Doctoral fellow

Last application date
Apr 02, 2020 00:00
Department
LA26 - Department of Data analysis and mathematical modelling
Employment category
Research staff group 1
Contract
Limited duration
Degree
• an MSc degree in Bioinformatics, Bioscience Engineering, Biochemistry and Biotechnology or equivalent (or will have this degree at the beginning of the project)
Occupancy rate
100%
Vacancy Type
Research staff

Job description

At the Faculty of Bioscience Engineering, Ghent University (Belgium), the BIOBIX lab of Bioinformatics and Computational Genomics (Prof. Tim De Meyer, promoter) and the Thomas Van Leeuwen research group (Dr. Wannes Dermauw, copromoter) have joined forces to develop a novel methodology to identify heritable variation in gene expression (expression quantitative trait loci; eQTLs), using herbivore adaptation as highly relevant case study. We are therefore looking for a highly motivated PhD student, starting as soon as possible.

The identification of heritable variation in gene expression, linked to a phenotype of interest (e.g. crop yield, resistance ...) is of major importance in the field of applied biological research. However, the identification of such loci, i.e. eQTLs, currently requires laborious breeding schemes and/or the combination of transcriptomics and DNA genotyping data, leading to a very high cost for comprehensive analyses. As a solution, the group of Prof. De Meyer is currently developing a far cheaper and more robust eQTL scanning methodology through statistical modelling of (solely) RNA-seq data. The applicant will further develop and apply this methodology to identify eQTLs in the spider mite T. urticae genome. T. urticae is a world champion in feeding on different plant species (over 1,100 different hosts) and pesticide resistance. As its small genome has been sequenced, it provides the ideal model organism to study rapid genetic adaptation, the field of expertise of Dr. Dermauw and Prof. Van Leeuwen. By bringing the expertise of both research groups together, the applicant will validate the novel eQTL scanning methodology by showing that it is able to identify eQTLs explaining fast spider mite adaptation. Relevance will be further demonstrated by linking obtained results with already available spider mite omics datasets at the copromoter’s lab through bioinformatics analysis.

Profile of the candidate

As a candidate, you have/are:

• well acquainted with molecular biology, biostatistics and scripting

• a drive to answer biological questions by analyzing omics data sets

• an analytical, critical and independent attitude

• an MSc degree in Bioinformatics, Bioscience Engineering, Biochemistry and Biotechnology or equivalent (or will have this degree at the beginning of the project); related degrees may be considered but only when sufficient background in molecular biology, biostatistics ánd scripting can be clearly demonstrated

• proficient in English, both written and oral

Ideally, you are acquainted with the statistical analysis of next generation sequencing or other biological big data. However, note that we focus on answering biological questions and that the ambition to learn and apply expert statistical methods is sufficient to apply. We provide an open and stimulating working environment in a top 100 ranking university, in which teamwork, initiative, a critical mindset and originality are highly appreciated. We offer a position for 1 year, which will normally be extended to 4 years in case of a positive evaluation. Note that the latter may require application for a FWO/BOF doctoral fellowship.

Relevant publications of the promoters:

Goovaerts et al. A comprehensive overview of genomic imprinting in breast and its deregulation in cancer. Nature Communications 2018. (Introduces methodologically relevant concepts).

Wybouw et al. Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae. Genetics 2019.

Dermauw et al. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. PNAS 2013. (Plant adaptation and pesticide resistance are intertwined)

Grbic et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 2011. (Genome paper spider mite)

How to apply

Candidates should send their CV, a motivation letter (approx. 1 page) and the email addresses of two potential referees to prof. Tim De Meyer (tim.demeyer@ugent.be), by April 1st 2020 the latest.