Analysis of benzo[a]pyrene diol epoxide DNA adducts by capillary zone electrophoresis-nano-electrospray mass spectrometry

<u>A.V. Willems</u>, D.L. Deforce, E.G. Van den Eeckhout, W.E. Lambert, C.H. Van Peteghem, A.P. De Leenheer, J.F. Van Bocxlaer

Laboratory of Medical Biochemistry & Clinical Analysis, Laboratory of Pharmaceutical Biotechnology, Laboratory of Toxicology, Ghent University, Belgium

Introduction (1)

• Chemicals \rightarrow electrophilic \rightarrow DNA attack \rightarrow DNA adduct \rightarrow cancer ?

Benzo[a]pyrene: prototype PAH

 → activation
 → diol epoxide
 → DNA adduct

Introduction (2)

Amount DNA adduct $\downarrow \leftrightarrow$ nucleotides $\uparrow\uparrow\uparrow$

Method:

- sensitive
- selective
- structural informative

Goal: identification

Introduction (3)

- charged molecules
- miniaturization \rightarrow sensitivity

(sample introduction !)

- mass spectrometric selectivity
- identification (MS/MS)
- "full scan" sensitivity

Materials & Methods (1)

Samples:

- nucleotides (per ml) (2'-deoxy)nucleotide (5 mg) + BPDE (0.1 mg)(dAMP, dCMP, dGMP, TMP) chloroform extraction (3x)- DNA hydrolysate (per ml) calf thymus DNA (10 mg) + BPDE (10 mg)ethanol precipitation DNA hydrolysis: DNA-ase I, nuclease P1, SVP - SPE: Chromabond HR-P

Materials & Methods (2)

CZE conditions:

- column: 1 m x 50 μ m i.d. fused silica
- buffer: 20 mM ammonium acetate (pH 9.5)
- hydrodynamic injection: 80 mbar, 1.5 min
- electrophoresis: 23 kV, 20 mbar
- sample stacking \rightarrow low amount
 - \rightarrow nucleotide adducts: 100 mbar, 0.6 min \rightarrow DNA hydrolysate adducts: 100 mbar,
 - 1 min

Materials & Methods (3)

MS conditions:

- nano-ESI interface

sheath flow:
neg. mode: 80/20 isopropanol/water
pos. mode: 50/50 methanol/water

- capillary: -/+ 3.5 kV

Results (1)

CZE-MS: electropherogram

Results (2)

CZE-MS/MS: MS/MS spectrum
 negative mode
 phosphate alkylation ?
 base alkylation ?

positive mode
→ exact place for base alkylation

Results (3)

■ Incubation of BPDE with (2'-deoxy)nucleotides

BPDE adduct	dAMP (MM 633)	dCMP (MM 609)	dGMP (MM 649)	TMP
RT (min)	10.3	10.4	10.9	_
neg. mode	m/z 632 base-alk (N1/N ⁶)	m/z 608 base-alk (N3/N ⁴)	m/z 648 base-alk (N ² /N7)	_
pos. mode	m/z 634 N ⁶ -alk	m/z 610 N ⁴ -alk	m/z 650 N^2 -alk	_

Results (4)

■ Incubation of BPDE with dCMP (- mode)

Results (5)

Incubation of BPDE with calf thymus DNA

BPDE adduct	dAMP	dCMP	dGMP	TMP
RT (min)	9.8	9.9	10.7	_
neg. mode	m/z 632 base-alk	m/z 608 base-alk	m/z 648 base-alk	
pos. mode	m/z 634 N ⁶ -alk	m/z 610 N ⁴ -alk	m/z 650 N²-alk	_

Results (6)

 Incubation of BPDE with calf thymus DNA (+ mode): BPDE-dCMP

Conclusion

■ CZE (negative compounds) \rightarrow OK

■ Coupling CZE-ESI-MS → proved straightforward in our hands

Sample stacking \rightarrow small amounts

DNA adducts with BPDE: BPDE-N⁶-dAMP, BPDE-N⁴-dCMP, BPDE-N²-dGMP