

µh 0.01 0.10 −0.18 0.20 0.01 0.39 5.77

φh 0.99 0.00 0.98 0.99 0.00 0.47 113.82

σ2
h 0.01 0.00 0.01 0.01 0.00 0.47 242.69

µδ 0.00 0.11 −0.20 0.22 0.00 0.47 4.59

φδ 0.99 0.01 0.97 0.99 0.00 0.33 545.95

σ2
δ 0.01 0.00 0.01 0.02 0.00 0.33 968.20

ν 5.09 0.30 4.56 5.67 0.09 0.47 46.60

True values: µh = 0, φh = 0.99, σ2
h = 0.01, µδ = 0, φδ = 0.99, σ2

δ = 0.01, ν = 5. Notes: See Table 2.

Since this is not necessarily the case in real-world datasets, an alternative is to apply the more

parsimonious random walk specification for δt. The random walk specification can provide an

accurate approximation even of dynamics that can theoretically not be non-stationary. We found

this parsimonious approach very useful both when fitting the SVSS model in-sample and when

using it to forecast risk measures. Figure 2 provides some illustrative examples on the flexibility of

the random walk specification. The different plots contrast the estimated noncentrality parameter

δt with the true parameter for a variety of DGPs and a single Monte Carlo sample.

In the first case, δt is generated as an AR(1) process (with φδ = 0.99). While here δt is mis-

specified when modelled as a random walk, the estimated evolution of the noncentrality parameter

is a relatively accurate approximation of the true data generating process. In the second case, the

random walk specification is overparametrized as the true underlying distribution is symmetric

(δt = δ = 0). This is captured by the random walk specification since the 95% posterior density

intervals include zero.11 The last case can be viewed as a robustness check with respect to extreme

11Appendix D presents additional results of a large scale Monte Carlo simulation to assess the model’s performance if
the DGP is symmetric. These confirm that the model can, on average, clearly identify if skewness is non-existing.
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misspecification. Here, the true DGP reflects a structural break where δt = 1 for t = 1, ..., T/2 and

δt = −1 for t = T/2 + 1, ..., T . Even in this case, the random walk provides a reasonable estimate

and adjusts quickly to the constant lower level of δt. Lastly, Appendix D compares the SVSS

model with a GARCH-type conditional skewness model (Hansen, 1994) using simulated data.

Figure 2: True vs. estimated (random walk) noncentrality parameter δt for various DGPs

(a) DGP: δt stationary AR(1) (b) DGP: δt = 0 (c) DGP: break in δt

Posterior mean δt 95% HDI True δt

4 Time-varying asymmetry in exchange rate returns

This section applies the SVSS model to exchange rate returns. The results are compared to those

obtained from alternative SV models both in-sample and when forecasting out-of-sample. Finally,

we briefly discuss the potential role of carry trading in explaining time-varying skewness.

4.1 Data

The dataset contains daily nominal exchange rates of four major currencies relative to the U.S.

Dollar (USD) over the period 01/01/1977–31/10/2017 (T = 10, 255). In particular, the Australian

Dollar (AUD), the Japanese Yen (JPY), the British Pound (GBP), and the Swiss Franc (CHF)

are considered. The exchange rates St, which are measured as USD per foreign currency unit, are

obtained from the Federal Reserve Economic Data (FRED) database. The nominal returns are

calculated as yt = (St − St−1)/St−1 × 100. The data series are displayed in Appendix C. Table 4

contains summary statistics of the four return series under consideration.

Table 4: Summary statistics of exchange rate returns

Currency pair Mean Variance Skewness Kurtosis Jarque-Bera

USD/AUD −0.0010 0.4846 −0.8460 21.0291 0.00

USD/JPY 0.0115 0.4560 0.4927 7.3560 0.00

USD/GBP −0.0005 0.3882 −0.2922 9.3553 0.00

USD/CHF 0.0115 0.5513 0.6247 19.1881 0.00

Notes: This table contains summary statistics of daily exchange rate returns for four currencies

relative to the USD over the period 01/01/1977–31/10/2017. The last column contains p-values

of the Jarque-Bera test where the null hypothesis is normality.
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These numbers, which are unconditional moments over the sample period, point to pronounced

non-normality in exchange rate returns. All four return series exhibit unconditional skewness

with the USD/AUD and USD/GBP returns being left-tailed while the USD/JPY and USD/CHF

returns are right-tailed. Moreover, all four have fatter tails than would be implied by the normal

distribution, i.e. a kurtosis greater than three. As expected, the Jarque-Bera test clearly rejects

unconditional normality in all four cases.

4.2 Model comparison

In order to assess the empirical relevance of time-varying asymmetry in modelling exchange rate

returns, this section compares the estimates obtained from the SVSS model to several alternative

SV models, some of which are restricted versions of the SVSS model. The following specification

is fitted to the four exchange rate return series where the conditional mean is assumed to evolve

according to an autoregressive process:12

yt = β0 +

L∑
l=1

βlyt−l + eht/2εt. (14)

Depending on the distributional assumption about εt, we distinguish the following three stochastic

volatility models: The first model (SV-t) assumes Student t-distributed innovations as in Chib

et al. (2002) and thus allows for fat-tailed standardized return shocks, i.e. εt ∼ t(ν). The second

model (SV-nct) allows for both fat-tailed shocks and a constant degree of asymmetry by imposing

a de-meaned noncentral t-distribution, i.e. εt = vt − E[vt] with vt ∼ NCT (ν, δ). The third model

is the previously introduced SVSS model, which allows for time-varying skewness, where εt is

defined as in Equations (4)-(5). Based on the arguments developed in the previous section, the

asymmetry process δt is specified as a random walk, i.e. we set µδ = 0 and φδ = 1 in Equation

(5). Finally, we also compare the results from the SVSS model to a SV specification that models

skewness through occasional jumps in the return equation (SVJ-t). For this model, Equation (14)

is augmented as follows

yt = β0 +

L∑
l=1

βlyt−l + ktqt + eht/2εt, εt ∼ t(ν), (15)

where qt ∈ [0, 1] is a binary variable that takes the value one with probability ω and kt are the

jump sizes modelled as kt ∼ N (µk, σ
2
k). The prior distributions for the parameters are set as

follows: βl ∼ N (0, 1) for l = 0, ..., L, µh ∼ N (0, 10) and φh ∼ T N (−1,1)(0.95, 1). The remaining

prior values are as in Table 1. The prior choice for the SVJ-t model follows Chan and Grant

(2016a). The jump intensity ω is assumed to follow a uniform distribution, ω ∼ U(0, 0.1). The

average jump size and the log-jump variance γ = (µk, log(σ2
k)) are assumed to be distributed as

γ ∼ N (γ0, Vγ). The hyperparameters are γ0 = (0, log(10))′ and Vγ = diag(10, 1).13

12We set L = 4. However, changing the lag length or omitting the conditional mean dynamics as regularly done in
the literature on stochastic volatility in financial returns does not affect the remaining estimates.

13These values imply an expected jump probability of 5% (around 13 jumps per year with daily data). The jump
size is centered around zero with a standard deviation of around 3pp.
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The reported results are based on 100,000 iterations with 50,000 draws being discarded as burn-

in. For the purpose of model comparison, we apply the Deviance Information Criterion (DIC) as

developed in Spiegelhalter et al. (2002). This measure merges a Bayesian measure of fit with a

measure of model complexity where a smaller DIC value indicates a better model. In particular,

the conditional version of the DIC, which is based on the likelihood conditional on the unobserved

states, is employed. This criterion is easy to compute from MCMC output and has previously been

used to compare stochastic volatility models (see e.g. Berg et al., 2004). While it also has been

recently criticized, so far alternative approaches involve multiple steps and computationally heavy

(model-specific) procedures (see e.g. Li et al., 2020), which limits their feasibility in hierarchical

latent variable models and large datasets.14 However, when assessing the models, we do not take

the estimated DIC values at face value but also consider the posterior parameter distributions.

Tables 5 - 8 present the estimation results for the four SV models applied to the return series.

Overall, the insights gained from the posterior estimates are quite similar across return series.

First, the conditional mean is very close to zero as indicated by the small β coefficients. This is in

line with the literature suggesting that exchange rates evolve closely to a random walk implying

near unpredictability (Meese and Rogoff, 1983). Second, (log-)volatility ht is strongly persistent

across all models considered supporting the idea of volatility clustering (Mandelbrot, 1963). Third,

standardized exchange rate returns exhibit fat tails. Posterior means of the degrees of freedom ν

lie in the range of 5 to 10 with the posterior standard deviations being small.

Table 5: USD/AUD exchange rate returns: estimation results

SV-t SVJ-t SV-nct SVSS

Coef. Mean SD Mean SD Mean SD Mean SD

Mean

β0 0.009 0.004 0.009 0.004 0.003 0.004 0.006 0.004

β1 0.007 0.009 0.007 0.009 0.005 0.009 0.001 0.009

β2 −0.016 0.009 −0.016 0.009 −0.019 0.009 −0.022 0.009

β3 −0.019 0.009 −0.019 0.009 −0.019 0.009 −0.021 0.009

β4 0.009 0.010 0.009 0.010 0.007 0.009 0.005 0.009

Variance

µh −1.695 0.282 −1.696 0.285 −1.707 0.293 −1.727 0.279

φh 0.996 0.001 0.996 0.001 0.996 0.001 0.996 0.001

σ2
h 0.009 0.001 0.010 0.002 0.009 0.001 0.010 0.001

Jumps

κ — — 0.0004 0.0008 — — — —

µk — — 0.131 0.043 — — — —

σ2
k — — 9.775 12.120 — — — —

Skewness
δ — — — — −0.327 0.069 — —

σ2
δ — — — — — — 0.003 0.001

Df ν 6.324 0.415 6.353 0.420 6.320 0.398 6.722 0.433

DIC 15,872 15,854 15,856 15,823

14Chan and Grant (2016b) find that the conditional DIC tends to favour overfitted models and Li et al. (2020)
argue against its suitability for latent variable models.
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Table 6: USD/JPY exchange rate returns: estimation results

SV-t SVJ-t SV-nct SVSS

Coef. Mean SD Mean SD Mean SD Mean SD

Mean

β0 −0.007 0.005 −0.007 0.005 0.003 0.006 0.002 0.006

β1 −0.007 0.009 −0.007 0.009 −0.008 0.009 −0.008 0.009

β2 −0.006 0.009 −0.006 0.009 −0.008 0.009 −0.011 0.009

β3 0.004 0.009 0.004 0.009 0.003 0.009 0.002 0.009

β4 0.016 0.009 0.016 0.009 0.015 0.009 0.015 0.009

Variance

µh −1.404 0.075 −1.403 0.077 −1.401 0.076 −1.412 0.076

φh 0.984 0.003 0.984 0.003 0.984 0.003 0.984 0.003

σ2
h 0.013 0.002 0.013 0.003 0.013 0.002 0.013 0.003

Jumps

κ — — 0.0004 0.0007 — — — —

µk — — −0.387 0.096 — — — —

σ2
k — — 9.034 10.481 — — — —

Skewness
δ — — — — 0.275 0.065 — —

σ2
δ — — — — — — 0.002 0.001

Df ν 5.798 0.366 5.810 0.376 5.937 0.387 6.308 0.429

DIC 18,837 18,818 18,821 18,815

Table 7: USD/GBP exchange rate returns: estimation results

SV-t SVJ-t SV-nct SVSS

Coef. Mean SD Mean SD Mean SD Mean SD

Mean

β0 0.008 0.003 0.008 0.003 0.007 0.003 0.007 0.003

β1 0.016 0.009 0.017 0.009 0.016 0.009 0.016 0.009

β2 −0.008 0.010 −0.008 0.009 −0.009 0.009 −0.010 0.010

β3 −0.014 0.010 −0.014 0.010 −0.013 0.010 −0.014 0.010

β4 0.004 0.009 0.004 0.009 0.004 0.009 0.004 0.009

Variance

µh −1.575 0.179 −1.576 0.180 −1.580 0.186 −1.589 0.181

φh 0.994 0.001 0.994 0.001 0.994 0.001 0.994 0.001

σ2
h 0.010 0.002 0.010 0.001 0.010 0.001 0.010 0.001

Jumps

κ — — 0.0009 0.0024 — — — —

µk — — −0.035 0.174 — — — —

σ2
k — — 8.920 10.705 — — — —

Skewness
δ — — — — −0.113 0.076 — —

σ2
δ — — — — — — 0.003 0.001

Df ν 7.598 0.575 7.654 0.609 7.507 0.548 8.037 0.622

DIC 16,365 16,328 16,368 16,373
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Table 8: USD/CHF exchange rate returns: estimation results

SV-t SVJ-t SV-nct SVSS

Coef. Mean SD Mean SD Mean SD Mean SD

Mean

β0 −0.001 0.006 −0.002 0.006 0.004 0.006 0.004 0.006

β1 0.000 0.010 0.000 0.010 −0.001 0.010 −0.003 0.010

β2 0.002 0.010 0.002 0.010 0.001 0.010 −0.001 0.010

β3 0.006 0.010 0.006 0.010 0.005 0.010 0.005 0.010

β4 0.003 0.010 0.003 0.010 0.002 0.010 0.002 0.010

Variance

µh −1.100 0.091 −1.101 0.091 −1.105 0.093 −1.107 0.091

φh 0.989 0.002 0.989 0.002 0.990 0.002 0.990 0.002

σ2
h 0.008 0.001 0.008 0.001 0.008 0.001 0.008 0.001

Jumps

κ — — 0.0025 0.0050 — — — —

µk — — 0.632 0.108 — — — —

σ2
k — — 6.289 6.892 — — — —

Skewness
δ — — — — 0.272 0.085 — —

σ2
δ — — — — — — 0.003 0.001

Df ν 8.469 0.735 8.674 0.891 8.422 0.714 9.781 0.946

DIC 20,756 20,639 20,754 20,755

Furthermore, exchange rate returns are not symmetric. In the SV-nct model, the 95% highest

density interval (HDI) of δ does not include zero for the USD/AUD (left-tailed), the USD/JPY

(right-tailed), and the USD/CHF returns (right-tailed). In case of the USD/GBP returns (left-

tailed), results are ambiguous. The DIC supports these findings since the SV-nct model is charac-

terized by a smaller criterion value compared to the SV-t model in all cases except for the British

Pound returns. It is worth noting that the signs of the estimated noncentrality parameters are in

line with the unconditional skewness measures reported in Table 4.

The SVJ-t model outperforms both the SV-t and the SV-nct model in all four cases whereas

the reduction in the DIC is particularly strong in case of the British Pound and the Swiss Franc.

Especially for the Swiss Franc the SVJ-t model seems to capture the positively skewed return

distribution very well. In our daily dataset the jump probability of 0.25% implies, on average,

around one jump per year and the positive average jump size µk indicates that these jumps mostly

reflect appreciations of the Swiss currency.

When looking at the SVSS model, the posterior means of the innovation variances of δt, σ
2
δ ,

are of relevant and similar magnitude (even almost identical when rounded to three digits). In

addition, posterior dispersion is fairly small. This can be taken as evidence in favour of time-

varying skewness. The DIC ranks the SVSS model first in case of the Australian Dollar and

the Japanese Yen while in case of the British Pound and the Swiss Franc the jump specification

seems to fit the data better. In summary, when looking at both the posterior distributions of the

parameters and the information criterion, the SVSS model seems to be the most suitable modelling
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approach for the currencies (AUD and JPY) that are heavily involved in carry trading and that

thus presumably show a particularly skewed return distribution with a changing degree of skewness

over time. Finally, Appendix D presents the results of additional analyses. First, it contains an

extensive section on comparing the empirical results of the SVSS model with a GARCH-type

model that features conditional skewness. Second, since the sample used for the estimations spans

a relatively long period, another section discusses the aspect of parameter stability by means of a

small subsample analysis.

4.3 Time-varying volatility and skewness

We now turn towards discussing the estimated volatility and, in particular, the skewness series.

Figure 3 shows the volatility series obtained from the SVSS model. Alongside, a simple volatil-

ity measure, i.e. a centred rolling window variance (window size 300 days), is plotted. All four

plots indicate strong volatility clustering. The periods of highest volatility can be found in the

USD/AUD and USD/GBP exchange rate returns around the time of the Great Recession. Unex-

pectedly, the U.S. Dollar appreciated sharply against both currencies during this period causing

large return shocks (McCauley and McGuire, 2009).

Figure 3: Estimated variance (volatility) series

(a) USD/AUD returns (b) USD/JPY returns

(c) USD/GBP returns (d) USD/CHF returns

Estimated variance 95% HDI Rolling window variance (300 days, centered)

While time-varying volatility is a well-known stylized fact of financial returns, Figure 4 presents

the key finding of this paper, i.e. time variation in the estimated skewness of exchange rate returns.

Again, a rolling window unconditional skewness measure is plotted next to the skewness estimate
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obtained from the SVSS model. In general, both series move together quite closely. However,

the model-implied skewness measure does not seem to be strongly affected by return outliers, a

problem inherent to standard higher moment estimators. Even though our dataset contains more

than 10,000 observations on daily returns, the 95% posterior density intervals are still fairly wide

highlighting the challenge of estimating asymmetry precisely. Overall, the dynamic evolution of

skewness across the four exchange rates appears similar and points to the existence of a ‘skewness

cycle’, i.e. crash risk alternates between slowly building up and slowly decreasing.

To get further insights into the cross-currency co-movement of volatility and crash risk, Table

9 presents the correlation matrices for both measures. Since all four bilateral exchange rates are

measured relative to the U.S. Dollar, this ‘common factor’ naturally induces positive correlation

in both volatility and skewness across return series. Nevertheless, some returns co-move stronger

in terms of variance and skewness than others. The USD/AUD and USD/GBP returns seem to

be subject to similar volatility and crash risk shocks.

Figure 4: Estimated skewness series

(a) USD/AUD returns (b) USD/JPY returns

(c) USD/GBP returns (d) USD/CHF returns

Estimated skewness 95% HDI Rolling window skewness (300 days, centered)

This is possibly due to the historically tight relationship between Australia and the United

Kingdom. The Japanese Yen and the Swiss Franc are both considered funding currencies which

could explain why their skewness shows a high degree of co-movement. Finally, strong correlation

of both measures in case of USD/GBP and USD/CHF returns might be rooted in the fact that

both are important financial centres and similarly exposed to global economic shocks.
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Table 9: Correlations of variance (volatility) and skewness across return series

Volatility Skewness

FX $/AUD $/JPY $/GBP $/CHF $/AUD $/JPY $/GBP $/CHF

$/AUD 1.00 0.42 0.64 0.31 1.00 0.27 0.41 0.28

$/JPY — 1.00 0.31 0.38 — 1.00 0.20 0.64

$/GBP — — 1.00 0.64 — — 1.00 0.60

$/CHF — — — 1.00 — — — 1.00

Note: All p-values of tests for statistical significance of these correlation coefficients are virtually 0.

4.4 Forecasting risk measures

This section assesses the potential value of the SVSS model relative to the alternative specifications

for forecasting risk. Specifically, we focus on forecasting Value-at-Risk (VaR), which equals a

certain quantile of the return distribution and expected shortfall (ES) defined as the conditional

expectation beyond the VaR level.15 Both measures are regularly used by practitioners.

For the forecasting exercise, the sample is split at the of 2006, so that we forecast risk measures

for each day over the period 01/01/2007–31/10/2017. The out-of-sample period includes both

tranquil market periods and several extreme events that had strong direct and indirect effects on

our set of currencies, such as the 2011 earthquake in Japan, the European debt crisis, the Great

Recession and the ‘Brexit’ vote. For each day t of the out-of-sample period we generate VaR and

ES forecasts using the model estimated given data up until day t − 1. Through this recursive

one-day ahead forecasting exercise we obtain a set of N = 2, 722 VaR and ES forecasts for each

model. We forecast VaR and ES at the left (right) tail of the return distribution to measure

the risk of an investor that takes a long (short) position in the foreign exchange market. The

forecasts are estimated and evaluated at levels α ∈ {0.5%, 1%, 5%, 95%, 99%, 99.5%}. Specifically,

to generate one-day ahead VaR forecasts, in each MCMC iteration we obtain the one-day ahead

forecasts of the latent variables and generate a draw from the corresponding predictive density

using the observation equation. The V aRα is then estimated as the empirical α-quantile of the

draws from the predictive density whereas ESα is estimated as the mean of the draws that lie

below (above) the estimated VaR for the left (right) tail of the predictive distribution.

In order to evaluate the VaR forecasts, we apply two commonly used testing procedures.

Kupiec (1995) develops a likelihood ratio test for unconditional coverage (UC) to check whether

the empirical rate of violations equals α. Define a VaRα violation for the left (right) tail as V αt = 1

if yt < V̂ aR
α

t (yt > V̂ aR
α

t ) and 0 otherwise and the total number of violations as n0 =
∑N
t=1 V

α
t

and n1 = N − n0. Under the null hypothesis of unconditional coverage, the test statistic

LRUC = −2 log

(
(1− α)n1αn0

(1− α̂)n1 α̂n0

)
(16)

is distributed as χ2(1) where α̂ = n0

n0+n1
is the empirical coverage rate. Moreover, to test whether

15The design of the forecasting exercise is similar to Aas and Haff (2006) and Nakajima (2013).
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the violations are independent, we apply the testing procedure proposed by Christoffersen (1998).

Under the null hypothesis of independence, the test statistic

LRIND = −2 log

(
(1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π0)n10πn11

1

)
(17)

is distributed as χ2(1). Let nij the number of times where outcome j, i.e. a violation or no

violation, occurred on a day conditional on outcome i occurring on the previous day and where

π0 = n01

n00+n01
, π1 = n11

n10+n11
and π = n01+n11

n00+n01+n10+n11
. To jointly test for unconditional coverage

and independence, Christoffersen (1998) defines the test statistic for conditional coverage (CC) as

LRCC = LRUC + LRIND, (18)

which, under the null hypothesis, is distributed as χ2(2).

To evaluate the expected shortfall forecasts we follow, among others, Aas and Haff (2006) and

Nakajima (2013) and use the measure developed by Embrechts et al. (2005). Given the one-day

ahead forecast of expected shortfall, ÊS
α

t , define Dα
t = yt − ÊS

α

t . Moreover, D̃α denotes the α-

quantile of {Dα
t }Nt=1, Jαt = 1{Dα

t < D̃α} for the left tail and Jαt = 1{Dα
t > D̃α} for the right tail.

Finally, let nτ =
∑N
t=1 J

α
t . The measure of expected shortfall forecast precision is then defined as

V ES =
|V ES1 |+ |V ES2 |

2
, where V ES1 =

1

n0

∑
V αt =1

Dα
t , and V ES2 =

1

nτ

∑
Jαt =1

Dα
t . (19)

V ES1 is a natural measure of forecast accuracy as it captures the average difference between the

realized returns and the one-period ahead ES forecasts conditional on the returns being smaller

(larger) than the predicted VaR for the left (right) tail. V ES2 can be seen as a term correcting for

the fact that V ES1 strongly depends on the precision of the VaR forecast. A smaller value of V ES

reflects a more accurate expected shortfall forecast.

Table 10 presents the results of the VaR forecast evaluation for the four models under consid-

eration.16 The performance of the models in forecasting risk varies across exchange rates. In case

of the Australian Dollar, conditional coverage is rejected for certain α-levels for all models except

the SVSS specification. Even though independence is rejected for the SVSS model at the 5%-

and 95%-quantile, overall the model seems to capture VaR better than the alternative models,

especially at the extreme levels. In case of the Yen, all models seem to do well in forecasting VaR.

Interestingly, while all models fail in capturing VaR at α = 99% for the British pound rate, the

SVJ-t model, which was preferred in the in-sample analysis, also fails at α = 99.5%. Finally, in

case of the Swiss Franc, the models perform rather similar and forecast VaR overall accurately.

When evaluating the expected shortfall forecasts, we observe larger differences across models

with the SVSS model performing, on average, better than the alternative specifications (Table

11). In case of the Australian Dollar and the Japanese Yen, the SVSS model provides the most

accurate ES forecasts for the majority of levels.

16Again, in case of the SVSS model, δt is assumed to follow a random walk. We found this parsimonious specification
to generally forecast more accurately than the stationary AR(1) alternative.
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Notably, in cases where the SVSS model is preferred, the gains in precision are often large,

whereas in the remaining cases the differences compared to the preferred specification are mostly

small. In case of the British Pound, the SVSS model performs somewhat better than the remaining

models in forecasting expected shortfall at the higher levels. Stochastic skewness seems to be least

relevant when forecasting ES in case of the Swiss Franc. In addition, no model dominates the

alternatives for this currency.

Table 11: Precision of expected shortfall forecasts

USD/AUD USD/JPY

α SV-t SVJ-t SV-nct SVSS SV-t SVJ-t SV-nct SVSS

0.5% 0.331 0.272 0.072 0.048 0.147 0.109 0.189 0.042

1% 0.140 0.114 0.121 0.080 0.077 0.057 0.083 0.004

5% 0.054 0.058 0.066 0.060 0.037 0.036 0.030 0.018

0.95% 0.151 0.150 0.075 0.060 0.030 0.026 0.027 0.016

99% 0.462 0.460 0.316 0.243 0.066 0.067 0.144 0.074

99.5% 0.820 0.731 0.642 0.501 0.130 0.130 0.111 0.059

USD/GBP USD/CHF

α SV-t SVJ-t SV-nct SVSS SV-t SVJ-t SV-nct SVSS

0.5% 0.230 0.223 0.207 0.265 0.314 0.455 0.378 0.388

1% 0.053 0.058 0.069 0.121 0.135 0.123 0.212 0.196

5% 0.038 0.035 0.033 0.035 0.031 0.028 0.005 0.025

0.95% 0.117 0.121 0.104 0.087 0.142 0.132 0.112 0.128

99% 0.145 0.151 0.116 0.103 0.558 0.537 0.567 0.607

99.5% 0.209 0.257 0.243 0.222 1.078 1.079 1.169 1.223

Note: This table contains the expected shortfall accuracy measure of Embrechts et al. (2005).

Bold numbers indicate the lowest value for each quantile.

Overall, the results of this forecasting exercise suggest that allowing the return innovations to

feature stochastic skewness can help to improve Value-at-Risk predictions and, especially, expected

shortfall forecasts. Interestingly, the SVJ-t model, which has been the strongest competitor of the

SVSS model in the in-sample analysis, predicts both Value-at-Risk and expected shortfall, on

average, worse than the SVSS model. In line with the previous section, time-varying asymmetry

seems to be particularly relevant when modelling the return series of the Australian Dollar and

Japanese Yen.

4.5 Skewness, carry trade and return predictability

The focus of this paper has been to introduce stochastic skewness into a standard SV model, mea-

suring the degree of time-varying asymmetry in exchange rate returns and assessing its potential

to improve risk forecasts. This section returns to the initial motivation for modelling time-varying

asymmetry in exchange rate returns. It presents evidence of the link between carry trading and
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skewness and some support for the notion that excess returns potentially reflect investors’ com-

pensation for an increased crash risk exposure.

Figure 5 plots the estimated skewness series (monthly averages) along with the monthly nominal

interest rate differentials (foreign 3-months government bond yield minus 3-months U.S. Treasury-

bill yield).17 Overall, both indicators tend to evolve in an opposite manner. If the interest

differential is taken as a proxy for carry trade activity in currency markets, the results are thus

in line with the findings of Brunnermeier et al. (2008) and Farhi et al. (2015), i.e. a negative

correlation between carry trade activity and crash risk. The relationship is most pronounced in

case of the Australian Dollar, a currency that is known for regularly being in the focus of carry

trade speculators. Specifically, crash risk has built up since the end of the 90s and reached its

peak, i.e. lowest skewness, around the onset of the Great Recession. At the same time, the interest

rate differential has widened while market volatility has been low thus creating an attractive

environment for the carry trade (Kohler, 2010; McCauley and McGuire, 2009). Once the carry

trade unwinded, this resulted in a crash of the USD/AUD exchange rate from around 1.0 USD to

0.6 USD between July and October 2008.

Figure 5: Estimated skewness and interest rate differential

(a) USD/AUD returns (b) USD/JPY returns

(c) USD/GBP returns (d) USD/CHF returns

Estimated skewness (left, monthly avg.) Interest rate differential (right, in pp)

Note: The monthly nominal interest rate differential is defined as the foreign 3-months government bond yield minus

the 3-months U.S. Treasury-bill yield. Data availability for Japanese rates only starts in 05/1979.

An illustrative example in the case of Japan is the rising interest rate differential during 2005

that created incentives for investors to increase their carry trade positions. Since the Japanese Yen

17Appendix C includes a time series plot showing the raw interest rates over the sample period.
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has acted as a funding currency, skewness has increased over this period. As noted by Han and

Westelius (2019), the unwinding of carry trade positions due to increased risk aversion starting

in 2006 led to an appreciation of the Yen. Notably, while skewness dropped significantly, the

interest rate differential stayed almost constant during this period. As previously mentioned, this

paper considers bilateral exchange rates where the domestic currency is always the U.S. Dollar.

One would expect the negative relationship between the interest rate differential and skewness to

be even more pronounced in bilateral exchange rates including a typical funding currency (e.g.

the Japanese Yen) and a typical investment currency (e.g. the Australian Dollar). Figure 5 also

indicates that the negative correlation has essentially vanished after the global financial crisis in all

cases except for the Australian Dollar since most countries hit the zero lower bound of short-term

nominal interest rates.

To get further insights into the dynamic relationship between the interest rate differential and

skewness, Table 12 applies a similar analysis as in Brunnermeier et al. (2008) and considers pre-

dictive panel regressions at different monthly horizons of skewness on the interest rate differential,

where i∗t and it represent the foreign and domestic interest rates (in %), the nominal exchange rate

return yt and the skewness realization in month t. The first row suggests that the interest rate

differential has significant predictive power for future crash risk even when considering a horizon of

two years.18 While the direct effect of a change in the interest rate differential increases for larger

horizons, the long-run effect, which accounts for the persistence of skewness, decreases. More-

over, past returns help to predict skewness up to six months ahead. This could be the result of

“currency gains leading to larger speculator positions and larger future crash risk” (Brunnermeier

et al., 2008, p. 329).

Table 12: Predictive regressions with estimated skewness (monthly avg.) as dependent variable

Skewnesst+1 Skewnesst+6 Skewnesst+12 Skewnesst+24

i∗t − it −0.001∗∗ −0.009∗∗∗ −0.021∗∗∗ −0.034∗∗∗

(0.0005) (0.0028) (0.0057) (0.0077)

yt −0.027∗∗∗ −0.044∗∗ −0.031 0.021

(0.0052) (0.0182) (0.0348) (0.0695)

Skewnesst 0.988∗∗∗ 0.826∗∗∗ 0.543∗∗∗ 0.123

(0.0021) (0.0246) (0.0651) (0.1439)

Adj. R2 0.99 0.76 0.43 0.13

Note: The table reports the estimated coefficients (standard errors) of unbalanced panel regressions with

currency fixed effects and monthly data. The standard errors are adjusted for serial correlation using a

Newey-West covariance matrix and *, **, and *** denote significance at the 10%, 5%, and 1% level.

Table 13 sheds light on the question whether skewness is priced by looking into its predictive

power for future exchange rate returns. Specifically, the table presents for each daily return series

short-horizon (h = 1) and longer-horizon (h > 1) predictive regressions where the predictors are

18Moreover, when excluding the recent zero lower bound period, which is in most cases nearly uninformative with
respect to the link between interest rate differentials and skewness, the results are even more pronounced.
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the estimated volatility and skewness series obtained from the SVSS model. Since both of these

predictors are highly persistent, we apply the IVX approach developed by Magdalinos and Phillips

(2009), and extended in Kostakis et al. (2015), to ensure reliable inference. While the evidence for

the predictive ability of volatility across different horizons appears strongest in case of the Japanese

Yen, the results are mixed when looking at the remaining currencies. In contrast, skewness has

significant predictive power for future returns across the four currencies and across horizons.

Overall, these results confirm previous findings in the literature suggesting that skewness is priced

while the consistently negative signs of the estimated coefficients indicate investors’ demand for

compensation when accepting crash risk exposure. Related recent empirical contributions showing

that skewness is indeed priced include Rafferty (2012), who identifies a global currency skewness

factor, and Broll (2016), who finds evidence of a skewness risk premium by comparing currency

options’ implied skewness and future realized skewness.

Table 13: Predictive regressions with daily exchange rate returns as dependent variable

h = 1 h = 10 h = 30 h = 60

USD/AUD β̂IV X Wald β̂IV X Wald β̂IV X Wald β̂IV X Wald

Volatilityt −0.047 17.930∗∗∗ −0.034 9.119∗∗∗ −0.015 1.583 0.001 0.011

Skewnesst −0.057 9.952∗∗∗ −0.054 8.810∗∗∗ −0.048 7.102∗∗∗ −0.042 5.470∗∗

USD/JPY β̂IV X Wald β̂IV X Wald β̂IV X Wald β̂IV X Wald

Volatilityt 0.141 32.239∗∗∗ 0.115 20.872∗∗∗ 0.093 11.936∗∗∗ 0.075 6.078∗∗

Skewnesst −0.065 8.791∗∗∗ −0.062 8.038∗∗∗ −0.057 6.759∗∗∗ −0.050 5.193∗∗

USD/GBP β̂IV X Wald β̂IV X Wald β̂IV X Wald β̂IV X Wald

Volatilityt −0.059 8.754∗∗∗ −0.048 5.773∗∗ −0.034 2.699 −0.016 0.521

Skewnesst −0.073 6.042∗∗ −0.071 5.793∗∗ −0.066 4.985∗∗ −0.060 3.974∗∗

USD/CHF β̂IV X Wald β̂IV X Wald β̂IV X Wald β̂IV X Wald

Volatilityt 0.050 3.504∗ 0.030 1.224 0.003 0.014 −0.010 0.092

Skewnesst −0.136 12.802∗∗∗ −0.135 12.636∗∗∗ −0.131 11.897∗∗∗ −0.123 10.389∗∗∗

Note: The table reports the estimated coefficients of predictive regressions with daily nominal exchange rate

returns as the dependent variable using the IVX approach (Magdalinos and Phillips, 2009; Kostakis et al., 2015).

Wald refers to the Wald statistic under the null hypothesis that the corresponding coefficient is equal to zero and *,

**, and *** denote significance at the 10%, 5%, and 1% level. For the long-horizon predictive regressions (h > 1),

the dependent variable is the h-period cumulative nominal exchange rate return (see Kostakis et al., 2015).

Clearly, to make definite statements about whether and how strongly skewness is priced requires

a more formal approach. One possibility would be to apply the SVSS model to a much larger panel

of exchange rate returns and to use the estimated skewness series as risk factors in the procedure

suggested by Fama and MacBeth (1973). While such an analysis is beyond the scope of this paper,

it would help determine the actual skewness risk premium.
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5 Conclusion

This paper has presented an econometric approach to estimate time-varying asymmetry. A stan-

dard stochastic volatility model is extended to allow for stochastic skewness. Gaussian shocks are

replaced by shocks coming from the noncentral t-distribution where the parameter that governs

skewness, varies stochastically over time. The model can be estimated by straightforward exten-

sions of traditional Markov Chain Monte Carlo methods for stochastic volatility models. Monte

Carlo simulations suggest that the resulting stochastic volatility - stochastic skewness (SVSS)

model performs well for sample sizes typically encountered when analysing daily financial returns.

The model is subsequently used to estimate time variation in the skewness of exchange rate

returns of four major currencies relative to the U.S. Dollar over the period 01/01/1977–31/10/2017.

The following results are obtained: For currencies that are frequently subject to carry trading, the

model outperforms alternative SV models that assume either symmetric shocks, a constant degree

of asymmetry or that include jumps in the return equation, both in-sample and when forecasting

risk measures out-of-sample. Thus, evidence is found in favour of time-varying skewness in certain

exchange rate returns. In addition, interest rate differentials can help to predict future skewness.

This points towards the carry trade as at least an amplifier of crash risk. Lastly, the results

support the existence of a skewness risk premium in exchange rate markets.

From the perspective of policy makers and investors, these results have important implications.

If monetary policy uses the policy rate to target inflation, there might be undesired side effects

in case this leads to larger interest rate differentials relative to other countries. These growing

interest rate differentials increase carry trading activity resulting in higher currency crash risk. If

this risk eventually materializes in a sudden depreciation of the domestic currency, this could in

turn give rise to higher inflation since imports become more expensive. The proposed model could

serve as a tool to monitor exchange rate vulnerability. The potential benefits of the results for

investors arise naturally from the forecasting exercise. Since the SVSS model can help to improve

forecasts of risk associated with FX positions, which are required input for the process of portfolio

optimization, the quality of investors’ risk management can improve.

We identify several avenues for future research. This paper has used the noncentral t-distribution

to model asymmetric shocks, largely because implementing time-varying skewness is relatively

straightforward. However, a large number of distributions fulfills the general requirements to

model time-varying asymmetry and a thorough comparison of their performance could be fruit-

ful. Moreover, the model can be extended in various ways that have already proven useful in the

stochastic volatility literature such as including leverage effects or allowing for ‘stochastic skewness

in mean’ dynamics. Especially the latter approach could be beneficial in establishing a closer link

with asset pricing theory as it would allow for a direct impact of skewness on returns.
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Appendix A Moments of the noncentral t-distribution

Following Hogben et al. (1961), the central moments of a noncentral t-distributed random vari-

able, X ∼ NCT (ν, δ), can be written as polynomials of δ whose coefficients are functions of ν.

Specifically, the expected value, variance, and third and fourth central moment are given by:

E[X] = c11(ν)δ, if ν > 1,

E
[
(X − E[X])2

]
= c22(ν)δ2 + c20(ν), if ν > 2,

E
[
(X − E[X])3

]
= c33(ν)δ3 + c31(ν)δ, if ν > 3,

E
[
(X − E[X])4

]
= c44(ν)δ4 + c42(ν)δ2 + c40, if ν > 4.

The functional forms of the coefficients are:

c11(ν) =

√
1

2
ν

Γ
[
1
2 (ν − 1)

]
Γ( 1

2ν)
, c22(ν) =

ν

ν − 2
− c11(ν)2, c20(ν) =

ν

ν − 2
,

c33(ν) = c11(ν)

[
ν(7− 2ν)

(ν − 2)(ν − 3)
+ 2c11(ν)2

]
, c31(ν) =

3ν

(ν − 2)(ν − 3)
c11(ν),

c44(ν) =
ν2

(ν − 2)(ν − 4)
− 2ν(5− ν)c11(ν)2

(ν − 2)(ν − 3)
− 3c11(ν)4,

c42(ν) =
6ν

ν − 2

[
ν

ν − 4
− (ν − 1)c11(ν)2

ν − 3

]
, c40(ν) =

3ν2

(ν − 2)(ν − 4)
.

Appendix B Details on the MCMC algorithm

In this appendix, details are given on the blocking scheme of the MCMC algorithm and the

conditional posterior distributions of the stochastic volatility - stochastic skewness (SVSS) model

introduced in Section 2.

Block 1: Sample the mixture indicators s from p(s|y,X, h, δ, ν, β)

In order to sample the mixture indicators s of the extended mixture representation introduced

in Section 2.3, we build on the approach of Kim et al. (1998) but account for the fact that the

appropriate mixture components in the SVSS model depend on ν (which changes over MCMC

iterations) and δt (which changes over MCMC iterations and time). st is a discrete random variable

that follows a ten-point distribution. In particular, each st has probability

p(st = j|yt, Xt, ht, δt, ν, β) =
1

kt
qj(ν, δt)pN

(
ỹt;ht +mj(ν, δt), v

2
j (ν, δt)

)
, (B-1)

where ỹt = log((yt −Xtβ)2 + c), c = 0.001 is an offset constant and

kt =
∑10
j=1 qj(ν, δt)pN

(
ỹt;ht +mj(ν, δt), v

2
j (ν, δt)

)
is a normalizing constant. Practical implemen-

tation of the indicator sampling is done by using the inverse-transform method as in Chan and
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Hsiao (2014).19

Block 2: Sample the (log-)volatility h from p(h|y,X, s, δ, ν, β, µh, φh, σ2
h)

For the purpose of sampling the latent (log-)volatility series h, we first specify a general state

space model of the following form as given in Durbin and Koopman (2012)

wt = Ztκt + et, et ∼ N (0, Ht), (B-2)

κt+1 = dt + Ttκt +Rtηt, ηt ∼ N (0, Qt), (B-3)

where wt is an observed data point and κt the unobserved state. The matrices Zt, Tt, Ht, Qt, Rt,

and dt are assumed to be known (conditioned upon). The error terms et and ηt are assumed to

be serially uncorrelated and independent of each other at all points in time. Bearing in mind this

general form, the specific state space model to be estimated in this block is

ỹt −mst(ν, δt)︸ ︷︷ ︸
wt

=
[
1
]

︸︷︷︸
Zt

ht︸︷︷︸
κt

+ εt︸︷︷︸
et

, (B-4)

ht+1︸︷︷︸
κt+1

=
[
µh(1− φh)

]
︸ ︷︷ ︸

dt

+
[
φh

]
︸︷︷︸
Tt

ht︸︷︷︸
κt

+
[
1
]

︸︷︷︸
Rt

ηht︸︷︷︸
ηt

, (B-5)

where ỹt = log((yt − Xtβ)2 + c), Ht = v2st(ν, δt) and Qt = σ2
h. As Equations (B-4) and (B-5)

constitute a linear Gaussian state space model, the unknown state variable ht can be filtered using

the standard Kalman filter. Sampling h = (h1, ..., hT ) can then be achieved using the algorithm

outlined in Carter and Kohn (1994). More recently, Chan and Jeliazkov (2009) and McCausland

et al. (2011) have shown how the unobserved states of a linear Gaussian state space model can be

filtered and sampled more efficiently by relying on sparse matrix algorithms. This paper follows

Chan and Hsiao (2014) who show how to efficiently sample the unobserved (log-)volatilities ht

using these algorithms. The reader is referred to pp. 5-8 in Chan and Hsiao (2014) for a detailed

outline of the so-called precision sampler.

Block 3: Sample the latent state λ from p(λ|y,X, h, δ, ν, β)

In sampling the latent state variable λ, this paper follows Tsionas (2002). In particular, the

conditional distribution of each λt is

p(λt|yt, Xt, ht, δt, ν, β) ∝ λ−(ν+3)/2
t exp

[
−u

2
t/e

ht + ν

2λt
+ δt(ut/e

ht/2)λ
−1/2
t

]
, (B-6)

where ut = yt − Xtβ + eht/2c11(ν)δt and the second summand is due to the fact that Tsionas

(2002) does not consider the de-meaned version of the noncentral t-distribution. If δt = δ = 0,

i.e. the shocks are Student t-distributed, λt is conditionally inverse-gamma distributed and can

be straightforwardly sampled as in e.g. Chan and Hsiao (2014). However, in the noncentral case

19See Algorithm 3.2. in Kroese et al. (2013) for a textbook treatment of the inverse-transform method.
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acceptance sampling is required as the conditional distribution is non-standard. To this end,

one can make use of the fact that the conditional distribution of wt = λ
−1/2
t is log-concave. In

particular, the conditional distribution of each wt is

p(wt|yt, Xt, ht, δt, ν, β) ∝ wνt exp

(
−u

2
t/e

ht + ν

2
w2
t +

δtut
eht/2

wt

)
. (B-7)

This conditional distribution belongs to a family of distributions with kernel function

f(x) ∝ xN−1exp(−(A/2)x2 +Bx), (B-8)

where N = ν + 1, A = u2/eh + ν and B = δu/eh/2.

The proposal density for the acceptance sampling is g(x) ∼ Gamma(N, θ∗), where θ∗ = N/x∗

and x∗ is the positive root that solves

Atx
2 −Btx−N = 0. (B-9)

We then accept the candidate draw w∗t with probability

R = exp(r∗ − r), (B-10)

where r∗ = log(f(x)/g(x)) evaluated at w∗t and r = log(f(x)/g(x)) evaluated at x∗. Specifically,

r∗ = −(At/2)w∗t
2 + (Bt + θ∗)w∗t −N log(θ∗), (B-11)

r = −(At/2)x∗2 + (Bt + θ∗)x∗ −N log(θ∗). (B-12)

After having accepted a candidate draw w∗t , the original state variable is recovered as λt = w∗t
−2.

Block 4: Sample the degrees of freedom ν from p(ν|λ)

Sampling the degrees of freedom ν is identical to the case with (symmetric) Student t-distributed

shocks. The description of the sampling approach closely follows Chan and Hsiao (2014). The log-

density log p(ν|λ) can be derived using the fact that λt ∼ IG(ν/2, ν/2) and the prior distribution

ν ∼ U(0, ν̄) as

log p(ν|λ) =
Tν

2
log(ν/2)− T log Γ(ν/2)− (ν/2 + 1)

T∑
t=1

log λt −
ν

2

T∑
t=1

λ−1t + k, (B-13)

for 0 < ν < ν̄ and k is a normalization constant. The first and second derivative of the log-density

with respect to ν are then given by

d log p(ν|λ)

dν
=
T

2
log(ν/2) +

T

2
− T

2
Ψ(ν/2)− 1

2

T∑
t=1

log λt −
1

2

T∑
t=1

λ−1t , (B-14)

d2 log p(ν|λ)

dν2
=

T

2ν
− T

4
Ψ′(ν/2), (B-15)
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where Ψ(x) = d
dx log Γ(x) and Ψ′(x) = d

dxΨ(x) are the digamma and trigamma function, respec-

tively. Since the first and second derivatives can be evaluated easily, log p(ν|λ) can be maximized

by well-known algorithms (e.g. the Newton-Raphson method). In addition, the mode and the neg-

ative Hessian evaluated at the mode, denoted ν̂ and Kν , are obtained. Finally, an independence-

chain Metropolis-Hastings step can be implemented with proposal distribution N (ν̂, K−1ν ).

Block 5: Sample the latent noncentrality parameter δ from

p(δ|y,X, h, λ, ν, β, µδ, φδ, σ2
δ )

In order to sample the time-varying noncentrality parameter δt, we explore the following state

space model

ỹt︸︷︷︸
wt

=
[
λ
1/2
t − c11(ν)

]
︸ ︷︷ ︸

Zt

δt︸︷︷︸
κt

+ εt︸︷︷︸
et

, (B-16)

δt+1︸︷︷︸
κt+1

=
[
µδ(1− φδ)

]
︸ ︷︷ ︸

dt

+
[
φδ

]
︸︷︷︸
Tt

δt︸︷︷︸
κt

+
[
1
]

︸︷︷︸
Rt

ηδt︸︷︷︸
ηt

, (B-17)

where ỹt = (yt −Xtβ)e−ht/2 and with Ht = λt and Qt = σ2
δ . Note that the observation Equation

(B-16) is obtained by rewriting the SVSS model in Equation (6). Instead of applying the forward-

filtering and backward-sampling approach of Carter and Kohn (1994), again the routine developed

in Chan and Jeliazkov (2009) is used to obtain a sample of δ = (δ1, ..., δT ). If δt is specified as a

(driftless) random walk as in Section 4, we set µδ = 0 and φδ = 1 in the state Equation (B-17).

Block 6: Sample the constant trend volatility µh from p(µh|h, φh, σ2
h) and

the constant trend asymmetry µδ from p(µδ|δ, φδ, σ2
δ )

The conditional posterior distributions of the constant trend volatility and trend asymmetry are

standard and samples can be readily obtained. Following Kim et al. (1998) and the notation of

Chan and Hsiao (2014), the conditional distribution of µτ , where τ = (h, δ), is

µτ |τ, φτ , σ2
τ ∼ N (µ̂τ , Dµτ ), (B-18)

with

Dµτ = (V −1µτ +X ′µτΣ−1τ Xµτ )−1, (B-19)

µ̂τ = Dµτ (V −1µτ µτ0 +X ′µτΣ−1τ zµτ ), (B-20)

where Xµτ = (1, 1−φτ , ..., 1−φτ )′, zµτ = (τ1, τ2−φττ1, ..., τT −φττT−1)′ and Στ = diag(σ2
τ/(1−

φ2τ ), σ2
τ , ..., σ

2
τ ). If δt is specified as a (driftless) random walk as in Section 4, sampling µδ is simply

omitted.
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Block 7: Sample the volatility AR(1) coefficient φh from p(φh|h, µh, σ2
h) and

the asymmetry AR(1) coefficient φδ from p(φδ|δ, µδ, σ2
δ )

Following Kim et al. (1998) and using the notation of Chan and Hsiao (2014), the conditional

posterior distribution of the persistence parameter φτ , where τ = (h, δ), is

p(φτ |τ, µτ , σ2
τ ) ∝ p(φτ )g(φτ )exp

(
− 1

2σ2
τ

T∑
t=2

(τt − µτ − φτ (τt−1 − µτ ))2

)
, (B-21)

with

g(φτ ) = (1− φ2τ )1/2exp

(
− 1

2σ2
τ

(1− φ2τ )(τ1 − µτ )2
)
, (B-22)

and p(φτ ) is the truncated normal prior defined in Equation (7). Due to the stationarity condition

|φτ | < 1, this distribution is non-standard and sampling is achieved using the Metropolis-Hastings

algorithm. In particular, the proposal density is N (φ̂τ , Dφτ )I(|φτ | < 1) with

Dφτ = (V −1φτ
+X ′φτXφτ /σ

2
τ )−1, (B-23)

φ̂τ = Dφτ (V −1φτ
φτ0 +X ′φτ zφτ /σ

2
τ ), (B-24)

where Xφτ = (τ1−µτ , ..., τT−1−µτ )′ and zφτ = (τ2−µτ , ..., τT−µτ )′ (Chan and Hsiao, 2014). Con-

ditional on the current state φτ , a proposal φ∗τ is accepted with probability min(1, g(φ∗τ )/g(φτ )).

In case of rejection, the Markov chain remains at the current state φτ . If δt is specified as a

(driftless) random walk as in Section 4, sampling φδ is simply omitted.

Block 8: Sample the shock variances σ2
h from p(σ2

h|h, µh, φh) and σ2
δ from

p(σ2
δ |δ, µδ, φδ)

The shock variances of the (log-)volatility ht and the noncentrality parameter δt have inverse-

gamma conditional posterior distributions (Kim et al., 1998). Specifically, the conditional posterior

distribution of σ2
τ , where τ = (h, δ), is

σ2
τ |τ, µτ , φτ ∼ IG(cτ0 + T/2, Cτ ), (B-25)

where notation follows Chan and Hsiao (2014) and

Cτ = Cτ0 +

[
(1− φ2τ )(τ1 − µτ )2 +

T∑
t=2

(τt − µτ − φτ (τt−1 − µτ ))2

]
/2. (B-26)

If δt is specified as a (driftless) random walk as in Section 4, we set µδ = 0 and φδ = 1.

Block 9: Sample the regression coefficients β from p(β|y,X, h, δ, λ, ν)

When the stochastic volatility - stochastic skewness model is augmented by a conditional mean

specification as in Section 4.2, the corresponding k-dimensional vector of regression coefficients β
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can be sampled as in Tsionas (2002). The conditional posterior distribution is

β|y,X, h, δ, λ, ν ∼ N
(

[X ′Λ−1X]−1X ′Λ−1(ỹ − δ � eh/2 � λ1/2), eh[X ′Λ−1X]−1
)
, (B-27)

where X is a T × k matrix of regressors containing, in our case, a constant and four lags of

the dependent variable, Λ = diag(λ1, ..., λT ), ỹ = y + eh/2c11(ν)δ and � is the element-wise

(Hadamard) product of two vectors. The second summand of the transformed dependent variable

ỹ is again due to the fact that Tsionas (2002) does not consider the de-meaned version of the

noncentral t-distribution.

Appendix C Data

Figure C-1: Nominal exchange rates

(a) USD/AUD (b) USD/JPY

(c) USD/GBP (d) USD/CHF

Note: The figure displays the four daily nominal exchange rates measured as USD per foreign currency unit

over the period 01/01/1977–31/10/2017 (T = 10, 255). Source: Board of Governors of the Federal Reserve

System (US), retrieved from FRED, Federal Reserve Bank of St. Louis.
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Figure C-2: Nominal exchange rate returns

(a) USD/AUD (b) USD/JPY

(c) USD/GBP (d) USD/CHF

Note: The figure displays the daily nominal exchange rate returns used in the estimations. These are

calculated as yt = (St − St−1)/St−1 × 100 where St is the nominal exchange rate.

Figure C-3: Short-term interest rates

Note: The figure displays the short-term (3-months) interest rates for the sample countries and the U.S.

as the reference country. Source: Board of Governors of the Federal Reserve System (US), retrieved from

FRED, Federal Reserve Bank of St. Louis.
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Appendix D Additional results

Monte Carlo simulation with alternative prior configurations

The goal of the Monte Carlo experiments in Section 3 is to show that the developed MCMC

algorithm and its building blocks, such as the extended mixture approximation described in Section

2.3, succeed in recovering the true volatility and skewness dynamics. While the priors used in these

simulations are relatively uninformative, for most parameters they are centered around the true

values. This applies to the intercepts and the AR(1) coefficients and, to a lesser extent, to the

shock variances. Priors centered around the true values have been used to avoid biasing the results

through the prior configuration.

Table D-1: Monte Carlo simulation results: Alternative prior specifications

Sample size Parameter Mean SE 2.5% 97.5% Bias CD IF

T = 1,000

µh −0.06 0.30 −0.63 0.54 −0.06 0.46 10.44

φh 0.97 0.04 0.89 0.99 −0.02 0.48 60.06

σ2
h 0.02 0.00 0.01 0.02 0.01 0.49 76.96

µδ −0.12 0.50 −1.23 0.64 −0.12 0.39 352.04

φδ 0.43 0.23 0.16 0.99 −0.56 0.38 687.27

σ2
δ 0.02 0.00 0.02 0.02 0.01 0.49 109.48

ν 6.29 2.71 4.01 13.13 1.29 0.44 100.29

T = 5,000

µh 0.00 0.14 −0.28 0.25 0.00 0.42 7.66

φh 0.99 0.00 0.98 0.99 0.00 0.47 63.98

σ2
h 0.01 0.00 0.01 0.02 0.00 0.47 152.72

µδ −0.02 0.16 −0.32 0.29 −0.02 0.46 77.39

φδ 0.89 0.21 0.23 0.99 −0.10 0.37 511.61

σ2
δ 0.02 0.00 0.01 0.02 0.01 0.43 399.74

ν 5.25 0.49 4.46 6.32 0.25 0.45 57.36

T = 10,000

µh 0.01 0.10 −0.19 0.19 0.01 0.46 3.72

φh 0.99 0.00 0.98 0.99 0.00 0.46 79.22

σ2
h 0.01 0.00 0.01 0.01 0.00 0.46 184.81

µδ 0.00 0.11 −0.22 0.22 0.00 0.48 8.56

φδ 0.98 0.05 0.97 0.99 −0.01 0.41 247.85

σ2
δ 0.02 0.00 0.01 0.02 0.01 0.41 552.50

ν 5.16 0.31 4.60 5.78 0.16 0.48 40.17

True values: µh = 0, φh = 0.99, σ2
h = 0.01, µδ = 0, φδ = 0.99, σ2

δ = 0.01, ν = 5. Notes: See Table 2.

In addition, it is interesting to see how the model and the estimation algorithm behave if the

prior distributions are not centered around the true values and even more flat. To this end, the

simulation reported in Table 3 has been re-done using the same DGP as before but the following

prior configurations: µh ∼ N (−5, 10), µδ ∼ N (−5, 10), φh ∼ N (0.95, 1), φδ ∼ N (0.95, 1), σ2
h ∼
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IG(2.5, 0.08) and σ2
δ ∼ IG(2.5, 0.08). The prior distributions of the shock variances imply a prior

expectation of 0.05 and a prior standard deviation of 0.08 (Chan and Grant, 2016a). The prior

specification of the degrees of freedom parameter remains unchanged at ν ∼ U(0, 50).

Table D-1 presents the results of this prior sensitivity analysis. Overall, the results remain

relatively similar compared to the baseline simulation. However, when using a completely flat

prior for the AR(1) parameter of the unobserved asymmetry process, φδ, it cannot be identified

anymore in a relatively small sample of T = 1, 000. The precision of the estimation improves

quickly though with increasing sample size and for T = 10, 000, the results are comparable to the

baseline. Interestingly, these alternative prior configurations result, on average, in significantly

lower inefficiency factors. In summary, this sensitivity analysis shows that the estimation algorithm

performs well even when the prior distributions are not centered around the true values and, in

addition, are even more flat.

Monte Carlo simulation with symmetric DGP

This section takes a closer look at the performance of the proposed SVSS model in a situation

where the underlying DGP is symmetric, i.e. skewness does not exist. To this end, the small

illustrative example presented at the end of Section 3 is extended to a large scale Monte Carlo

simulation. Specifically, 1,000 datasets are simulated (T = 10, 000) from the restricted (symmetric)

SVSS model, i.e. the true values in the DGP are: µh = 0, φh = 0.99, σ2
h = 0.01, µδ = 0, φδ = 0.99,

σ2
δ = 0, ν = 5. Afterwards, the unrestricted SVSS model is estimated using each of these datasets

and the posterior mean series of the asymmetry parameter δ are retained.

Figure D-1 presents the average estimated asymmetry parameter δ along with the 95% density

interval. The results clearly point towards a good performance of the model even in a case where

the SVSS model is overparametrized since the underlying DGP is symmetric. The Monte Carlo

mean of δt is very close to 0 ∀ t = 1, ..., T and the surrounding 95% interval is relatively narrow.

Figure D-1: Monte Carlo results for δt and symmetric DGP

Monte Carlo mean δt 95% Monte Carlo interval δt True δt
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GARCH with conditional skewness vs. SVSS

This section compares the results obtained from the stochastic volatility - stochastic skewness

model with a competitor model from the GARCH family that features deterministic time variation

in the higher moments. As discussed in Section 1, higher moment dynamics have been extensively

modelled in the literature on generalized autoregressive conditional heteroscedasticity (GARCH)

models. Hansen (1994) has developed the so-called autoregressive conditional density (ACD) class

of models, where not only the latent variance process but also the unobserved scale and shape

parameters of the standardized shock distribution are assumed to follow GARCH dynamics.

For the purpose of this section, we specify the following ACD model, where the conditional

mean is again modelled as an AR(4) process, the conditional variance has GARCH(1,1) dynamics

and the standardized shocks follow a skewed-t distribution (Fernández and Steel, 1998) where the

unconstrained asymmetry parameter exhibits quadratic dynamics:

yt = β0 +
4∑
l=1

βlyt−l + εt, (D-1)

εt = σtzt, zt ∼ SKT (0, 1, δt, ν), (D-2)

σ2
t = ω + α1ε

2
t−1 + α2σ

2
t−1, (D-3)

δt = L+
U − L

1 + exp(−δ̄t)
, (D-4)

δ̄t = c0 + c1zt−1 + c2z
2
t−1 + c3δ̄t−1. (D-5)

The model specified in Equations (D-1)-(D-5) can be considered a simplified version of the original

model in Hansen (1994) where the degrees of freedom parameter ν is assumed constant to allow

for a better comparison with the results from the SVSS model. The unconstrained asymmetry

parameter δ̄t is logistically transformed to ensure that its constrained counterpart δt lies within

a sensible interval δt ∈ [L,U ]. To estimate the outlined ACD model, we use the R package

racd of Ghalanos (2014).20 When comparing this model to the SVSS model, it should be noted

that an exact comparison remains difficult since not only the dynamics of skewness and volatility

differ but also the underlying distributional assumption about the error term. While the SVSS

model employs the noncentral t-distribution, the default choice for the ACD model is the skewed

t-distribution of Fernández and Steel (1998). Keeping this in mind, the results presented in the

following still provide many interesting insights into the performance of both models.

We start by comparing both models in a simulation exercise where samples are generated from

the models and both the ACD and the SVSS model are estimated on these samples resulting in

four possible combinations of true and estimated model.21 To measure model performance, we

compute for each Monte Carlo sample the average absolute deviation (over time) of the estimated

20For the non-linear optimization problem the ucminf solver is used with tolerance levels grtol = 10−4 and
xtol = 10−6 and the maximum number of function evaluations is set to maxeval = 500.

21The simulation exercise follows the set-up of Section 3. The true parameter values for the SVSS model are as
in Table 3. Moreover, samples from the ACD model in Equations (D-1)-(D-5) are generated using the following
parameter values: ω = 0.005, α1 = 0.04, α2 = 0.95, c0 = 0, c1 = 0.2, c2 = −0.005, c3 = 0.9, ν = 5. The conditional
mean specification is dropped for the simulation exercise, i.e. βl = 0 ∀ l = 0, ..., 4. We set L = 0.5 and U = 2,
which, given ν = 5, ensures that conditional skewness lies approximately in the interval [−2, 2].
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skewness series from the true skewness series. Figure D-2 presents boxplots of these statistics for

both DGPs (ACD and SVSS) and both estimated models.

Figure D-2: Monte Carlo simulation: ACD vs. SVSS

(a) DGP: ACD model (b) DGP: SVSS model

Note: The figures display boxplots of the average absolute deviations of the estimated skewness series

from the true skewness series for the ACD and the SVSS model (for the 1,000 Monte Carlo samples).

When inspecting the plots, a few conclusions can be drawn. First, as expected the model that

corresponds to the DGP estimates skewness on average more precisely. Second, the most precise

results are obtained in the case where the ACD model is estimated on samples generated from

the same model. However, the existence of a few large outliers suggests that the ACD model

can occasionally perform poorly. Third, while the SVSS model clearly outperforms the ACD

model for samples from the SVSS model, overall stochastic skewness seems to be more difficult

to capture than deterministic skewness as indicated by the higher levels of the absolute deviation

measures. Finally, in general both models have difficulties capturing skewness dynamics generated

by the other model. While this cannot be seen directly from the presented boxplots, the estimated

skewness series of both models when using data generated from the other model, are mostly

relatively flat and thus reflect the average level of skewness in the data while not capturing the

dynamics over time appropriately.

We now turn to comparing both models when estimating them using the four exchange rate

return series. In order to get an idea of how the estimated latent variables relate, Figures D-3 and

D-4 contrast the estimated variance and skewness series obtained from both models. Even though

the estimated GARCH variances show sometimes larger volatility peaks, overall the evolution

of the estimated time-varying variances across both models is relatively similar. In contrast, the

estimated skewness series differ greatly. Naturally, the different parametric assumptions underlying

both models lead to very different time series patterns of the estimated skewness series. While

the SVSS model produces a rather smooth and slowly evolving skewness series, the ACD model

yields a highly erratic estimated asymmetry series.
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Figure D-3: Estimated variance series: ACD vs. SVSS

(a) USD/AUD returns (b) USD/JPY returns

(c) USD/GBP returns (d) USD/CHF returns

Estimated variance SVSS 95% HDI Estimated variance ACD

Figure D-4: Estimated skewness series: ACD vs. SVSS

(a) USD/AUD returns (b) USD/JPY returns

(c) USD/GBP returns (d) USD/CHF returns

Estimated skewness SVSS 95% HDI Estimated skewness ACD
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To assess its forecasting performance, the exercise presented in Section 4.4 has been done

also for the ACD model.22 The results of the Value-at-Risk and expected shortfall forecasts are

presented in Tables D-2 and D-3. The ACD model does very well when used for VaR forecasting

and its performance is overall comparable with the SVSS model. When used to forecast expected

shortfall, the ACD model again performs very well and, on average, performs even better then the

SVSS model. However, the SVSS model has advantages when forecasting expected shortfall in the

left tail of all four currency return distributions thus maintaining a distinct gain when forecasting

the expected size of potential crashes.

Table D-2: ACD model: LR tests for unconditional coverage, independence and conditional coverage of
the VaR violations

α $/AUD $/JPY $/GBP $/CHF $/AUD $/JPY $/GBP $/CHF

(a) Number of VaR violations (b) p-values for LR-UC test

0.5% 11 11 13 9 0.46 0.46 0.87 0.18

1% 19 26 23 17 0.09 0.81 0.40 0.03

5% 153 135 165 122 0.14 0.92 0.01 0.21

95% 143 130 125 122 0.55 0.59 0.32 0.21

99% 26 20 18 25 0.81 0.14 0.06 0.66

99.5% 10 12 7 14 0.30 0.66 0.05 0.92

(c) p-values for LR-IND test (d) p-values for LR-CC test

0.5% 0.77 0.77 0.72 0.81 0.73 0.73 0.93 0.40

1% 0.61 0.48 0.53 0.64 0.22 0.76 0.58 0.10

5% 0.07 0.77 0.15 0.23 0.06 0.95 0.02 0.22

95% 0.15 0.32 0.43 0.83 0.29 0.53 0.45 0.44

99% 0.49 0.59 0.11 0.23 0.76 0.30 0.05 0.44

99.5% 0.79 0.74 0.85 0.06 0.57 0.86 0.14 0.17

Note: This table contains the number of VaR violations based on the out-of-sample forecasting exercise

for the ACD model and each exchange rate (a) as well as the p-values corresponding to the likelihood

ratio (LR) test for unconditonal coverage following Kupiec (1995) (b) and the LR tests for independence

of the violations (c) and conditional coverage (d) following Christoffersen (1998). Bold numbers indicate

p-values < 0.05.

In summary, this short section provides interesting insights into the relative performance of the

ACD and the SVSS model. Nevertheless, a broader and more detailed comparison of stochastic

skewness models and deterministic skewness models would certainly be fruitful but is beyond the

scope of this paper.

22We focus here on comparing the out-of-sample performance of both models as an in-sample comparison is not
straightforward. This is because standard measures for model comparison are not available for the SVSS model
while the conditional Deviance Information Criterion (DIC) used to compare the SV models in Section 4.2 is not
readily available for the ACD model.
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Table D-3: ACD model: precision of expected shortfall forecasts

α USD/AUD USD/JPY USD/GBP USD/CHF

0.5% 0.065 0.219 0.256 0.400

1% 0.094 0.051 0.164 0.205

5% 0.056 0.015 0.039 0.013

95% 0.050 0.004 0.030 0.070

99% 0.184 0.084 0.059 0.486

99.5% 0.288 0.048 0.073 0.892

Note: This table contains the expected shortfall accuracy measure of

Embrechts et al. (2005). Bold numbers indicate a better performance

of the SVSS model compared to the ACD model.

Subsample analysis

Since the sample of exchange rate returns used for the baseline estimations spans more than forty

years, the aspect of parameter stability over this long period needs to be discussed. While the SVSS

model allows the conditional variance and skewness to vary over time, the parameters governing

the unobserved states h and δ as well as the degrees of freedom parameter ν, are assumed to be

constant over the sample period.

Table D-4: Parameter estimates of the SVSS model over subsamples

USD/AUD USD/JPY USD/GBP USD/CHF

Coef. Mean SD Mean SD Mean SD Mean SD

1977–1989

(T = 3,257)

µh −2.586 0.460 −1.568 0.121 −1.775 0.675 −0.987 0.175

φh 0.992 0.003 0.959 0.015 0.995 0.002 0.983 0.005

σ2
h 0.027 0.007 0.055 0.024 0.018 0.004 0.021 0.005

ν 4.890 0.480 6.769 3.247 5.690 0.574 15.478 6.977

σ2
δ 0.004 0.002 0.005 0.002 0.004 0.002 0.007 0.004

1990–2003

(T = 3,520)

µh −1.592 0.200 −1.293 0.142 −1.565 0.144 −0.951 0.103

φh 0.992 0.003 0.987 0.005 0.983 0.006 0.983 0.006

σ2
h 0.006 0.002 0.008 0.003 0.016 0.005 0.007 0.002

ν 7.367 1.010 7.049 0.907 15.664 6.932 24.341 9.472

σ2
δ 0.005 0.002 0.004 0.001 0.007 0.004 0.008 0.004

2004–2017

(T = 3,478)

µh −0.902 0.267 −1.396 0.152 −1.328 0.321 −1.269 0.286

φh 0.993 0.003 0.987 0.004 0.995 0.002 0.994 0.002

σ2
h 0.008 0.002 0.010 0.003 0.005 0.001 0.005 0.001

ν 30.915 9.183 7.904 1.063 16.297 4.253 8.379 1.067

σ2
δ 0.008 0.004 0.004 0.001 0.007 0.004 0.005 0.002

Note: All estimations include a conditional mean specification as in Equation (14).

In case this assumption does not hold, the estimates from the full sample analysis either
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reflect a time average or the unobserved states could absorb what are actually dynamics in the

underlying parameters. In order to shed light on these issues, this appendix presents the results of a

small subsample analysis. Table D-4 contains the posterior means and standard deviations of the

parameters when estimating the SVSS model over three non-overlapping subsamples of similar

size. The results can be summarized as follows. First, with a few exceptions the parameters

governing the unobserved (log-)volatility process h and the asymmetry process δ seem to be

relatively stable across the three subsamples considered. This certainly holds for the persistence

parameter, φh, while the variance parameter of volatility shocks, σ2
h, is lower in the second and

third subsample. Most notably, the degrees of freedom parameter, ν, shows some fluctuation,

especially in the cases of the USD/AUD and the USD/CHF returns. The forecasting exercise

presented in Section 4.4 partly accounts for potential instabilities in the underlying parameters by

re-estimating the candidate models in each period of the out-of-sample period. While one could in

principle also allow for time-variation in these (currently fixed) parameters, the model complexity

would significantly increase and the effect on, for example, forecasting performance, would be

highly uncertain (‘bias-variance trade-off’).
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