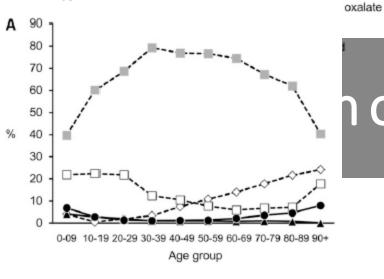

Forum voor wetenschap, twijfel & kunst

Arjan van der Tol, nefrologie UZG


Urolithiasis

• 10%: life time prevalence (increasing)

- 5% of patients who have US or CT: Asymptomatic incidental stones
- 10-30% of asymptomatic stone will develop symptoms or undergo a procedure < 5 yr
- 26% of first symptomatic stone will recurrence < 5 yr
- Stone analysis & blood sample in all first stone
- Metabolic evaluation: early onset, fam history, recurrent stones, brushite, uric acid, solitary kidney, underlying diseases (obesity, CF, Crohn,..)

	A WE BEAN		2,24 2 h	
Type and main component	%	Hydroxyapatite unattached	7.1	
Calcium oxalate monohydrate papillary calculi	12.9	calculi		
	A.	Struvite infectious calculi	4.1	
Calcium oxalate monohydrate unattached calculi (formed in renal cavities)	16.4	Brushite unattached calculi	0.6	
Calcium oxalate dihydrate	33.8	Uric acid unattached calculi	8.2	
unattached calculi		Calcium oxalate/uric acid mixed calculi	2.6	
Calcium oxalate dihydrate/	11.2	Cystine unattached calculi	1.1	
hydroxyapatite mixed unattached calculi		Unfrequent calculi	1.9	

F Grases. 2002 Clinica Chimica Acta 322: 29-36

female^{ge group}

h of gender and age with stone type

JC Lieske 2014 CJASN 9:2141

JC Lieske CJASN 9:2141-6 2014

Underlying determining factors...

- Calciumoxalate: hypercalciuria, hyperuricosuria, hypocitraturia, hyperoxaluria
- Calciumphosphate (brushite, hydroxyapatite, carbonate apatite): hypercalciuria, hypocitraturia, high urinary pH
- Stuvite: UTI, high urinary pH
- Uric acid: low urinary pH, MS, DM
- Cystine, xantine, 2,8 dihydoxyadenine: genetic

Treatment

CORROBOREE ROCK CONSERVATION RESERVE

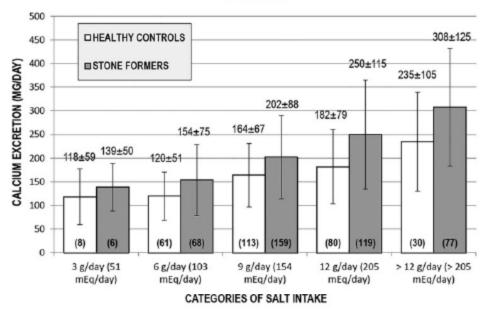
		1 ana 2					
		Followup Interval (Yrs.)					
	Baseline	1	2	3	4	5	
Vol. (ml./24 hrs.):					· · · · · · · · · · · · · · · · · · ·		
Group 1	1.068 ± 240	$2,127 \pm 546$	$2,261 \pm 575$	2,611 ± 683	$2,654 \pm 587$	$2,621 \pm 443$	
	,	p < 0.0001	p < 0.0001	p < 0.0001	p < 0.0001	p < 0.0001	
Group 2	$1,008 \pm 231$	$1,258 \pm 292$	$1,183 \pm 271$	$1,032 \pm 256$	$1,005 \pm 183$	$1,014 \pm 195$	
Calcium oxalate, relative supersaturation:	-,						
Group 1	10.1 ± 4.9	5.2 ± 3.2	4.4 ± 2.9	4.0 ± 2.4	3.5 ± 2.0	2.6 ± 0.8	
		p < 0.0001	p < 0.0001	p < 0.0001	p < 0.0001	p < 0.0001	
Group 2	11.2 ± 5.3	8.1 ± 5.2	9.5 ± 5.2	10.2 ± 4.7	10.2 ± 3.3	9.9 ± 3.4	
Brushite, relative supersaturation:							
Group 1	1.6 ± 1.24	0.97 ± 0.99	0.84 ± 0.72	0.65 ± 0.58	0.54 ± 0.36	0.48 ± 0.24	
arout t			p < 0.001	p < 0.0001	p < 0.0001	p < 0.0001	
Group 2	1.82 ± 1.67	1.22 ± 1.06	1.33 ± 1.16	1.60 ± 1.14	1.60 ± 0.90	1.58 ± 0.99	
Uric acid, relative supersaturation:							
Group 1	3.48 ± 2.95	1.72 ± 1.49	1.29 ± 1.19	1.15 ± 0.93	0.80 ± 0.52	0.60 ± 0.35	
Group I	0.40 - 4.00	p < 0.001		2.2.0 - 0.00			
Group 2	3.64 ± 3.08	2.66 ± 2.3	TABLE 4. Urinary stone risk profile during the baseline period in calcium stone patients with and without relapse in groups 1 and				
Group 2	0.04 2 0.00	2.00 - 2.0		G	roup 1	Group 2	

 TABLE 3. Values of urine volume and relative supersaturation of lithogenous salts during the baseline and followup interval in groups

 1 and 2

Control values of the relative supersaturations in 101 healthy controls were 5.87 : acid.

Group 2 Group 1 No Relapse No Relapse Relapse Relapse (73 pts.) (27 pts.) (87 pts.) (12 pts.) Vol. (m1/24 hrs.) $1,191 \pm 275$ 987 ± 242 $1,064 \pm 189$ 1.051 ± 232 Creatinine (mg/24 hrs.) $1,450 \pm 308$ $1,623 \pm 397$ 1,419 ± 407 $1,584 \pm 365$ 24.4 ± 9.8 23.3 ± 7.2 23.7 ± 6.7 Urea (gm/24 hrs.) 22.8 ± 7.9 158 ± 49 175 ± 43 175 ± 69 Sodium (mmol/24 hrs.) 156 ± 53 Potassium (mmol/24 hrs.) 47 ± 14 45 ± 12 46 ± 15 50 ± 16 Calcium (mg./24 hrs.) 233 ± 100 p = 0.005 326 ± 140 249 ± 107 p = 0.01 313 ± 113 Phosphorus (mg/24 hrs.) 708 ± 331 673 ± 273 661 ± 201 705 ± 220 84 ± 31 Magnesium (mg./24 hrs.) 96 ± 35 86 ± 32 94 ± 35 Chloride (mmol/24 hrs.) 159 ± 55 173 ± 36 153 ± 51 177 ± 63 Uric acid (mg/24 hrs.) 659 ± 294 565 ± 189 591 ± 264 579 ± 162 478 ± 173 Citrate (mg./24 hrs.) 517 ± 212 529 ± 262 532 ± 255 30.1 ± 13.9 30.2 ± 11.6 Oxalate (mg/24 hrs.) 28.5 ± 8.8 28.1 ± 10.1 Sulfate (mmol/24 hrs.) 24.6 ± 8.4 19.8 ± 5.1 20.2 ± 5.6 21 ± 7.3 Ammonium (mmol/24 hrs.) 35 ± 10 38 ± 12 34 ± 13 36 ± 11 pH (24 hrs.) 5.92 ± 0.48 5.80 ± 0.53 5.91 ± 0.54 5.88 ± 0.42 Relative supersaturation: Calcium oxalate 10.1 ± 4.9 10.9 ± 5.0 10.9 ± 5.1 12.2 ± 5.9 Brushite 1.56 ± 1.15 1.88 ± 1.81 1.81 ± 1.58 1.85 ± 1.93 3.38 ± 2.93 4.24 ± 3.08 3.82 ± 3.38 Uric acid 3.16 ± 2.03


Hypercalciuria

- Def: >4mg/kg/day (>0.1 mmol/kg/day) in normal 24-h urine sample
- Kidney stones, nephrocalcinosis, CKD and osteoporosis

• Etiology:

- 1. Increased filtered load? (hypercalcemia)
- 2. Dietary (salt intake)
- 3. Absorptive (GI)
- 4. Resorptive (bone)
- 5. Renal leak

FEMALES

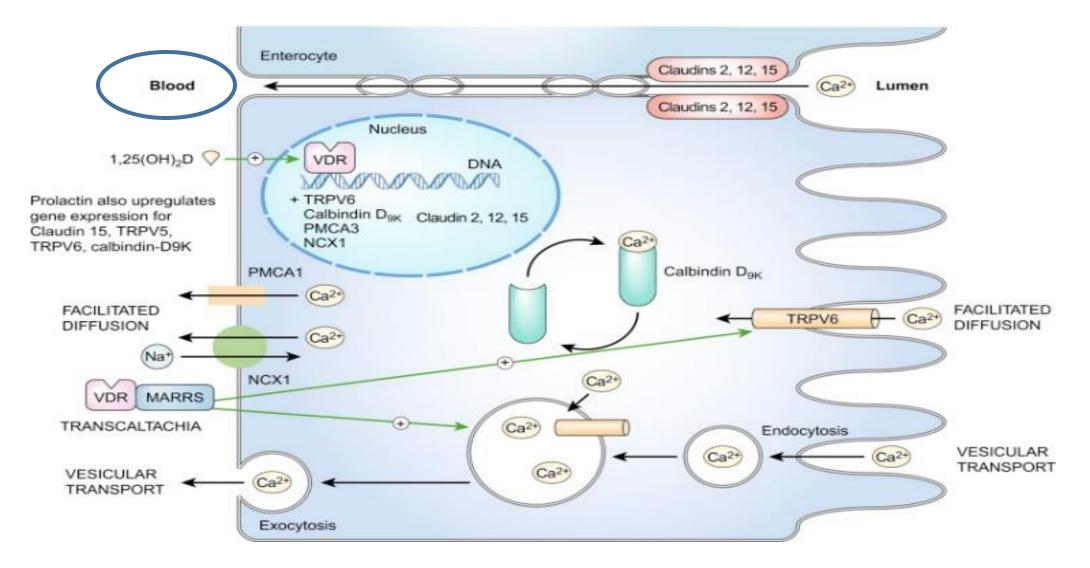
associated with pecially in stone formers

Ticinesi, 2014, NDT

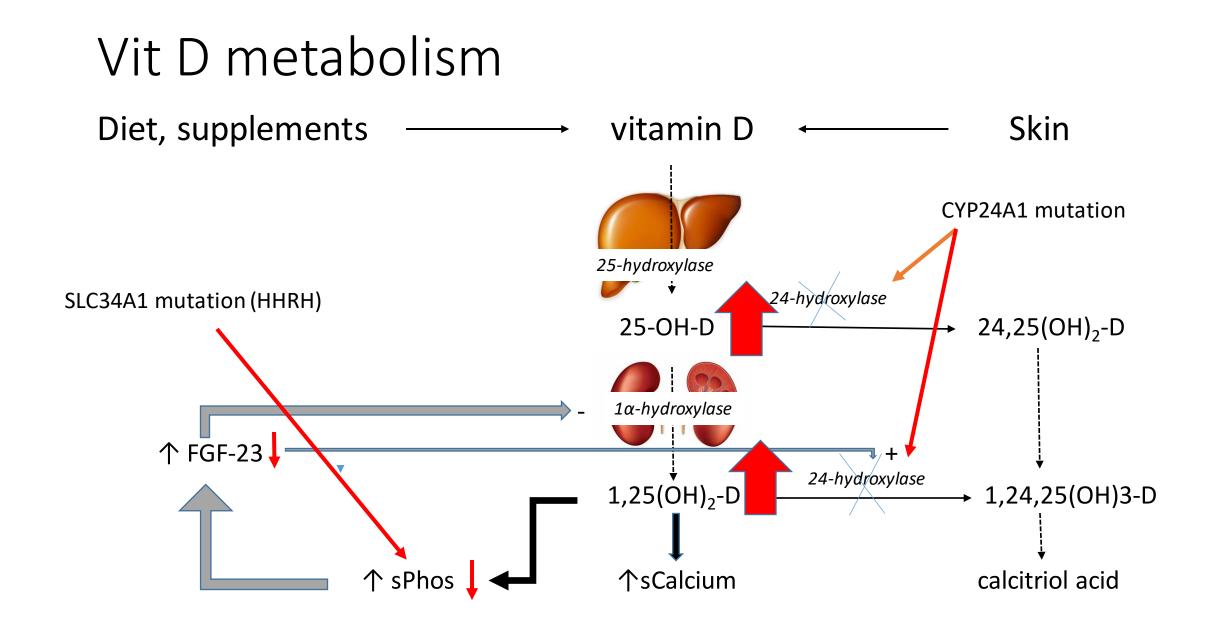
Salt reduction is important in SF

- Kidney stone formers
 - \downarrow 100 mmol Na/d \rightarrow Urinary calcium \downarrow 2 mmol/d
- Non-stone formers
 - \downarrow 100 mmol Na/d \rightarrow Urinary calcium \downarrow 1 mmol/d

Salt intake \rightarrow hypervolumia \rightarrow sodium and calcium reabsorption \downarrow (Ca handling depends on Na)


High protein intake is associated with hypercalciuria

- Unknown mechanism
- High protein intake (Atkins diet) is associated with lower urinary pH, high net acid excretion, low urinary citrate and hypercalciuria (Reddy, 2000, AJKD)
 - Potassiumcitrate neutralized the acid load (increased urinary citrate) delivered by high protein diet but did not reduced hypercalciuria (Maalouf, 2011, J Clin End Met)


Absorptive hypercalciuria

- Def: increase of urinary Ca/creatinine ratio (>0.5 mmol/mol) after a calcium load, low PTH, high calcitriol
- Intestinal calcitriol activation (active Ca absorption via TRPV6)
 - Idiopathic or hypervitaminosis D (iatrogenic, sarcoidosis or genetic)
 - Homozygous mutations in the CYP24A1 (nefrocalcinosis) or SLC34A1/A3 (low phosphatemia: Hereditary Hypophosphatemic Rickets with Hypercalciuria)

Calcium reabsorption in the GUT

G Diaz de Barbozam WJG 2015, vol 21 issue 23

Resorptive hypercalciuria

 Def: fasting urinary calcium/creatinine ratio > 0.4mmol/mmol and increase in bone markers and low BMD

• Etiology

- PHP
- HHRH
- Immobilization
- Chronic alcoholism
- Coeliac disease
- Corticoidtherapy
- menopause

Renal hypercalciuria

 Def (hard): normal of low calcium levels, high urinary fasting calcium/creatine ratio and normal-high PTH (proteinuria, metabolic acidosis, hypomagnesemia)

• Etiology

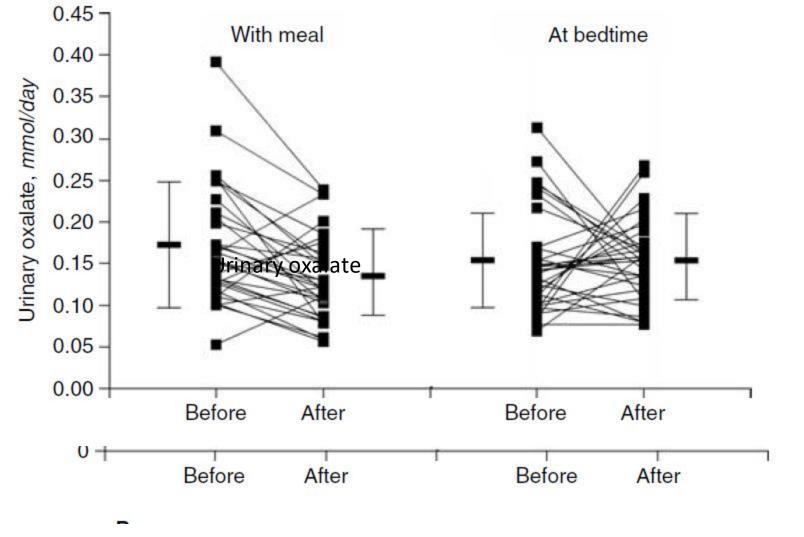
- Idiopathic
- Tubular acidosis
- HHRH (SCL34A1/A3, NHERF1)
- Cacchi-Ricci
- FHHNC syndrome (CLDN16/19)
- Dent/Lowe disease (CLCN5/OCRL1)
- Bartter syndrome (NKCC2, ROMK, CLCNKB, Barttine, CaSR)

Treatment hypercalciuria

- Thiazide (side effects hypoNa, hypoK, hypotension, hyperglycemia and dyslipidemia) (Thiazide 25-50mg or indapamide 2,5mg od)
 - Mainly effective by salt restriction (Ca-Na reabsorption)
- Potassium citrate 5gr in 1 or 1,5L water daily
 - Decreasing intestinal calcium absorption, increasing calcium reabsorption distal tubuli and decreasing bone resorption.

Vitamin D supplementation in vit D deficiency

- 1 year randomized placebo-controlled trial of vit D dose (400-4800 IU/d) in 163 postmenopausal women (calcium intake 1200mg/d in all groups)
- Hypercalciuria (>300mg/d) occurs in 30.6%
- Hypercalcemia (>10.2 mg/dl) occurs in 8.8%
- Hypercalcemia and hypercalciuria not related to vit D dose!


Calcium/vit D intake and urolithiasis

RCT

- WHI 36,282 postmenopausal women with baseline calcium intake 1100mg Ca
- 1gr CaCO/400IU vit D versus Placebo
- Urolithiasis RR 1.19 (1.02-1.34 during 7 years FU)

Observational study

- NHS 91,731 nurses age 34-59: 884 stones in 12 years of follow up
- Risk for urolithiasis:
 - 1.2 (1.01-1.41) with supplemental 1000mg calciumcarbonate
 - 0.65 (0.50-0.83) with high dietary calcium intake

h meals vs. : bedtime

Urinary calcium

Domrongkitchaiporn, KI 2004

Conclusions

Calcium supplements

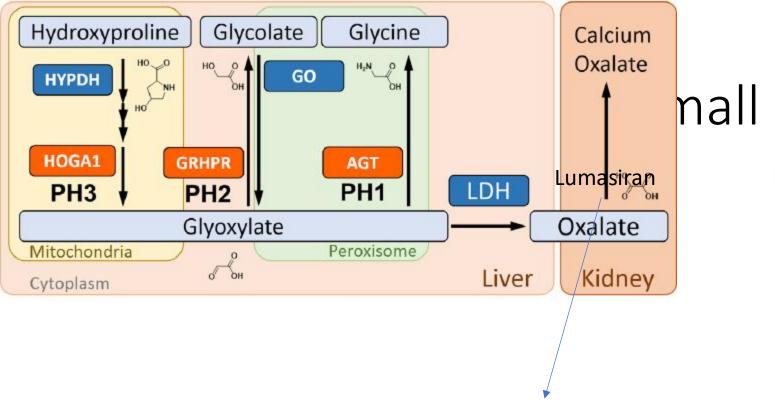
- Dietary Ca = safe (lower sCa, uCa, oxalate binding)
- Prefer calciumcitrate (oxalate binding, provides citrate)
- Mealtime = better (oxalate binding)

Vit D repletion

- Daily and not monthly
- Cave in some stone formers (not in sarcoidosis and CYP24A1 mutations): metabolic bilan

Hypocitraturia

Def: <320 mg/day etiology: Acid-base balance: RTA, diarrhae/malabsorption/renal failure Diet: animal proteins, salt, low fruit/veg Medication: acetozolamide, amiloride, topiramate Genetic (VDR polymorphism) Hypokalemia

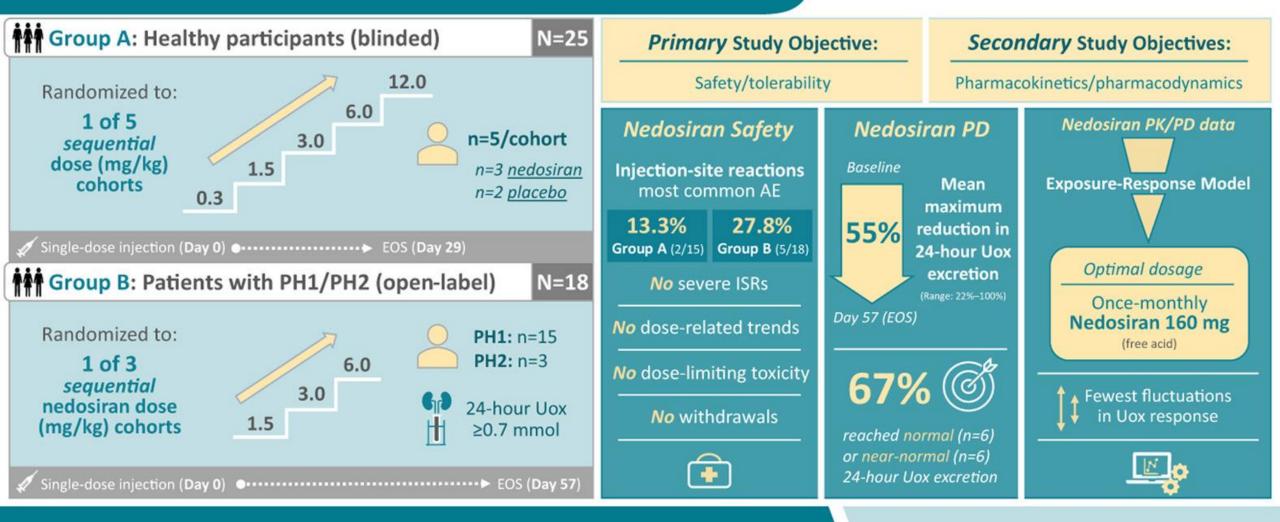

Treatment: K-citrate

Hyperuricosuria

Def: >800 mg/day in men, >750mg women Etiology Purine intake Production (gout, MXD, neoplasia) ua metabolism & reabsorption Treatment Xanthine oxidase inhibitor

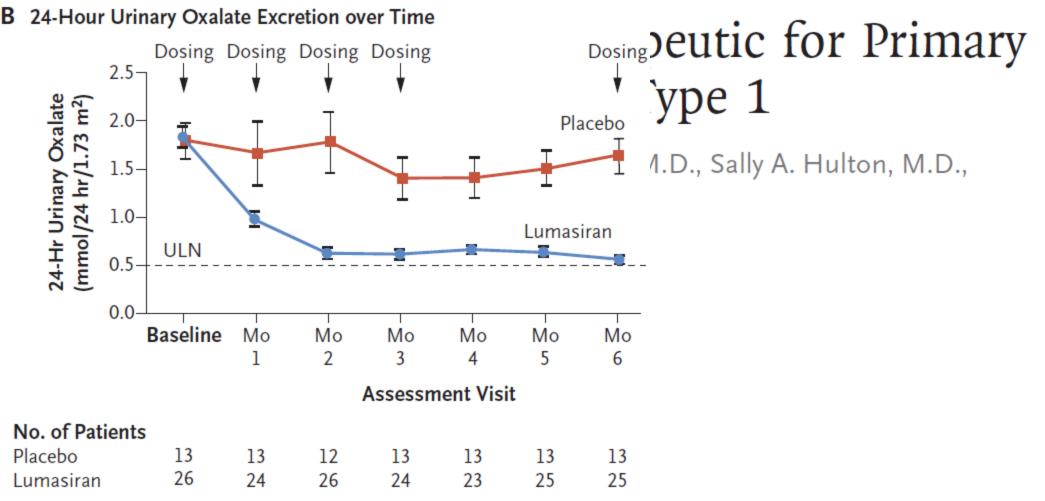
Hyperoxaluria

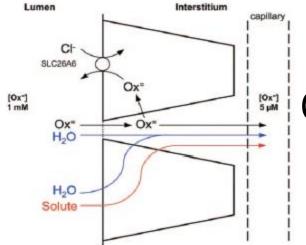
Def: >27 mg/L or >45 mg/day Etiology Endogenous oxalate production (genetic) Intestinal (increased absorption) Dietary (oxalate rich food and precursors)


nall interfering RNA

Nedosiran

Lai 2018 Molecular therapy


Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria.


CONCLUSION: Single-dose nedosiran demonstrated acceptable safety and evidence of a pharmacodynamic effect in PH1 and PH2 patients

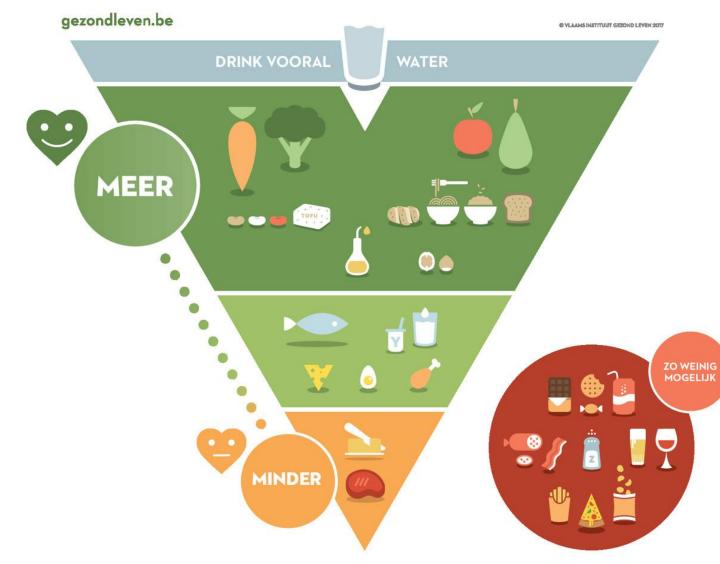
Hoppe, et al, 2021

Increased intestinal oxalate absorption

- Malabsorption syndrome
 - IBD (Crohn disease & ulcerative colitis)
 - Chronic pancreatitis (CF)
 - latrogenic: RT, pancreas resection, bowel resection, bypass
 - Treatment:
 - Calciumcitrate
 - ALLN177-302 URIROX-2: Reloxaliase (recombinant oxalase decarboxylase E)
 - oxaluria > 50 mg/day
- Decreased colonisation of O. formigenses (macrolides, tetracyclines, rifampicine and metronidazole)(CF)

d intestinal oxalate secretion (CF)

Figure 9. Proposed model of epithelial oxalate transport. Oxalate absorption is largely passive and paracellular across the tight junction. Oxalate then is back-secreted by a transcellular route requiring apical membrane SLC26A6.


Felix Knauf 2011 JASN

High oxalate food

- Fruit: figs, raspberries, dates
- Vegetables: spinach, beans, beets, okra
- Whole grain products
- All nuts
- chocolate
- Black tea
- Vit C tablets!

VLAAMS INSTITUUT

VOEDINGSDRIEHOEK GEZOND LEVEN

Target Treatment of calciumoxalate lithiasis

Hypercalciuria

• Thiazide/Kcitrate

Hypocitraturia

Kcitrate/diet/etiology

Hyperuricosuria

Diet/Allopurinol

Hyperoxaluria

• Diet/New agents?