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4

Classification

The linear regression model discussed in Chapter 3 assumes that the re-
sponse variable Y is quantitative. But in many situations, the response
variable is instead qualitative. For example, eye color is qualitative, taking
on values blue, brown, or green. Often qualitative variables are referred
to as categorical; we will use these terms interchangeably. In this chapter,
we study approaches for predicting qualitative responses, a process that
is known as classification. Predicting a qualitative response for an obser-
vation can be referred to as classifying that observation, since it involves
assigning the observation to a category, or class. On the other hand, often
the methods used for classification first predict the probability of each of
the categories of a qualitative variable, as the basis for making the classi-
fication. In this sense they also behave like regression methods.

There are many possible classification techniques, or classifiers, that one
might use to predict a qualitative response. We touched on some of these
in Sections 2.1.5 and 2.2.3. In this chapter we discuss three of the most
widely-used classifiers: logistic regression, linear discriminant analysis, and
K -nearest neighbors. We discuss more computer-intensive methods in later
chapters, such as generalized additive models (Chapter 7), trees, random
forests, and boosting (Chapter 8), and support vector machines (Chap-
ter 9).

G. James et al., An Introduction to Statistical Learning: with Applications in R, 127
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_4,
© Springer Science+Business Media New York 2013

qualitative

classification
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128 4. Classification
4.1 An Overview of Classification

Classification problems occur often, perhaps even more so than regression
problems. Some examples include:

1. A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical conditions.
Which of the three conditions does the individual have?

2. An online banking service must be able to determine whether or not
a transaction being performed on the site is fraudulent, on the basis
of the user’s IP address, past transaction history, and so forth.

3. On the basis of DNA sequence data for a number of patients with
and without a given disease, a biologist would like to figure out which
DNA mutations are deleterious (disease-causing) and which are not.

Just as in the regression setting, in the classification setting we have a
set of training observations (z1,¥1), ..., (Zn,y,) that we can use to build
a classifier. We want our classifier to perform well not only on the training
data, but also on test observations that were not used to train the classifier.

In this chapter, we will illustrate the concept of classification using the
simulated Default data set. We are interested in predicting whether an
individual will default on his or her credit card payment, on the basis of
annual income and monthly credit card balance. The data set is displayed
in Figure 4.1. We have plotted annual income and monthly credit card
balance for a subset of 10, 000 individuals. The left-hand panel of Figure 4.1
displays individuals who defaulted in a given month in orange, and those
who did not in blue. (The overall default rate is about 3%, so we have
plotted only a fraction of the individuals who did not default.) It appears
that individuals who defaulted tended to have higher credit card balances
than those who did not. In the right-hand panel of Figure 4.1, two pairs
of boxplots are shown. The first shows the distribution of balance split by
the binary default variable; the second is a similar plot for income. In this
chapter, we learn how to build a model to predict default (V) for any
given value of balance (X7) and income (X3). Since Y is not quantitative,
the simple linear regression model of Chapter 3 is not appropriate.

It is worth noting that Figure 4.1 displays a very pronounced relation-
ship between the predictor balance and the response default. In most real
applications, the relationship between the predictor and the response will
not be nearly so strong. However, for the sake of illustrating the classifica-
tion procedures discussed in this chapter, we use an example in which the
relationship between the predictor and the response is somewhat exagger-
ated.
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Bozxplots of balance as a function of default status. Right:
Bozxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y, as follows:

1 if stroke;
Y = (¢ 2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict ¥ on the basis of a set of predictors Xy, ..., X,. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the difference
between stroke and drug overdose is the same as the difference between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

1 if epileptic seizure;
Y =<2 if stroke;

3 if drug overdose.
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which would imply a totally different relationship among the three condi-
tions. Each of these codings would produce fundamentally different linear
models that would ultimately lead to different sets of predictions on test
observations.

If the response variable’s values did take on a natural ordering, such as
mild, moderate, and severe, and we felt the gap between mild and moderate
was similar to the gap between moderate and severe, then a 1, 2, 3 coding
would be reasonable. Unfortunately, in general there is no natural way to
convert a qualitative response variable with more than two levels into a
quantitative response that is ready for linear regression.

For a binary (two level) qualitative response, the situation is better. For
instance, perhaps there are only two possibilities for the patient’s med-
ical condition: stroke and drug overdose. We could then potentially use
the dummy variable approach from Section 3.3.1 to code the response as

follows:
v — {O if stroke;

1 if drug overdose.

We could then fit a linear regression to this binary response, and predict
drug overdose if Y > 0.5 and stroke otherwise. In the binary case it is not
hard to show that even if we flip the above coding, linear regression will
produce the same final predictions.

For a binary response with a 0/1 coding as above, regression by least
squares does make sense; it can be shown that the X B obtained using linear
regression is in fact an estimate of Pr(drug overdose|X) in this special
case. However, if we use linear regression, some of our estimates might be
outside the [0, 1] interval (see Figure 4.2), making them hard to interpret
as probabilities! Nevertheless, the predictions provide an ordering and can
be interpreted as crude probability estimates. Curiously, it turns out that
the classifications that we get if we use linear regression to predict a binary
response will be the same as for the linear discriminant analysis (LDA)
procedure we discuss in Section 4.4.

However, the dummy variable approach cannot be easily extended to
accommodate qualitative responses with more than two levels. For these
reasons, it is preferable to use a classification method that is truly suited
for qualitative response values, such as the ones presented next.

4.3 Logistic Regression

Consider again the Default data set, where the response default falls into
one of two categories, Yes or No. Rather than modeling this response Y
directly, logistic regression models the probability that Y belongs to a par-
ticular category.

binary
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.

For the Default data, logistic regression models the probability of default.
For example, the probability of default given balance can be written as

Pr(default = Yes|balance).

The values of Pr(default = Yes|balance), which we abbreviate
p(balance), will range between 0 and 1. Then for any given value of balance,
a prediction can be made for default. For example, one might predict
default = Yes for any individual for whom p(balance) > 0.5. Alterna-
tively, if a company wishes to be conservative in predicting individuals who
are at risk for default, then they may choose to use a lower threshold, such
as p(balance) > 0.1.

4.8.1 The Logistic Model

How should we model the relationship between p(X) = Pr(Y = 1|X) and
X7 (For convenience we are using the generic 0/1 coding for the response).
In Section 4.2 we talked of using a linear regression model to represent
these probabilities:

p(X) = Bo+ B X. (4.1)

If we use this approach to predict default=Yes using balance, then we
obtain the model shown in the left-hand panel of Figure 4.2. Here we see
the problem with this approach: for balances close to zero we predict a
negative probability of default; if we were to predict for very large balances,
we would get values bigger than 1. These predictions are not sensible, since
of course the true probability of default, regardless of credit card balance,
must fall between 0 and 1. This problem is not unique to the credit default
data. Any time a straight line is fit to a binary response that is coded as
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0 or 1, in principle we can always predict p(X) < 0 for some values of X
and p(X) > 1 for others (unless the range of X is limited).

To avoid this problem, we must model p(X) using a function that gives
outputs between 0 and 1 for all values of X. Many functions meet this
description. In logistic regression, we use the logistic function,

ePot+prX

p(X) = T choihx: (4.2)

To fit the model (4.2), we use a method called mazimum likelihood, which
we discuss in the next section. The right-hand panel of Figure 4.2 illustrates
the fit of the logistic regression model to the Default data. Notice that for
low balances we now predict the probability of default as close to, but never
below, zero. Likewise, for high balances we predict a default probability
close to, but never above, one. The logistic function will always produce
an S-shaped curve of this form, and so regardless of the value of X, we
will obtain a sensible prediction. We also see that the logistic model is
better able to capture the range of probabilities than is the linear regression
model in the left-hand plot. The average fitted probability in both cases is
0.0333 (averaged over the training data), which is the same as the overall
proportion of defaulters in the data set.
After a bit of manipulation of (4.2), we find that

p(X) — 650+ﬁ1X
o . (4.3)

The quantity p(X)/[1 —p(X)] is called the odds, and can take on any value
between 0 and co. Values of the odds close to 0 and oo indicate very low
and very high probabilities of default, respectively. For example, on average
1 in 5 people with an odds of 1/4 will default, since p(X) = 0.2 implies an
odds of % = 1/4. Likewise on average nine out of every ten people with
an odds of 9 will default, since p(X) = 0.9 implies an odds of 225 = 9.
Odds are traditionally used instead of probabilities in horse-racing, since
they relate more naturally to the correct betting strategy.
By taking the logarithm of both sides of (4.3), we arrive at

p(X)
The left-hand side is called the log-odds or logit. We see that the logistic
regression model (4.2) has a logit that is linear in X.

Recall from Chapter 3 that in a linear regression model, 3; gives the
average change in Y associated with a one-unit increase in X. In contrast,
in a logistic regression model, increasing X by one unit changes the log odds
by B1 (4.4), or equivalently it multiplies the odds by e/t (4.3). However,
because the relationship between p(X) and X in (4.2) is not a straight line,

logistic
function

maximum
likelihood

odds

log-odds

logit
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B1 does not correspond to the change in p(X) associated with a one-unit
increase in X. The amount that p(X) changes due to a one-unit change in
X will depend on the current value of X. But regardless of the value of X,
if By is positive then increasing X will be associated with increasing p(X),
and if 3 is negative then increasing X will be associated with decreasing
p(X). The fact that there is not a straight-line relationship between p(X)
and X, and the fact that the rate of change in p(X) per unit change in X
depends on the current value of X, can also be seen by inspection of the
right-hand panel of Figure 4.2.

4.3.2  Estimating the Regression Coefficients

The coefficients 3y and 1 in (4.2) are unknown, and must be estimated
based on the available training data. In Chapter 3, we used the least squares
approach to estimate the unknown linear regression coefficients. Although
we could use (non-linear) least squares to fit the model (4.4), the more
general method of mazimum likelihood is preferred, since it has better sta-
tistical properties. The basic intuition behind using maximum likelihood
to fit a logistic regression model is as follows: we seek estimates for 5y and
B1 such that the predicted probability p(x;) of default for each individual,
using (4.2), corresponds as closely as possible to the individual’s observed
default status. In other words, we try to find BO and Bl such that plugging
these estimates into the model for p(X), given in (4.2), yields a number
close to one for all individuals who defaulted, and a number close to zero
for all individuals who did not. This intuition can be formalized using a
mathematical equation called a likelihood function:

U(Bo, Pr) = H p(x:) H (1 = p(zi)). (4.5)
1:y;=1 iy =0
The estimates BQ and Bl are chosen to mazimize this likelihood function.

Maximum likelihood is a very general approach that is used to fit many
of the non-linear models that we examine throughout this book. In the
linear regression setting, the least squares approach is in fact a special case
of maximum likelihood. The mathematical details of maximum likelihood
are beyond the scope of this book. However, in general, logistic regression
and other models can be easily fit using a statistical software package such
as R, and so we do not need to concern ourselves with the details of the
maximum likelihood fitting procedure.

Table 4.1 shows the coefficient estimates and related information that
result from fitting a logistic regression model on the Default data in order
to predict the probability of default=Yes using balance. We see that Bl =
0.0055; this indicates that an increase in balance is associated with an
increase in the probability of default. To be precise, a one-unit increase in
balance is associated with an increase in the log odds of default by 0.0055
units.

likelihood
function
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Coefficient  Std. error Z-statistic = P-value
Intercept —10.6513 0.3612 —-29.5 <0.0001
balance 0.0055 0.0002 24.9 <0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regres-
ston model that predicts the probability of default using balance. A one-unit
increase in balance is associated with an increase in the log odds of default by
0.0055 wunsits.

Many aspects of the logistic regression output shown in Table 4.1 are
similar to the linear regression output of Chapter 3. For example, we can
measure the accuracy of the coefficient estimates by computing their stan-
dard errors. The z-statistic in Table 4.1 plays the same role as the ¢-statistic
in the linear regression output, for example in Table 3.1 on page 68. For
instance, the z-statistic associated with ; is equal to Bl/SE(Bl), and so a
large (absolute) value of the z-statistic indicates evidence against the null
hypothesis Hy : $1 = 0. This null hypothesis implies that p(X) = 15:)0*
in other words, that the probability of default does not depend on balance.
Since the p-value associated with balance in Table 4.1 is tiny, we can reject
Hj. In other words, we conclude that there is indeed an association between
balance and probability of default. The estimated intercept in Table 4.1
is typically not of interest; its main purpose is to adjust the average fitted

probabilities to the proportion of ones in the data.

4.3.3 Making Predictions

Once the coefficients have been estimated, it is a simple matter to compute
the probability of default for any given credit card balance. For example,
using the coefficient estimates given in Table 4.1, we predict that the default
probability for an individual with a balance of $1,000 is

eBo+BiX ¢—10.6513+0.0055x 1,000

pX) = 1+ cPothiX 1+ e 10-6513+0.0055x1,000 0.00576,

which is below 1%. In contrast, the predicted probability of default for an
individual with a balance of $2,000 is much higher, and equals 0.586 or
58.6 %.

One can use qualitative predictors with the logistic regression model
using the dummy variable approach from Section 3.3.1. As an example,
the Default data set contains the qualitative variable student. To fit the
model we simply create a dummy variable that takes on a value of 1 for
students and 0 for non-students. The logistic regression model that results
from predicting probability of default from student status can be seen in
Table 4.2. The coefficient associated with the dummy variable is positive,
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Coefficient  Std. error Z-statistic = P-value
Intercept —3.5041 0.0707 —49.55 <0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regres-
ston model that predicts the probability of default using student status. Student
status is encoded as a dummy variable, with a value of 1 for a student and a value
of 0 for a non-student, and represented by the variable student [Yes] in the table.

and the associated p-value is statistically significant. This indicates that
students tend to have higher default probabilities than non-students:

673.5041+0.4049>< 1

13\r(default=Yes|student=Yes) = = 0.0431,

1 + e—3-5041+0.4049x 1

e—3.5041+0.4049><0

Pr(default=Yes|student=No) = [ ¢ 35011 70.001%0 — 0.0292.
3. .

4.3.4  Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple
predictors. By analogy with the extension from simple to multiple linear
regression in Chapter 3, we can generalize (4.4) as follows:

p(X)
1 — ) = X1+ X 4.6
Og(l—p(X)) ﬁ0+61 1+ +Bp D ( )
where X = (X3,...,X,) are p predictors. Equation 4.6 can be rewritten as

eBotB1 X1+, Xp

p(X) = 1 _|_ eﬁO‘f’ﬁle‘f’""”ﬁpo ’

(4.7)

Just as in Section 4.3.2, we use the maximum likelihood method to estimate
Bo, 1, -+ Bp-

Table 4.3 shows the coeflicient estimates for a logistic regression model
that uses balance, income (in thousands of dollars), and student status to
predict probability of default. There is a surprising result here. The p-
values associated with balance and the dummy variable for student status
are very small, indicating that each of these variables is associated with
the probability of default. However, the coefficient for the dummy variable
is negative, indicating that students are less likely to default than non-
students. In contrast, the coeflicient for the dummy variable is positive in
Table 4.2. How is it possible for student status to be associated with an
increase in probability of default in Table 4.2 and a decrease in probability
of default in Table 4.37 The left-hand panel of Figure 4.3 provides a graph-
ical illustration of this apparent paradox. The orange and blue solid lines
show the average default rates for students and non-students, respectively,
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Coefficient  Std. error Z-statistic = P-value

Intercept —10.8690 0.4923 —22.08 <0.0001
balance 0.0057 0.0002 24.74  <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] —0.6468 0.2362 —2.74 0.0062

TABLE 4.3. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using balance, income, and
student status. Student status is encoded as a dummy variable student[Yes],
with a value of 1 for a student and a value of O for a non-student. In fitting this
model, income was measured in thousands of dollars.

as a function of credit card balance. The negative coefficient for student in
the multiple logistic regression indicates that for a fized value of balance
and income, a student is less likely to default than a non-student. Indeed,
we observe from the left-hand panel of Figure 4.3 that the student default
rate is at or below that of the non-student default rate for every value of
balance. But the horizontal broken lines near the base of the plot, which
show the default rates for students and non-students averaged over all val-
ues of balance and income, suggest the opposite effect: the overall student
default rate is higher than the non-student default rate. Consequently, there
is a positive coefficient for student in the single variable logistic regression
output shown in Table 4.2.

The right-hand panel of Figure 4.3 provides an explanation for this dis-
crepancy. The variables student and balance are correlated. Students tend
to hold higher levels of debt, which is in turn associated with higher prob-
ability of default. In other words, students are more likely to have large
credit card balances, which, as we know from the left-hand panel of Fig-
ure 4.3, tend to be associated with high default rates. Thus, even though
an individual student with a given credit card balance will tend to have a
lower probability of default than a non-student with the same credit card
balance, the fact that students on the whole tend to have higher credit card
balances means that overall, students tend to default at a higher rate than
non-students. This is an important distinction for a credit card company
that is trying to determine to whom they should offer credit. A student is
riskier than a non-student if no information about the student’s credit card
balance is available. However, that student is less risky than a non-student
with the same credit card balance!

This simple example illustrates the dangers and subtleties associated
with performing regressions involving only a single predictor when other
predictors may also be relevant. As in the linear regression setting, the
results obtained using one predictor may be quite different from those ob-
tained using multiple predictors, especially when there is correlation among
the predictors. In general, the phenomenon seen in Figure 4.3 is known as
confounding.

confounding
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FIGURE 4.3. Confounding in the Default data. Left: Default rates are shown
for students (orange) and non-students (blue). The solid lines display default rate
as a function of balance, while the horizontal broken lines display the overall
default rates. Right: Boxplots of balance for students (orange) and non-students
(blue) are shown.

By substituting estimates for the regression coefficients from Table 4.3
into (4.7), we can make predictions. For example, a student with a credit
card balance of $1,500 and an income of $40, 000 has an estimated proba-
bility of default of

e~ 10.869+0.00574x1,500+0.003x40—0.6468x 1

pX) = 1 + ¢—10.869+0.00574x1,500+0.003x 40—0.6468x 1 0.08. (4.8)

A non-student with the same balance and income has an estimated prob-
ability of default of

6710.869+0.00574><1,500+O.003><4070.6468><0
=0.105.  (4.9)

p(X) = 1+ e—10.869+0.00574x1,5004-0.003x40—0.6468 x 0

(Here we multiply the income coefficient estimate from Table 4.3 by 40,
rather than by 40,000, because in that table the model was fit with income
measured in units of $1,000.)

4.3.5 Logistic Regression for >2 Response Classes

We sometimes wish to classify a response variable that has more than two
classes. For example, in Section 4.2 we had three categories of medical con-
dition in the emergency room: stroke, drug overdose, epileptic seizure.
In this setting, we wish to model both Pr(Y = stroke|X) and Pr(Y =
drug overdose|X), with the remaining Pr(Y = epileptic seizure|X) =
1 — Pr(Y = stroke|X) — Pr(Y = drug overdose|X). The two-class logis-
tic regression models discussed in the previous sections have multiple-class
extensions, but in practice they tend not to be used all that often. One of
the reasons is that the method we discuss in the next section, discriminant
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analysis, is popular for multiple-class classification. So we do not go into
the details of multiple-class logistic regression here, but simply note that
such an approach is possible, and that software for it is available in R.

4.4 Linear Discriminant Analysis

Logistic regression involves directly modeling Pr(Y = k|X = z) using the
logistic function, given by (4.7) for the case of two response classes. In
statistical jargon, we model the conditional distribution of the response Y,
given the predictor(s) X. We now consider an alternative and less direct
approach to estimating these probabilities. In this alternative approach,
we model the distribution of the predictors X separately in each of the
response classes (i.e. given Y), and then use Bayes’ theorem to flip these
around into estimates for Pr(Y = k|X = z). When these distributions are
assumed to be normal, it turns out that the model is very similar in form
to logistic regression.

Why do we need another method, when we have logistic regression?
There are several reasons:

e When the classes are well-separated, the parameter estimates for the
logistic regression model are surprisingly unstable. Linear discrimi-
nant analysis does not suffer from this problem.

e If n is small and the distribution of the predictors X is approximately
normal in each of the classes, the linear discriminant model is again
more stable than the logistic regression model.

e As mentioned in Section 4.3.5, linear discriminant analysis is popular
when we have more than two response classes.

4.4.1 Using Bayes’ Theorem for Classification

Suppose that we wish to classify an observation into one of K classes, where
K > 2. In other words, the qualitative response variable Y can take on K
possible distinct and unordered values. Let 7 represent the overall or prior
probability that a randomly chosen observation comes from the kth class;
this is the probability that a given observation is associated with the kth
category of the response variable Y. Let f(X) = Pr(X = 2|Y = k) denote
the density function of X for an observation that comes from the kth class.
In other words, fi(z) is relatively large if there is a high probability that
an observation in the kth class has X ~ z, and fi(z) is small if it is very

prior

density
function
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unlikely that an observation in the kth class has X ~ x. Then Bayes’
theorem states that

Pr(Y = k|X =2) = Z’“f—k(x) (4.10)
> mfi(@)

In accordance with our earlier notation, we will use the abbreviation py(X)
= Pr(Y = k|X). This suggests that instead of directly computing py(X)
as in Section 4.3.1, we can simply plug in estimates of 7, and f(X) into
(4.10). In general, estimating 7 is easy if we have a random sample of
Y's from the population: we simply compute the fraction of the training
observations that belong to the kth class. However, estimating fi(X) tends
to be more challenging, unless we assume some simple forms for these
densities. We refer to pr(z) as the posterior probability that an observation
X = x belongs to the kth class. That is, it is the probability that the
observation belongs to the kth class, given the predictor value for that
observation.

We know from Chapter 2 that the Bayes classifier, which classifies an
observation to the class for which pi(X) is largest, has the lowest possible
error rate out of all classifiers. (This is of course only true if the terms
in (4.10) are all correctly specified.) Therefore, if we can find a way to
estimate f;(X), then we can develop a classifier that approximates the
Bayes classifier. Such an approach is the topic of the following sections.

4.4.2  Linear Discriminant Analysis for p =1

For now, assume that p = 1—that is, we have only one predictor. We
would like to obtain an estimate for fi(z) that we can plug into (4.10) in
order to estimate pi(z). We will then classify an observation to the class
for which pg(z) is greatest. In order to estimate fi(x), we will first make
some assumptions about its form.

Suppose we assume that fi(z) is normal or Gaussian. In the one-
dimensional setting, the normal density takes the form

1 1
ile) = o ex (—27%@5 - ). (4.11)

where py, and o7 are the mean and variance parameters for the kth class.
For now, let us further assume that o = ... = o%: that is, there is a shared
variance term across all K classes, which for simplicity we can denote by
o?. Plugging (4.11) into (4.10), we find that

1
2mo

Tk

oxp (— gz (2 — 1x)?)
"= ~ 4.12
e Zlﬁlﬂlﬁexl’ (=52 (@ —m)?) (4.12)

(Note that in (4.12), 7, denotes the prior probability that an observation
belongs to the kth class, not to be confused with 7 ~ 3.14159, the math-
ematical constant.) The Bayes classifier involves assigning an observation

Bayes’
theorem

posterior

normal

Gaussian
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FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
The dashed vertical line represents the Bayes decision boundary. Right: 20 obser-
vations were drawn from each of the two classes, and are shown as histograms.
The Bayes decision boundary is again shown as a dashed vertical line. The solid
vertical line represents the LDA decision boundary estimated from the training
data.

X = x to the class for which (4.12) is largest. Taking the log of (4.12)
and rearranging the terms, it is not hard to show that this is equivalent to
assigning the observation to the class for which

2
_ Hk My
(5;.;(1‘) =x- ; — ﬁ + IOg(Wk) (4.13)
is largest. For instance, if K = 2 and m; = 7, then the Bayes classifier
assigns an observation to class 1 if 2z (u; — p2) > p? — p3, and to class
2 otherwise. In this case, the Bayes decision boundary corresponds to the
point where

2 2
M1 — Ha M1+ 2
xr = = . 4.14
2(#1 - Mz) 2 ( )

An example is shown in the left-hand panel of Figure 4.4. The two normal
density functions that are displayed, f1(x) and fa(x), represent two distinet
classes. The mean and variance parameters for the two density functions
are py = —1.25, us = 1.25, and 07 = 03 = 1. The two densities overlap,
and so given that X = x, there is some uncertainty about the class to which
the observation belongs. If we assume that an observation is equally likely
to come from either class—that is, m; = w3 = 0.5—then by inspection of
(4.14), we see that the Bayes classifier assigns the observation to class 1
if x < 0 and class 2 otherwise. Note that in this case, we can compute
the Bayes classifier because we know that X is drawn from a Gaussian
distribution within each class, and we know all of the parameters involved.
In a real-life situation, we are not able to calculate the Bayes classifier.

In practice, even if we are quite certain of our assumption that X is drawn
from a Gaussian distribution within each class, we still have to estimate
the parameters j1,..., g, T1,...,Tk, and o2. The linear discriminant



4.4 Linear Discriminant Analysis 141

analysis (LDA) method approximates the Bayes classifier by plugging esti-
mates for my, g, and o2 into (4.13). In particular, the following estimates
are used:

. 1
He = > @i
ki:yi:k
K

62 = n_lKZ > (@i — )’ (4.15)

k=114y,=k

where n is the total number of training observations, and ny is the number
of training observations in the kth class. The estimate for p is simply the
average of all the training observations from the kth class, while 62 can
be seen as a weighted average of the sample variances for each of the K
classes. Sometimes we have knowledge of the class membership probabili-
ties m1,..., Tk, which can be used directly. In the absence of any additional
information, LDA estimates 73 using the proportion of the training obser-
vations that belong to the kth class. In other words,

ﬁ'k = nk/n. (416)

The LDA classifier plugs the estimates given in (4.15) and (4.16) into (4.13),
and assigns an observation X = x to the class for which

Sz) = - % - % + log(#r) (4.17)
is largest. The word linear in the classifier’s name stems from the fact
that the discriminant functions oy (x) in (4.17) are linear functions of z (as
opposed to a more complex function of ).

The right-hand panel of Figure 4.4 displays a histogram of a random
sample of 20 observations from each class. To implement LDA, we began
by estimating 7y, %, and o2 using (4.15) and (4.16). We then computed the
decision boundary, shown as a black solid line, that results from assigning
an observation to the class for which (4.17) is largest. All points to the left
of this line will be assigned to the green class, while points to the right of
this line are assigned to the purple class. In this case, since n; = ny = 20,
we have 1 = 72. As a result, the decision boundary corresponds to the
midpoint between the sample means for the two classes, (fi; + fi2)/2. The
figure indicates that the LDA decision boundary is slightly to the left of
the optimal Bayes decision boundary, which instead equals (u1 + p2)/2 =
0. How well does the LDA classifier perform on this data? Since this is
simulated data, we can generate a large number of test observations in order
to compute the Bayes error rate and the LDA test error rate. These are
10.6 % and 11.1 %, respectively. In other words, the LDA classifier’s error
rate is only 0.5 % above the smallest possible error rate! This indicates that
LDA is performing pretty well on this data set.

linear
discriminant
analysis

discriminant
function
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FIGURE 4.5. Two multivariate Gaussian density functions are shown, with
p = 2. Left: The two predictors are uncorrelated. Right: The two variables have
a correlation of 0.7.

To reiterate, the LDA classifier results from assuming that the observa-
tions within each class come from a normal distribution with a class-specific
mean vector and a common variance 02, and plugging estimates for these
parameters into the Bayes classifier. In Section 4.4.4, we will consider a less
stringent set of assumptions, by allowing the observations in the kth class
to have a class-specific variance, o7.

4.4.8  Linear Discriminant Analysis for p >1

We now extend the LDA classifier to the case of multiple predictors. To
do this, we will assume that X = (X1, X»,..., X}) is drawn from a multi-
variate Gaussian (or multivariate normal) distribution, with a class-specific
mean vector and a common covariance matrix. We begin with a brief review
of such a distribution.

The multivariate Gaussian distribution assumes that each individual pre-
dictor follows a one-dimensional normal distribution, as in (4.11), with some
correlation between each pair of predictors. Two examples of multivariate
Gaussian distributions with p = 2 are shown in Figure 4.5. The height of
the surface at any particular point represents the probability that both X3
and X fall in a small region around that point. In either panel, if the sur-
face is cut along the X axis or along the X5 axis, the resulting cross-section
will have the shape of a one-dimensional normal distribution. The left-hand
panel of Figure 4.5 illustrates an example in which Var(X;) = Var(Xs) and
Cor (X1, X2) = 0; this surface has a characteristic bell shape. However, the
bell shape will be distorted if the predictors are correlated or have unequal
variances, as is illustrated in the right-hand panel of Figure 4.5. In this
situation, the base of the bell will have an elliptical, rather than circular,

multivariate
Gaussian
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X

FIGURE 4.6. An example with three classes. The observations from each class
are drawn from a multivariate Gaussian distribution with p = 2, with a class-spe-
cific mean vector and a common covariance matriz. Left: Ellipses that contain
95 % of the probability for each of the three classes are shown. The dashed lines
are the Bayes decision boundaries. Right: 20 observations were gemerated from
each class, and the corresponding LDA decision boundaries are indicated using
solid black lines. The Bayes decision boundaries are once again shown as dashed
lines.

shape. To indicate that a p-dimensional random variable X has a multi-
variate Gaussian distribution, we write X ~ N(u,X). Here E(X) = p is
the mean of X (a vector with p components), and Cov(X) = X is the
p X p covariance matrix of X. Formally, the multivariate Gaussian density
is defined as

fla) = W exp (‘%(fﬂ — )= e - M)) . (4.18)

In the case of p > 1 predictors, the LDA classifier assumes that the
observations in the kth class are drawn from a multivariate Gaussian dis-
tribution N (ug, X), where py is a class-specific mean vector, and ¥ is a
covariance matrix that is common to all K classes. Plugging the density
function for the kth class, fi(X = ), into (4.10) and performing a little
bit of algebra reveals that the Bayes classifier assigns an observation X = x
to the class for which

_ 1 .
Sp(z) = T2y, — EufE Yy + log T (4.19)

is largest. This is the vector/matrix version of (4.13).

An example is shown in the left-hand panel of Figure 4.6. Three equally-
sized Gaussian classes are shown with class-specific mean vectors and a
common covariance matrix. The three ellipses represent regions that con-
tain 95 % of the probability for each of the three classes. The dashed lines
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are the Bayes decision boundaries. In other words, they represent the set
of values x for which dj(x) = d,(x); i.e.

TSy, — %Mnglﬂk =a"S - %Mfzflul (4.20)
for k # I. (The logm term from (4.19) has disappeared because each of
the three classes has the same number of training observations; i.e. my is
the same for each class.) Note that there are three lines representing the
Bayes decision boundaries because there are three pairs of classes among
the three classes. That is, one Bayes decision boundary separates class 1
from class 2, one separates class 1 from class 3, and one separates class 2
from class 3. These three Bayes decision boundaries divide the predictor
space into three regions. The Bayes classifier will classify an observation
according to the region in which it is located.

Once again, we need to estimate the unknown parameters pq, ..., g,
m,...,TK, and 3; the formulas are similar to those used in the one-
dimensional case, given in (4.15). To assign a new observation X = z,
LDA plugs these estimates into (4.19) and classifies to the class for which
O (x) is largest. Note that in (4.19) 6 (z) is a linear function of z; that is,
the LDA decision rule depends on x only through a linear combination of
its elements. Once again, this is the reason for the word linear in LDA.

In the right-hand panel of Figure 4.6, 20 observations drawn from each of
the three classes are displayed, and the resulting LDA decision boundaries
are shown as solid black lines. Overall, the LDA decision boundaries are
pretty close to the Bayes decision boundaries, shown again as dashed lines.
The test error rates for the Bayes and LDA classifiers are 0.0746 and 0.0770,
respectively. This indicates that LDA is performing well on this data.

We can perform LDA on the Default data in order to predict whether
or not an individual will default on the basis of credit card balance and
student status. The LDA model fit to the 10,000 training samples results
in a training error rate of 2.75 %. This sounds like a low error rate, but two
caveats must be noted.

e First of all, training error rates will usually be lower than test error
rates, which are the real quantity of interest. In other words, we
might expect this classifier to perform worse if we use it to predict
whether or not a new set of individuals will default. The reason is
that we specifically adjust the parameters of our model to do well on
the training data. The higher the ratio of parameters p to number
of samples n, the more we expect this overfitting to play a role. For
these data we don’t expect this to be a problem, since p = 3 and
n = 10, 000.

e Second, since only 3.33% of the individuals in the training sample
defaulted, a simple but useless classifier that always predicts that

overfitting
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True default status
No Yes | Total
Predicted No 9,644 252 | 9,896

default status  Yes 23 81 104
Total | 9,667 333 | 10,000

TABLE 4.4. A confusion matrixz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set. Ele-
ments on the diagonal of the matriz represent individuals whose default statuses
were correctly predicted, while off-diagonal elements represent individuals that
were misclassified. LDA made incorrect predictions for 23 individuals who did
not default and for 252 individuals who did default.

each individual will not default, regardless of his or her credit card
balance and student status, will result in an error rate of 3.33 %. In
other words, the trivial null classifier will achieve an error rate that
is only a bit higher than the LDA training set error rate.

In practice, a binary classifier such as this one can make two types of
errors: it can incorrectly assign an individual who defaults to the no default
category, or it can incorrectly assign an individual who does not default to
the default category. It is often of interest to determine which of these two
types of errors are being made. A confusion matriz, shown for the Default
data in Table 4.4, is a convenient way to display this information. The
table reveals that LDA predicted that a total of 104 people would default.
Of these people, 81 actually defaulted and 23 did not. Hence only 23 out
of 9,667 of the individuals who did not default were incorrectly labeled.
This looks like a pretty low error rate! However, of the 333 individuals who
defaulted, 252 (or 75.7 %) were missed by LDA. So while the overall error
rate is low, the error rate among individuals who defaulted is very high.
From the perspective of a credit card company that is trying to identify
high-risk individuals, an error rate of 252/333 = 75.7 % among individuals
who default may well be unacceptable.

Class-specific performance is also important in medicine and biology,
where the terms sensitivity and specificity characterize the performance of
a classifier or screening test. In this case the sensitivity is the percentage of
true defaulters that are identified, a low 24.3 % in this case. The specificity
is the percentage of non-defaulters that are correctly identified, here (1 —
23/9,667) x 100 = 99.8 %.

Why does LDA do such a poor job of classifying the customers who de-
fault? In other words, why does it have such a low sensitivity? As we have
seen, LDA is trying to approximate the Bayes classifier, which has the low-
est total error rate out of all classifiers (if the Gaussian model is correct).
That is, the Bayes classifier will yield the smallest possible total number
of misclassified observations, irrespective of which class the errors come
from. That is, some misclassifications will result from incorrectly assigning

null
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True default status
No Yes | Total
Predicted No 9,432 138 | 9,570

default status  Yes 235 195 430
Total | 9,667 333 | 10,000

TABLE 4.5. A confusion matrixz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set, using
a modified threshold value that predicts default for any individuals whose posterior
default probability exceeds 20 %.

a customer who does not default to the default class, and others will re-
sult from incorrectly assigning a customer who defaults to the non-default
class. In contrast, a credit card company might particularly wish to avoid
incorrectly classifying an individual who will default, whereas incorrectly
classifying an individual who will not default, though still to be avoided,
is less problematic. We will now see that it is possible to modify LDA in
order to develop a classifier that better meets the credit card company’s
needs.

The Bayes classifier works by assigning an observation to the class for
which the posterior probability py(X) is greatest. In the two-class case, this
amounts to assigning an observation to the default class if

Pr(default = Yes|X = z) > 0.5. (4.21)

Thus, the Bayes classifier, and by extension LDA, uses a threshold of 50 %
for the posterior probability of default in order to assign an observation
to the default class. However, if we are concerned about incorrectly pre-
dicting the default status for individuals who default, then we can consider
lowering this threshold. For instance, we might label any customer with a
posterior probability of default above 20% to the default class. In other
words, instead of assigning an observation to the default class if (4.21)
holds, we could instead assign an observation to this class if

P(default = Yes|X = z) > 0.2. (4.22)

The error rates that result from taking this approach are shown in Table 4.5.
Now LDA predicts that 430 individuals will default. Of the 333 individuals
who default, LDA correctly predicts all but 138, or 41.4 %. This is a vast
improvement over the error rate of 75.7% that resulted from using the
threshold of 50 %. However, this improvement comes at a cost: now 235
individuals who do not default are incorrectly classified. As a result, the
overall error rate has increased slightly to 3.73 %. But a credit card company
may consider this slight increase in the total error rate to be a small price to
pay for more accurate identification of individuals who do indeed default.

Figure 4.7 illustrates the trade-off that results from modifying the thresh-
old value for the posterior probability of default. Various error rates are
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FIGURE 4.7. For the Default data set, error rates are shown as a function of
the threshold value for the posterior probability that is used to perform the assign-
ment. The black solid line displays the overall error rate. The blue dashed line
represents the fraction of defaulting customers that are incorrectly classified, and
the orange dotted line indicates the fraction of errors among the non-defaulting
customers.

shown as a function of the threshold value. Using a threshold of 0.5, as in
(4.21), minimizes the overall error rate, shown as a black solid line. This
is to be expected, since the Bayes classifier uses a threshold of 0.5 and is
known to have the lowest overall error rate. But when a threshold of 0.5 is
used, the error rate among the individuals who default is quite high (blue
dashed line). As the threshold is reduced, the error rate among individuals
who default decreases steadily, but the error rate among the individuals
who do not default increases. How can we decide which threshold value is
best? Such a decision must be based on domain knowledge, such as detailed
information about the costs associated with default.

The ROC curve is a popular graphic for simultaneously displaying the
two types of errors for all possible thresholds. The name “ROC” is his-
toric, and comes from communications theory. It is an acronym for receiver
operating characteristics. Figure 4.8 displays the ROC curve for the LDA
classifier on the training data. The overall performance of a classifier, sum-
marized over all possible thresholds, is given by the area under the (ROC)
curve (AUC). An ideal ROC curve will hug the top left corner, so the larger
the AUC the better the classifier. For this data the AUC is 0.95, which is
close to the maximum of one so would be considered very good. We expect
a classifier that performs no better than chance to have an AUC of 0.5
(when evaluated on an independent test set not used in model training).
ROC curves are useful for comparing different classifiers, since they take
into account all possible thresholds. It turns out that the ROC curve for the
logistic regression model of Section 4.3.4 fit to these data is virtually indis-
tinguishable from this one for the LDA model, so we do not display it here.

As we have seen above, varying the classifier threshold changes its true
positive and false positive rate. These are also called the sensitivity and one

ROC curve

area under
the (ROC)

curve

sensitivity



148 4. Classification
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FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It
traces out two types of error as we vary the threshold value for the posterior
probability of default. The actual thresholds are not shown. The true positive rate
is the sensitivity: the fraction of defaulters that are correctly identified, using
a given threshold value. The false positive rate is 1-specificity: the fraction of
non-defaulters that we classify incorrectly as defaulters, using that same threshold
value. The ideal ROC curve hugs the top left corner, indicating a high true positive
rate and a low false positive rate. The dotted line represents the “no information”
classifier; this is what we would expect if student status and credit card balance
are not associated with probability of default.

Predicted class
— or Null + or Non-null | Total
True — or Null True Neg. (TN) | False Pos. (FP) N
class + or Non-null | False Neg. (FN) | True Pos. (TP) P
Total N* pP*

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a
population.

minus the specificity of our classifier. Since there is an almost bewildering
array of terms used in this context, we now give a summary. Table 4.6
shows the possible results when applying a classifier (or diagnostic test)
to a population. To make the connection with the epidemiology literature,
we think of “4” as the “disease” that we are trying to detect, and “—” as
the “non-disease” state. To make the connection to the classical hypothesis
testing literature, we think of “—” as the null hypothesis and “+” as the
alternative (non-null) hypothesis. In the context of the Default data, “+”
indicates an individual who defaults, and “—” indicates one who does not.

specificity



4.4 Linear Discriminant Analysis 149

Name Definition Synonyms

False Pos. rate FP/N | Type I error, 1—Specificity

True Pos. rate TP/P | 1-Type II error, power, sensitivity, recall
Pos. Pred. value TP/P* | Precision, 1—false discovery proportion
Neg. Pred. value TN/N*

TABLE 4.7. Important measures for classification and diagnostic testing,
derived from quantities in Table 4.6.

Table 4.7 lists many of the popular performance measures that are used in
this context. The denominators for the false positive and true positive rates
are the actual population counts in each class. In contrast, the denominators
for the positive predictive value and the negative predictive value are the
total predicted counts for each class.

4.4.4  Quadratic Discriminant Analysis

As we have discussed, LDA assumes that the observations within each
class are drawn from a multivariate Gaussian distribution with a class-
specific mean vector and a covariance matrix that is common to all K
classes. Quadratic discriminant analysis (QDA) provides an alternative
approach. Like LDA, the QDA classifier results from assuming that the
observations from each class are drawn from a Gaussian distribution, and
plugging estimates for the parameters into Bayes’ theorem in order to per-
form prediction. However, unlike LDA, QDA assumes that each class has
its own covariance matrix. That is, it assumes that an observation from the
kth class is of the form X ~ N(ug,Xy), where Xy is a covariance matrix
for the kth class. Under this assumption, the Bayes classifier assigns an
observation X = x to the class for which

1 _ 1
or(z) = —5l@- ) "B (= ) — 7 log |2k | + log m
1 _ _ 1 _ 1
= —ixTZk x4+ xTEk Yy — §/ngk Yk — 510g|2k| + log 7,

(4.23)

is largest. So the QDA classifier involves plugging estimates for Xy, ug,
and 7 into (4.23), and then assigning an observation X = x to the class
for which this quantity is largest. Unlike in (4.19), the quantity = appears
as a quadratic function in (4.23). This is where QDA gets its name.

Why does it matter whether or not we assume that the K classes share a
common covariance matrix? In other words, why would one prefer LDA to
QDA, or vice-versa? The answer lies in the bias-variance trade-off. When
there are p predictors, then estimating a covariance matrix requires esti-
mating p(p+1)/2 parameters. QDA estimates a separate covariance matrix
for each class, for a total of Kp(p+1)/2 parameters. With 50 predictors this

quadratic
discriminant
analysis
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FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with 31 = Xo. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approzimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that 31 # 3s. Since the Bayes decision
boundary is non-linear, it is more accurately approzimated by QDA than by LDA.

is some multiple of 1,225, which is a lot of parameters. By instead assum-
ing that the K classes share a common covariance matrix, the LDA model
becomes linear in z, which means there are Kp linear coefficients to esti-
mate. Consequently, LDA is a much less flexible classifier than QDA and
so has substantially lower variance. This can potentially lead to improved
prediction performance. But there is a trade-off: if LDA’s assumption that
the K classes share a common covariance matrix is badly off, then LDA
can suffer from high bias. Roughly speaking, LDA tends to be a better bet
than QDA if there are relatively few training observations and so reducing
variance is crucial. In contrast, QDA is recommended if the training set is
very large, so that the variance of the classifier is not a major concern, or if
the assumption of a common covariance matrix for the K classes is clearly
untenable.

Figure 4.9 illustrates the performances of LDA and QDA in two scenarios.
In the left-hand panel, the two Gaussian classes have a common correla-
tion of 0.7 between X; and Xo. As a result, the Bayes decision boundary
is linear and is accurately approximated by the LDA decision boundary.
The QDA decision boundary is inferior, because it suffers from higher vari-
ance without a corresponding decrease in bias. In contrast, the right-hand
panel displays a situation in which the orange class has a correlation of 0.7
between the variables and the blue class has a correlation of —0.7. Now
the Bayes decision boundary is quadratic, and so QDA more accurately
approximates this boundary than does LDA.
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4.5 A Comparison of Classification Methods

In this chapter, we have considered three different classification approaches:
logistic regression, LDA, and QDA. In Chapter 2, we also discussed the
K-nearest neighbors (KNN) method. We now consider the types of
scenarios in which one approach might dominate the others.

Though their motivations differ, the logistic regression and LDA methods
are closely connected. Consider the two-class setting with p = 1 predictor,
and let py (x) and p2(x) = 1—p1(x) be the probabilities that the observation
X =z belongs to class 1 and class 2, respectively. In the LDA framework,
we can see from (4.12) to (4.13) (and a bit of simple algebra) that the log
odds is given by

log (M) = log (pl(x)> =co+ 1z, (4.24)

1 —pi(z) p2(7)

where ¢y and ¢; are functions of 1, 2, and o2. From (4.4), we know that
in logistic regression,

log ( P ) = Bo + P (4.25)
I—p

Both (4.24) and (4.25) are linear functions of x. Hence, both logistic re-
gression and LDA produce linear decision boundaries. The only difference
between the two approaches lies in the fact that 8y and (3 are estimated
using maximum likelihood, whereas ¢y and ¢y are computed using the esti-
mated mean and variance from a normal distribution. This same connection
between LDA and logistic regression also holds for multidimensional data
with p > 1.

Since logistic regression and LDA differ only in their fitting procedures,
one might expect the two approaches to give similar results. This is often,
but not always, the case. LDA assumes that the observations are drawn
from a Gaussian distribution with a common covariance matrix in each
class, and so can provide some improvements over logistic regression when
this assumption approximately holds. Conversely, logistic regression can
outperform LDA if these Gaussian assumptions are not met.

Recall from Chapter 2 that KNN takes a completely different approach
from the classifiers seen in this chapter. In order to make a prediction for
an observation X = x, the K training observations that are closest to x are
identified. Then X is assigned to the class to which the plurality of these
observations belong. Hence KNN is a completely non-parametric approach:
no assumptions are made about the shape of the decision boundary. There-
fore, we can expect this approach to dominate LDA and logistic regression
when the decision boundary is highly non-linear. On the other hand, KNN
does not tell us which predictors are important; we don’t get a table of
coefficients as in Table 4.3.
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FIGURE 4.10. Bozxplots of the test error rates for each of the linear scenarios
described in the main text.
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FIGURE 4.11. Bozplots of the test error rates for each of the mon-linear sce-
narios described in the main text.

Finally, QDA serves as a compromise between the non-parametric KNN
method and the linear LDA and logistic regression approaches. Since QDA
assumes a quadratic decision boundary, it can accurately model a wider
range of problems than can the linear methods. Though not as flexible
as KNN, QDA can perform better in the presence of a limited number of
training observations because it does make some assumptions about the
form of the decision boundary.

To illustrate the performances of these four classification approaches,
we generated data from six different scenarios. In three of the scenarios,
the Bayes decision boundary is linear, and in the remaining scenarios it
is non-linear. For each scenario, we produced 100 random training data
sets. On each of these training sets, we fit each method to the data and
computed the resulting test error rate on a large test set. Results for the
linear scenarios are shown in Figure 4.10, and the results for the non-linear
scenarios are in Figure 4.11. The KNN method requires selection of K, the
number of neighbors. We performed KNN with two values of K: K = 1,
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and a value of K that was chosen automatically using an approach called
cross-validation, which we discuss further in Chapter 5.

In each of the six scenarios, there were p = 2 predictors. The scenarios
were as follows:

Scenario 1: There were 20 training observations in each of two classes.
The observations within each class were uncorrelated random normal
variables with a different mean in each class. The left-hand panel
of Figure 4.10 shows that LDA performed well in this setting, as
one would expect since this is the model assumed by LDA. KNN
performed poorly because it paid a price in terms of variance that
was not offset by a reduction in bias. QDA also performed worse
than LDA, since it fit a more flexible classifier than necessary. Since
logistic regression assumes a linear decision boundary, its results were
only slightly inferior to those of LDA.

Scenario 2: Details are as in Scenario 1, except that within each
class, the two predictors had a correlation of —0.5. The center panel
of Figure 4.10 indicates little change in the relative performances of
the methods as compared to the previous scenario.

Scenario 3: We generated X1 and Xs from the t-distribution, with .
50 observations per class. The t-distribution has a similar shape to distribution
the normal distribution, but it has a tendency to yield more extreme
points—that is, more points that are far from the mean. In this set-
ting, the decision boundary was still linear, and so fit into the logistic
regression framework. The set-up violated the assumptions of LDA,
since the observations were not drawn from a normal distribution.
The right-hand panel of Figure 4.10 shows that logistic regression
outperformed LDA, though both methods were superior to the other
approaches. In particular, the QDA results deteriorated considerably
as a consequence of non-normality.

Scenario 4: The data were generated from a normal distribution,
with a correlation of 0.5 between the predictors in the first class,
and correlation of —0.5 between the predictors in the second class.
This setup corresponded to the QDA assumption, and resulted in
quadratic decision boundaries. The left-hand panel of Figure 4.11
shows that QDA outperformed all of the other approaches.

Scenario 5: Within each class, the observations were generated from
a normal distribution with uncorrelated predictors. However, the re-
sponses were sampled from the logistic function using X7, X2, and
X7 x X5 as predictors. Consequently, there is a quadratic decision
boundary. The center panel of Figure 4.11 indicates that QDA once
again performed best, followed closely by KNN-CV. The linear meth-
ods had poor performance.
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Scenario 6: Details are as in the previous scenario, but the responses
were sampled from a more complicated non-linear function. As a re-
sult, even the quadratic decision boundaries of QDA could not ade-
quately model the data. The right-hand panel of Figure 4.11 shows
that QDA gave slightly better results than the linear methods, while
the much more flexible KNN-CV method gave the best results. But
KNN with K = 1 gave the worst results out of all methods. This
highlights the fact that even when the data exhibits a complex non-
linear relationship, a non-parametric method such as KNN can still
give poor results if the level of smoothness is not chosen correctly.

These six examples illustrate that no one method will dominate the oth-
ers in every situation. When the true decision boundaries are linear, then
the LDA and logistic regression approaches will tend to perform well. When
the boundaries are moderately non-linear, QDA may give better results.
Finally, for much more complicated decision boundaries, a non-parametric
approach such as KNN can be superior. But the level of smoothness for a
non-parametric approach must be chosen carefully. In the next chapter we
examine a number of approaches for choosing the correct level of smooth-
ness and, in general, for selecting the best overall method.

Finally, recall from Chapter 3 that in the regression setting we can accom-
modate a non-linear relationship between the predictors and the response
by performing regression using transformations of the predictors. A similar
approach could be taken in the classification setting. For instance, we could
create a more flexible version of logistic regression by including X2, X3,
and even X* as predictors. This may or may not improve logistic regres-
sion’s performance, depending on whether the increase in variance due to
the added flexibility is offset by a sufficiently large reduction in bias. We
could do the same for LDA. If we added all possible quadratic terms and
cross-products to LDA, the form of the model would be the same as the
QDA model, although the parameter estimates would be different. This
device allows us to move somewhere between an LDA and a QDA model.

4.6 Lab: Logistic Regression, LDA, QDA, and
KNN

4.6.1 The Stock Market Data

We will begin by examining some numerical and graphical summaries of
the smarket data, which is part of the ISLR library. This data set consists of
percentage returns for the S&P 500 stock index over 1,250 days, from the
beginning of 2001 until the end of 2005. For each date, we have recorded
the percentage returns for each of the five previous trading days, Lagl
through Lags. We have also recorded Volume (the number of shares traded
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on the previous day, in billions), Today (the percentage return on the date
in question) and Direction (whether the market was Up or Down on this
date).

> library (ISLR)
> names (Smarket)

[1] "Year" "Lagl" "Lag2" "Lag3" "Lag4"
[6] "Lagh" "Volume" "Today" "Direction"
> dim(Smarket)
[1] 1250 9
> summary (Smarket)
Year Lagl Lag2
Min. 12001 Min. :-4.92200 Min. :-4.92200

1st Qu.:2002 1st Qu.:-0.63950 1st Qu.:-0.63950
Median :2003 Median : 0.03900 Median : 0.03900

Mean :2003 Mean : 0.00383 Mean : 0.00392

3rd Qu.:2004 3rd Qu.: 0.59675 3rd Qu.: 0.59675

Max . :2005 Max . : 5.73300 Max . : 5.73300
Lag3 Lag4 Lagh

Min. :-4.92200 Min . :-4.92200 Min. :-4.92200

1st Qu.:-0.64000 1st Qu.:-0.64000 1st Qu.:-0.64000

Median : 0.03850 Median : 0.03850 Median : 0.03850

Mean : 0.00172 Mean : 0.00164 Mean : 0.00561

3rd Qu.: 0.59675 3rd Qu.: 0.59675 3rd Qu.: 0.59700

Max . : 5.73300 Max . 5.73300 Max . 5.73300
Volume Today Direction

Min. :0.3566 Min . :-4.92200 Down : 602

1st Qu.:1.257 1st Qu.:-0.63950 Up 1648

Median :1.423 Median : 0.03850

Mean 1.478 Mean : 0.00314

3rd Qu.:1.642 3rd Qu.: 0.59675

Max . :3.152 Max . 5.73300

> pairs(Smarket)

The cor() function produces a matrix that contains all of the pairwise
correlations among the predictors in a data set. The first command below
gives an error message because the Direction variable is qualitative.

> cor (Smarket)

Error in cor (Smarket) : ’x’ must be numeric
> cor (Smarket [,-9])

Year Lagil Lag2 Lag3 Lag4 Lagb
Year 1.0000 0.02970 0.03060 0.03319 0.03569 0.02979
Lagil 0.0297 1.00000 -0.02629 -0.01080 -0.00299 -0.00567
Lag2 0.0306 -0.02629 1.00000 -0.02590 -0.01085 -0.00356
Lag3 0.0332 -0.01080 -0.02590 1.00000 -0.02405 -0.01881
Lag4 0.0357 -0.00299 -0.01085 -0.02405 1.00000 -0.02708
Lagb 0.0298 -0.00567 -0.00356 -0.01881 -0.02708 1.00000
Volume 0.5390 0.04091 -0.04338 -0.04182 -0.04841 -0.02200
Today 0.0301 -0.02616 -0.01025 -0.00245 -0.00690 -0.03486

Volume Today
Year 0.5390 0.03010
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Lagil 0.0409 -0.02616
Lag2 -0.0434 -0.01025
Lag3 -0.0418 -0.00245
Lag4 -0.0484 -0.00690
Lagh -0.0220 -0.03486

Volume 1.0000 0.01459
Today 0.0146 1.00000

As one would expect, the correlations between the lag variables and to-
day’s returns are close to zero. In other words, there appears to be little
correlation between today’s returns and previous days’ returns. The only
substantial correlation is between Year and Volume. By plotting the data we
see that Volume is increasing over time. In other words, the average number
of shares traded daily increased from 2001 to 2005.

> attach (Smarket)
> plot(Volume)

4.6.2  Logistic Regression

Next, we will fit a logistic regression model in order to predict Direction
using Lagl through Lag5s and Volume. The glm() function fits generalized
linear models, a class of models that includes logistic regression. The syntax
of the glm() function is similar to that of Im(), except that we must pass in
the argument family=binomial in order to tell R to run a logistic regression
rather than some other type of generalized linear model.

> glm.fit=glm(Direction~Lagl+Lag2+Lag3+Lag4+Lagb+Volume,
data=Smarket ,family=binomial)
> summary (glm.fit)

Call:
glm(formula = Direction ~ Lagl + Lag2 + Lag3 + Lag4 + Lagb
+ Volume, family = binomial, data = Smarket)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.45 -1.20 1.07 1.15 1.33

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.12600 0.24074 -0.52 0.60
Lagil -0.07307 0.05017 -1.46 0.15
Lag2 -0.04230 0.05009 -0.84 0.40
Lag3 0.01109 0.04994 0.22 0.82
Lag4 0.00936 0.04997 0.19 0.85
Lagh 0.01031 0.04951 0.21 0.83
Volume 0.13544 0.15836 0.86 0.39

glm()

generalized
linear model
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1731.2 on 1249 degrees of freedom
Residual deviance: 1727.6 on 1243 degrees of freedom
AIC: 1742

Number of Fisher Scoring iterations: 3

The smallest p-value here is associated with Lagi. The negative coefficient
for this predictor suggests that if the market had a positive return yesterday,
then it is less likely to go up today. However, at a value of 0.15, the p-value
is still relatively large, and so there is no clear evidence of a real association
between Lagl and Direction.

We use the coef () function in order to access just the coefficients for this
fitted model. We can also use the summary() function to access particular
aspects of the fitted model, such as the p-values for the coefficients.

> coef (glm.fit)

(Intercept) Lagil Lag2 Lag3 Lag4

-0.12600 -0.07307 -0.04230 0.01109 0.00936
Lagh Volume
0.01031 0.13544

> summary (glm.fit) $coef
Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.12600 0.2407 -0.523 0.601

Lagil -0.07307 0.0502 -1.457 0.145

Lag2 -0.04230 0.0501 -0.845 0.398

Lag3 0.01109 0.0499 0.222 0.824

Lag4 0.00936 0.0500 0.187 0.851

Lagb 0.01031 0.0495 0.208 0.835

Volume 0.13544 0.1584 0.855 0.392

> summary (glm.fit)$coef [,4]

(Intercept) Lagil Lag2 Lag3 Lag4
0.601 0.145 0.398 0.824 0.851
Lagb Volume
0.835 0.392

The predict() function can be used to predict the probability that the
market will go up, given values of the predictors. The type="response"
option tells R to output probabilities of the form P(Y = 1|X), as opposed
to other information such as the logit. If no data set is supplied to the
predict () function, then the probabilities are computed for the training
data that was used to fit the logistic regression model. Here we have printed
only the first ten probabilities. We know that these values correspond to
the probability of the market going up, rather than down, because the
contrasts() function indicates that R has created a dummy variable with
a 1 for Up.
> glm.probs=predict (glm.fit,type="response")
> glm.probs [1:10]

1 2 3 4 5 6 7 8 9 10
0.507 0.481 0.481 0.515 0.511 0.507 0.493 0.509 0.518 0.489
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> contrasts (Direction)

Up
Down O
Up 1

In order to make a prediction as to whether the market will go up or
down on a particular day, we must convert these predicted probabilities
into class labels, Up or Down. The following two commands create a vector
of class predictions based on whether the predicted probability of a market
increase is greater than or less than 0.5.

> glm.pred=rep ("Down",1250)
> glm.pred[glm.probs>.5]="Up"

The first command creates a vector of 1,250 Down elements. The second line
transforms to Up all of the elements for which the predicted probability of a
market increase exceeds 0.5. Given these predictions, the table() function
can be used to produce a confusion matrix in order to determine how many
observations were correctly or incorrectly classified.

> table(glm.pred,Direction)
Direction
glm.pred Down Up
Down 145 141
Up 457 507
> (507+145) /1250
[11 0.5216
> mean(glm.pred==Direction)
[11 0.5216

The diagonal elements of the confusion matrix indicate correct predictions,
while the off-diagonals represent incorrect predictions. Hence our model
correctly predicted that the market would go up on 507 days and that
it would go down on 145 days, for a total of 507 + 145 = 652 correct
predictions. The mean() function can be used to compute the fraction of
days for which the prediction was correct. In this case, logistic regression
correctly predicted the movement of the market 52.2 % of the time.

At first glance, it appears that the logistic regression model is working
a little better than random guessing. However, this result is misleading
because we trained and tested the model on the same set of 1,250 observa-
tions. In other words, 100 — 52.2 = 47.8 % is the training error rate. As we
have seen previously, the training error rate is often overly optimistic—it
tends to underestimate the test error rate. In order to better assess the ac-
curacy of the logistic regression model in this setting, we can fit the model
using part of the data, and then examine how well it predicts the held out
data. This will yield a more realistic error rate, in the sense that in prac-
tice we will be interested in our model’s performance not on the data that
we used to fit the model, but rather on days in the future for which the
market’s movements are unknown.

table()
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To implement this strategy, we will first create a vector corresponding
to the observations from 2001 through 2004. We will then use this vector
to create a held out data set of observations from 2005.
> train=(Year <2005)
> Smarket .2005=Smarket [!train,]
> dim(Smarket .2005)

[1]1 252 9
> Direction .2005=Direction [!train]

The object train is a vector of 1,250 elements, corresponding to the ob-
servations in our data set. The elements of the vector that correspond to
observations that occurred before 2005 are set to TRUE, whereas those that
correspond to observations in 2005 are set to FALSE. The object train is
a Boolean vector, since its elements are TRUE and FALSE. Boolean vectors
can be used to obtain a subset of the rows or columns of a matrix. For
instance, the command Smarket [train,] would pick out a submatrix of the
stock market data set, corresponding only to the dates before 2005, since
those are the ones for which the elements of train are TRUE. The ! symbol
can be used to reverse all of the elements of a Boolean vector. That is,
train is a vector similar to train, except that the elements that are TRUE
in train get swapped to FALSE in !train, and the elements that are FALSE
in train get swapped to TRUE in !train. Therefore, Smarket[!train,] yields
a submatrix of the stock market data containing only the observations for
which train is FALSE—that is, the observations with dates in 2005. The
output above indicates that there are 252 such observations.

We now fit a logistic regression model using only the subset of the obser-
vations that correspond to dates before 2005, using the subset argument.
We then obtain predicted probabilities of the stock market going up for
each of the days in our test set—that is, for the days in 2005.
> glm.fit=glm(Direction~Lagl+Lag2+Lag3+Lag4+Lagb+Volume,

data=Smarket ,family=binomial ,subset=train)
> glm.probs=predict (glm.fit, Smarket .2005, type="response")

Notice that we have trained and tested our model on two completely sep-
arate data sets: training was performed using only the dates before 2005,
and testing was performed using only the dates in 2005. Finally, we com-
pute the predictions for 2005 and compare them to the actual movements
of the market over that time period.
> glm.pred=rep ("Down" ,252)
> glm.pred[glm.probs>.5]="Up"
> table(glm.pred,Direction .2005)
Direction .2005

glm.pred Down Up

Down 77T 97

Up 34 44
> mean (glm.pred==Direction .2005)

boolean
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[1] 0.48
> mean(glm.pred!=Direction .2005)
[1] 0.52

The !'= notation means not equal to, and so the last command computes
the test set error rate. The results are rather disappointing: the test error
rate is 52 %, which is worse than random guessing! Of course this result
is not all that surprising, given that one would not generally expect to be
able to use previous days’ returns to predict future market performance.
(After all, if it were possible to do so, then the authors of this book would
be out striking it rich rather than writing a statistics textbook.)

We recall that the logistic regression model had very underwhelming p-
values associated with all of the predictors, and that the smallest p-value,
though not very small, corresponded to Lagl. Perhaps by removing the
variables that appear not to be helpful in predicting Direction, we can
obtain a more effective model. After all, using predictors that have no
relationship with the response tends to cause a deterioration in the test
error rate (since such predictors cause an increase in variance without a
corresponding decrease in bias), and so removing such predictors may in
turn yield an improvement. Below we have refit the logistic regression using
just Lagl and Lag2, which seemed to have the highest predictive power in
the original logistic regression model.

> glm.fit=glm(Direction~Lagl+Lag2,data=Smarket ,family=binomial,
subset=train)
glm.probs=predict (glm.fit, Smarket .2005, type="response")
glm.pred=rep ("Down" ,252)
glm.pred[glm.probs>.5]="Up"
table (glm.pred,Direction .2005)
Direction .2005

glm.pred Down Up

Down 35 35

Up 76 106
> mean(glm.pred==Direction .2005)
[1] 0.56
> 106/(106+76)
[1] 0.582

vV V VvV VvV

Now the results appear to be a little better: 56% of the daily movements
have been correctly predicted. It is worth noting that in this case, a much
simpler strategy of predicting that the market will increase every day will
also be correct 56% of the time! Hence, in terms of overall error rate, the
logistic regression method is no better than the naive approach. However,
the confusion matrix shows that on days when logistic regression predicts
an increase in the market, it has a 58% accuracy rate. This suggests a
possible trading strategy of buying on days when the model predicts an in-
creasing market, and avoiding trades on days when a decrease is predicted.
Of course one would need to investigate more carefully whether this small
improvement was real or just due to random chance.
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Suppose that we want to predict the returns associated with particular
values of Lagl and Lag2. In particular, we want to predict Direction on a
day when Lagl and Lag2 equal 1.2 and 1.1, respectively, and on a day when
they equal 1.5 and —0.8. We do this using the predict() function.
> predict (glm.fit ,newdata=data.frame(Lagl=c(1.2,1.5),

Lag2=c(1.1,-0.8)) ,type="response")
1 2
0.4791 0.4961

4.6.3  Linear Discriminant Analysis

Now we will perform LDA on the Smarket data. In R, we fit a LDA model
using the 1da() function, which is part of the MASS library. Notice that the
syntax for the 1da() function is identical to that of 1m(), and to that of
glm() except for the absence of the family option. We fit the model using
only the observations before 2005.

> library (MASS)

> lda.fit=1da(Direction~Lagl+Lag2,data=Smarket ,subset=train)

> lda.fit

Call:

lda(Direction ~ Lagl + Lag2, data = Smarket, subset = train)

Prior probabilities of groups:
Down Up
0.492 0.508

Group means:

Lagl Lag2
Down 0.0428 0.0339
Up -0.0395 -0.0313

Coefficients of linear discriminants:
LD1

Lagl -0.642

Lag2 -0.514

> plot(lda.fit)

The LDA output indicates that 71 = 0.492 and 75 = 0.508; in other words,
49.2% of the training observations correspond to days during which the
market went down. It also provides the group means; these are the average
of each predictor within each class, and are used by LDA as estimates
of ug. These suggest that there is a tendency for the previous 2 days’
returns to be negative on days when the market increases, and a tendency
for the previous days’ returns to be positive on days when the market
declines. The coefficients of linear discriminants output provides the linear
combination of Lagl and Lag2 that are used to form the LDA decision rule.
In other words, these are the multipliers of the elements of X = z in
(4.19). If —0.642 x Lagl —0.514 x Lag2 is large, then the LDA classifier will

1da()
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predict a market increase, and if it is small, then the LDA classifier will
predict a market decline. The plot() function produces plots of the linear
discriminants, obtained by computing —0.642 x Lagl — 0.514 x Lag2 for
each of the training observations.

The predict() function returns a list with three elements. The first ele-
ment, class, contains LDA’s predictions about the movement of the market.
The second element, posterior, is a matrix whose kth column contains the
posterior probability that the corresponding observation belongs to the kth
class, computed from (4.10). Finally, x contains the linear discriminants,
described earlier.

> lda.pred=predict (1lda.fit, Smarket .2005)
> names (lda.pred)

[1] "class" "posterior" "x"

As we observed in Section 4.5, the LDA and logistic regression predictions
are almost identical.

> lda.class=1da.pred$class
> table(lda.class ,Direction .2005)
Direction .2005
lda.pred Down Up
Down 35 35

Up 76 106
> mean(lda.class==Direction .2005)
[1] 0.56

Applying a 50 % threshold to the posterior probabilities allows us to recre-
ate the predictions contained in 1da.pred$class.

> sum(lda.pred$posterior[,1]>=.5)
[11 70
> sum(lda.pred$posterior[,1]1<.5)
[1] 182

Notice that the posterior probability output by the model corresponds to
the probability that the market will decrease:

> lda.pred$posterior[1:20,1]
> 1lda.class [1:20]

If we wanted to use a posterior probability threshold other than 50 % in
order to make predictions, then we could easily do so. For instance, suppose
that we wish to predict a market decrease only if we are very certain that the
market will indeed decrease on that day—say, if the posterior probability
is at least 90 %.

> sum(lda.pred$posterior[,1]>.9)
[11 0

No days in 2005 meet that threshold! In fact, the greatest posterior prob-
ability of decrease in all of 2005 was 52.02 %.
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4.6.4  Quadratic Discriminant Analysis

We will now fit a QDA model to the Smarket data. QDA is implemented
in R using the qda() function, which is also part of the MASS library. The
syntax is identical to that of 1da().

> qda.fit=qda(Direction~Lagl+Lag2,data=Smarket ,subset=train)

> qda.fit

Call:

qda(Direction ~ Lagl + Lag2, data = Smarket, subset = train)

Prior probabilities of groups:
Down Up
0.492 0.508

Group means:

Lagl Lag2
Down 0.0428 0.0339
Up -0.0395 -0.0313

The output contains the group means. But it does not contain the coef-
ficients of the linear discriminants, because the QDA classifier involves a
quadratic, rather than a linear, function of the predictors. The predict ()
function works in exactly the same fashion as for LDA.

> qda.class=predict (qda.fit, Smarket .2005) $class
> table(qda.class ,Direction .2005)
Direction .2005
qda.class Down Up
Down 30 20

Up 81 121
> mean(qda.class==Direction .2005)
[1] 0.599

Interestingly, the QDA predictions are accurate almost 60 % of the time,
even though the 2005 data was not used to fit the model. This level of accu-
racy is quite impressive for stock market data, which is known to be quite
hard to model accurately. This suggests that the quadratic form assumed
by QDA may capture the true relationship more accurately than the linear
forms assumed by LDA and logistic regression. However, we recommend
evaluating this method’s performance on a larger test set before betting
that this approach will consistently beat the market!

4.6.5 K-Nearest Neighbors

We will now perform KNN using the knn() function, which is part of the
class library. This function works rather differently from the other model-
fitting functions that we have encountered thus far. Rather than a two-step
approach in which we first fit the model and then we use the model to make
predictions, knn() forms predictions using a single command. The function
requires four inputs.

qda()

knn

O
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1. A matrix containing the predictors associated with the training data,
labeled train.X below.

2. A matrix containing the predictors associated with the data for which
we wish to make predictions, labeled test.X below.

3. A vector containing the class labels for the training observations,
labeled train.Direction below.

4. A value for K, the number of nearest neighbors to be used by the
classifier.

We use the cbind() function, short for column bind, to bind the Lagil and
Lag2 variables together into two matrices, one for the training set and the
other for the test set.

cbind ()

library (class)

train.X=cbind (Lagl,Lag2) [train,]
test.X=cbind(Lagl,Lag2) [!train,]
train.Direction=Direction [train]

vV V Vv VvV

Now the knn() function can be used to predict the market’s movement for
the dates in 2005. We set a random seed before we apply knn() because
if several observations are tied as nearest neighbors, then R will randomly
break the tie. Therefore, a seed must be set in order to ensure reproducibil-
ity of results.

> set.seed (1)
> knn.pred=knn (train.X,test.X,train.Direction , k=1)
> table(knn.pred,Direction .2005)
Direction .2005
knn.pred Down Up
Down 43 58

Up 68 83
> (83+43) /252
[1] 0.5

The results using K = 1 are not very good, since only 50 % of the observa-
tions are correctly predicted. Of course, it may be that K = 1 results in an
overly flexible fit to the data. Below, we repeat the analysis using K = 3.

> knn.pred=knn (train.X,test.X,train.Direction , k=3)
> table (knn.pred,Direction .2005)
Direction .2005
knn.pred Down Up
Down 48 54

Up 63 87
> mean (knn.pred==Direction .2005)
[1] 0.536

The results have improved slightly. But increasing K further turns out
to provide no further improvements. It appears that for this data, QDA
provides the best results of the methods that we have examined so far.
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4.6.6  An Application to Caravan Insurance Data

Finally, we will apply the KNN approach to the Caravan data set, which is
part of the ISLR library. This data set includes 85 predictors that measure
demographic characteristics for 5,822 individuals. The response variable is
Purchase, which indicates whether or not a given individual purchases a
caravan insurance policy. In this data set, only 6% of people purchased
caravan insurance.
> dim(Caravan)
[1] 5822 86
> attach(Caravan)
> summary (Purchase)

No Yes
5474 348
> 348/5822
[1] 0.0598

Because the KNN classifier predicts the class of a given test observation by
identifying the observations that are nearest to it, the scale of the variables
matters. Any variables that are on a large scale will have a much larger
effect on the distance between the observations, and hence on the KNN
classifier, than variables that are on a small scale. For instance, imagine a
data set that contains two variables, salary and age (measured in dollars
and years, respectively). As far as KNN is concerned, a difference of $1,000
in salary is enormous compared to a difference of 50 years in age. Conse-
quently, salary will drive the KNN classification results, and age will have
almost no effect. This is contrary to our intuition that a salary difference
of $1,000 is quite small compared to an age difference of 50 years. Further-
more, the importance of scale to the KNN classifier leads to another issue:
if we measured salary in Japanese yen, or if we measured age in minutes,
then we’d get quite different classification results from what we get if these
two variables are measured in dollars and years.

A good way to handle this problem is to standardize the data so that all
variables are given a mean of zero and a standard deviation of one. Then
all variables will be on a comparable scale. The scale() function does just
this. In standardizing the data, we exclude column 86, because that is the
qualitative Purchase variable.
> standardized.X=scale(Caravan[,-86])
> var (Caravan[,1])

[1] 165

> var (Caravan [,2])

[1] 0.165

> var (standardized.X[,1])

[11 1

> var (standardized.X[,2])

[11 1

Now every column of standardized.X has a standard deviation of one and
a mean of zero.

standardize

scale()
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We now split the observations into a test set, containing the first 1,000
observations, and a training set, containing the remaining observations.
We fit a KNN model on the training data using K = 1, and evaluate its
performance on the test data.

test=1:1000
train.X=standardized.X[-test,]
test.X=standardized.X[test,]
train.Y=Purchase [-test]
test.Y=Purchase [test]
set.seed (1)

knn.pred=knn (train.X,test.X,train.Y,k=1)
mean(test.Y!=knn.pred)

[1] 0.118

> mean(test.Y!="No")

[1] 0.059

V V.V V V V V.V

The vector test is numeric, with values from 1 through 1,000. Typing
standardized.X[test,] yields the submatrix of the data containing the ob-
servations whose indices range from 1 to 1,000, whereas typing
standardized.X[-test,] yields the submatrix containing the observations
whose indices do not range from 1 to 1,000. The KNN error rate on the
1,000 test observations is just under 12%. At first glance, this may ap-
pear to be fairly good. However, since only 6% of customers purchased
insurance, we could get the error rate down to 6 % by always predicting No
regardless of the values of the predictors!

Suppose that there is some non-trivial cost to trying to sell insurance
to a given individual. For instance, perhaps a salesperson must visit each
potential customer. If the company tries to sell insurance to a random
selection of customers, then the success rate will be only 6 %, which may
be far too low given the costs involved. Instead, the company would like
to try to sell insurance only to customers who are likely to buy it. So the
overall error rate is not of interest. Instead, the fraction of individuals that
are correctly predicted to buy insurance is of interest.

It turns out that KNN with K = 1 does far better than random guessing
among the customers that are predicted to buy insurance. Among 77 such
customers, 9, or 11.7 %, actually do purchase insurance. This is double the
rate that one would obtain from random guessing.

> table (knn.pred,test.Y)
test.Y
knn.pred No Yes
No 873 50
Yes 68 9
> 9/(68+9)
[11 0.117

Using K = 3, the success rate increases to 19 %, and with K = 5 the rate is
26.7 %. This is over four times the rate that results from random guessing.
It appears that KNN is finding some real patterns in a difficult data set!
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> knn.pred=knn (train.X,test.X,train.Y,k=3)

> table (knn.pred,test.Y)
test.Y
knn.pred No Yes
No 920 54
Yes 21 5
> 5/26
[1] 0.192

> knn.pred=knn (train.X,test.X,train.Y,k=5)

> table (knn.pred,test.Y)
test.Y
knn.pred No Yes
No 930 55
Yes 11 4
> 4/15
[1] 0.267

167

As a comparison, we can also fit a logistic regression model to the data.
If we use 0.5 as the predicted probability cut-off for the classifier, then
we have a problem: only seven of the test observations are predicted to
purchase insurance. Even worse, we are wrong about all of these! However,
we are not required to use a cut-off of 0.5. If we instead predict a purchase
any time the predicted probability of purchase exceeds 0.25, we get much
better results: we predict that 33 people will purchase insurance, and we
are correct for about 33 % of these people. This is over five times better

than random guessing!

> glm.fit=glm(Purchase~.,data=Caravan ,family=binomial,

subset=-test)
Warning message:

glm.fit: fitted probabilities numerically O or 1 occurred
> glm.probs=predict (glm.fit,Caravan[test,],type="response")

> glm.pred=rep("No",1000)
> glm.pred[glm.probs>.5]="Yes"
> table(glm.pred,test.Y)
test.Y
glm.pred No Yes
No 934 59
Yes 7 0
> glm.pred=rep ("No",1000)
> glm.pred[glm.probs>.25]="Yes"
> table(glm.pred,test.Y)
test.Y
glm.pred No Yes
No 919 48
Yes 22 11
> 11/(22+11)
[1] 0.333
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4.7 Exercises

Conceptual

1. Using a little bit of algebra, prove that (4.2) is equivalent to (4.3). In

other words, the logistic function representation and logit represen-
tation for the logistic regression model are equivalent.

. It was stated in the text that classifying an observation to the class

for which (4.12) is largest is equivalent to classifying an observation
to the class for which (4.13) is largest. Prove that this is the case. In
other words, under the assumption that the observations in the kth
class are drawn from a N (ux,o?) distribution, the Bayes’ classifier
assigns an observation to the class for which the discriminant function
is maximized.

This problem relates to the QDA model, in which the observations
within each class are drawn from a normal distribution with a class-
specific mean vector and a class specific covariance matrix. We con-
sider the simple case where p = 1; i.e. there is only one feature.

Suppose that we have K classes, and that if an observation belongs
to the kth class then X comes from a one-dimensional normal dis-
tribution, X ~ N(uk,0%). Recall that the density function for the
one-dimensional normal distribution is given in (4.11). Prove that in
this case, the Bayes’ classifier is not linear. Argue that it is in fact
quadratic.

Hint: For this problem, you should follow the arguments laid out in

Section 4.4.2, but without making the assumption that o3 = ... = 0%

. When the number of features p is large, there tends to be a deteri-

oration in the performance of KNN and other local approaches that
perform prediction using only observations that are near the test ob-
servation for which a prediction must be made. This phenomenon is
known as the curse of dimensionality, and it ties into the fact that
non-parametric approaches often perform poorly when p is large. We
will now investigate this curse.

(a) Suppose that we have a set of observations, each with measure-
ments on p = 1 feature, X. We assume that X is uniformly
(evenly) distributed on [0, 1]. Associated with each observation
is a response value. Suppose that we wish to predict a test obser-
vation’s response using only observations that are within 10 % of
the range of X closest to that test observation. For instance, in
order to predict the response for a test observation with X = 0.6,

@

curse of di-
mensionality
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we will use observations in the range [0.55,0.65]. On average,
what fraction of the available observations will we use to make
the prediction?

(b) Now suppose that we have a set of observations, each with
measurements on p = 2 features, X; and X,. We assume that
(X1, X3) are uniformly distributed on [0,1] x [0, 1]. We wish to
predict a test observation’s response using only observations that
are within 10 % of the range of X7 and within 10 % of the range
of X5 closest to that test observation. For instance, in order to
predict the response for a test observation with X; = 0.6 and
X2 = 0.35, we will use observations in the range [0.55,0.65] for
X, and in the range [0.3,0.4] for X5. On average, what fraction
of the available observations will we use to make the prediction?

(¢) Now suppose that we have a set of observations on p = 100 fea-
tures. Again the observations are uniformly distributed on each
feature, and again each feature ranges in value from 0 to 1. We
wish to predict a test observation’s response using observations
within the 10 % of each feature’s range that is closest to that test
observation. What fraction of the available observations will we
use to make the prediction?

(d) Using your answers to parts (a)—(c), argue that a drawback of
KNN when p is large is that there are very few training obser-
vations “near” any given test observation.

(e) Now suppose that we wish to make a prediction for a test obser-
vation by creating a p-dimensional hypercube centered around
the test observation that contains, on average, 10 % of the train-
ing observations. For p = 1,2, and 100, what is the length of
each side of the hypercube? Comment on your answer.

Note: A hypercube is a generalization of a cube to an arbitrary
number of dimensions. When p = 1, a hypercube is simply a line
segment, when p = 2 it is a square, and when p = 100 it is a
100-dimensional cube.

5. We now examine the differences between LDA and QDA.

(a) If the Bayes decision boundary is linear, do we expect LDA or
QDA to perform better on the training set? On the test set?

(b) If the Bayes decision boundary is non-linear, do we expect LDA
or QDA to perform better on the training set? On the test set?

(c) In general, as the sample size n increases, do we expect the test
prediction accuracy of QDA relative to LDA to improve, decline,
or be unchanged? Why?
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(d) True or False: Even if the Bayes decision boundary for a given
problem is linear, we will probably achieve a superior test er-
ror rate using QDA rather than LDA because QDA is flexible
enough to model a linear decision boundary. Justify your answer.

. Suppose we collect data for a group of students in a statistics class

with variables X7 =hours studied, X, =undergrad GPA, and Y =
receive an A. We fit a logistic regression and produce estimated
coefficient, By = —6, 81 = 0.05, B2 = 1.

(a) Estimate the probability that a student who studies for 40h and
has an undergrad GPA of 3.5 gets an A in the class.

(b) How many hours would the student in part (a) need to study to
have a 50 % chance of getting an A in the class?

Suppose that we wish to predict whether a given stock will issue a
dividend this year (“Yes” or “No”) based on X, last year’s percent
profit. We examine a large number of companies and discover that the
mean value of X for companies that issued a dividend was X = 10,
while the mean for those that didn’t was X = 0. In addition, the
variance of X for these two sets of companies was 62 = 36. Finally,
80 % of companies issued dividends. Assuming that X follows a nor-
mal distribution, predict the probability that a company will issue
a dividend this year given that its percentage profit was X = 4 last

year.

Hint: Recall that the densitg; function for a mormal random variable

is f(x) = \/#767(967”)2/20 . You will need to use Bayes’ theorem.

Suppose that we take a data set, divide it into equally-sized training
and test sets, and then try out two different classification procedures.
First we use logistic regression and get an error rate of 20 % on the
training data and 30 % on the test data. Next we use 1-nearest neigh-
bors (i.e. K = 1) and get an average error rate (averaged over both
test and training data sets) of 18 %. Based on these results, which
method should we prefer to use for classification of new observations?
Why?

This problem has to do with odds.
(a) On average, what fraction of people with an odds of 0.37 of
defaulting on their credit card payment will in fact default?

(b) Suppose that an individual has a 16 % chance of defaulting on
her credit card payment. What are the odds that she will de-
fault?
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10. This question should be answered using the Weekly data set, which
is part of the ISLR package. This data is similar in nature to the
Smarket data from this chapter’s lab, except that it contains 1,089
weekly returns for 21 years, from the beginning of 1990 to the end of
2010.

(a)
(b)

Produce some numerical and graphical summaries of the Weekly
data. Do there appear to be any patterns?

Use the full data set to perform a logistic regression with
Direction as the response and the five lag variables plus Volume
as predictors. Use the summary function to print the results. Do
any of the predictors appear to be statistically significant? If so,
which ones?

Compute the confusion matrix and overall fraction of correct
predictions. Explain what the confusion matrix is telling you
about the types of mistakes made by logistic regression.

Now fit the logistic regression model using a training data period
from 1990 to 2008, with Lag2 as the only predictor. Compute the
confusion matrix and the overall fraction of correct predictions
for the held out data (that is, the data from 2009 and 2010).

Repeat (d) using LDA.

Repeat (d) using QDA.

Repeat (d) using KNN with K = 1.

Which of these methods appears to provide the best results on
this data?

Experiment with different combinations of predictors, includ-
ing possible transformations and interactions, for each of the
methods. Report the variables, method, and associated confu-
sion matrix that appears to provide the best results on the held
out data. Note that you should also experiment with values for
K in the KNN classifier.

11. In this problem, you will develop a model to predict whether a given
car gets high or low gas mileage based on the Auto data set.

(a)

Create a binary variable, mpg01, that contains a 1 if mpg contains
a value above its median, and a 0 if mpg contains a value below
its median. You can compute the median using the median()
function. Note you may find it helpful to use the data.frame()
function to create a single data set containing both mpg01 and
the other Auto variables.
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(b)

Classification

Explore the data graphically in order to investigate the associ-
ation between mpg01 and the other features. Which of the other
features seem most likely to be useful in predicting mpg01? Scat-
terplots and boxplots may be useful tools to answer this ques-
tion. Describe your findings.

Split the data into a training set and a test set.

Perform LDA on the training data in order to predict mpg01
using the variables that seemed most associated with mpg01 in
(b). What is the test error of the model obtained?

Perform QDA on the training data in order to predict mpg01
using the variables that seemed most associated with mpg01 in
(b). What is the test error of the model obtained?

Perform logistic regression on the training data in order to pre-
dict mpg01 using the variables that seemed most associated with
mpgO1 in (b). What is the test error of the model obtained?

Perform KNN on the training data, with several values of K, in
order to predict mpg01. Use only the variables that seemed most
associated with mpgo1 in (b). What test errors do you obtain?
Which value of K seems to perform the best on this data set?

12. This problem involves writing functions.

(a)

Write a function, Power (), that prints out the result of raising 2
to the 3rd power. In other words, your function should compute
23 and print out the results.
Hint: Recall that x~a raises x to the power a. Use the print()
function to output the result.

Create a new function, Power2(), that allows you to pass any
two numbers, x and a, and prints out the value of x~a. You can
do this by beginning your function with the line

> Power2=function(x,a){

You should be able to call your function by entering, for instance,

> Power2(3,8)

on the command line. This should output the value of 3%, namely,
6,561.

Using the Power2() function that you just wrote, compute 103,
817, and 1313

Now create a new function, Power3(), that actually returns the
result x~a as an R object, rather than simply printing it to the
screen. That is, if you store the value x~a in an object called
result within your function, then you can simply return() this
result, using the following line:

return()
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return (result)

The line above should be the last line in your function, before
the } symbol.

(e) Now using the Power3() function, create a plot of f(z) = z%.

The z-axis should display a range of integers from 1 to 10, and
the y-axis should display 22. Label the axes appropriately, and
use an appropriate title for the figure. Consider displaying either
the z-axis, the y-axis, or both on the log-scale. You can do this
by using log=‘‘x’’, log=‘‘y’’, or log="‘‘xy’’ as arguments to
the plot () function.

(f) Create a function, PlotPower (), that allows you to create a plot
of x against x~a for a fixed a and for a range of values of x. For
instance, if you call

> PlotPower (1:10,3)

then a plot should be created with an z-axis taking on values
1,2,...,10, and a y-axis taking on values 13,23, ...,103.

13. Using the Boston data set, fit classification models in order to predict
whether a given suburb has a crime rate above or below the median.
Explore logistic regression, LDA, and KNN models using various sub-
sets of the predictors. Describe your findings.



