

ANNUAL REVIEW HPC-UGENT

2018

Department ICT, Infrastructure office

E <u>hpc@ugent.be</u> T +32 9 264 4716

Campus Sterre S9 Krijgslaan 281, 9000 Gent

https://www.ugent.be/hpc

CONTENTS

CONT	TENTS	2
1	About HPC-UGent	3
1.1	Our mission	3
1.2	Our vision	3
1.3	Personnel	3
2	Infrastructure	4
2.1	Overview	4
2.2	Usage	6
3	Development and maintenance	10
3.1	Number of JIRA issues resolved in 2018, grouped per main component	10
3.2	Projects finalized in 2018	11
3.3	Github commits in 2018 by HPC-UGent staff, per repository	12
4	Training and support	13
4.1	Training overview and evaluations	13
4.2	Lectures and community meetings	15
4.3	Helpdesk	16
4.4	User evaluation	18
5	Outreach	23
5.1	Within Ghent University	23
5.2	To policy makers, industry and general public	23
5.3	Within international HPC community	25
6	Budget	26
7	Tier-1 usage	27
8	User in the spotlight	28

1 **ABOUT HPC-UGENT**

In scientific computing*, computers are used to solve complex problems. (*aka: supercomputing or high-performance computing - HPC)

1.1 Our mission

HPC-UGent provides centralised scientific computing services, training, and support for researchers from Ghent University, industry, and other knowledge institutes.

HPC-UGent is part of the central ICT department of Ghent University, and is a strategic partner of the Flemish Supercomputer Center (VSC).

1.2 Our vision

HPC-UGent offers a professional scientific computing environment that is stable, user-friendly, and serves the diverse purposes of researchers from Ghent University, industry and other research institutions.

We provide a structural training curriculum for new and advanced users, and provide supporting course material.

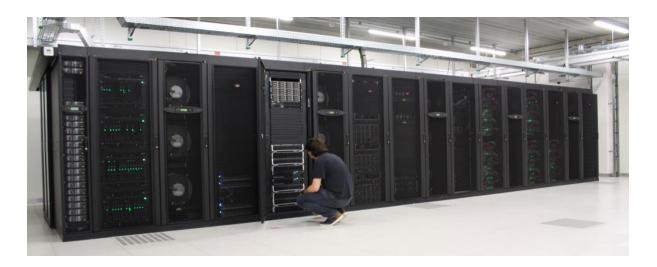
We present a supercomputing portfolio that is well known within Ghent University and beyond, and we establish ourselves in the international community via contributions to centralised solutions, such as <u>EasyBuild</u>.

1.3 Personnel

The HPC-UGent team at the start of 2018 consists of 8 people: Alvaro Simon Garcia, Andy Georges, Ewald Pauwels, Jens Timmerman, Kenneth Hoste, Kenneth Waegeman, Stijn De Weirdt, Wouter Depypere. In June 2018, Jens Timmerman left the team.

Tasks include:

- User support
- Training
- Infrastructure installation and upkeep (both hardware and software)
- Outreach and marketing
- Collaboration with other supercomputing centers


2 **INFRASTRUCTURE**

2.1 Overview

The Ghent University compute infrastructure (Tier-2) consists of several specialised clusters, jointly called Stevin, hosted in the S10 datacenter.

In 2018, several changes to the infrastructure were applied:

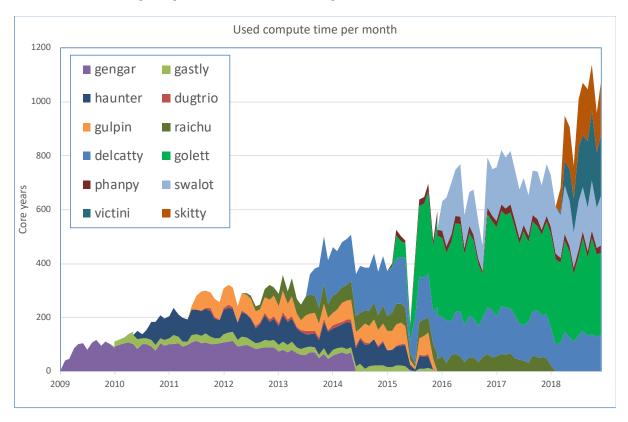
- cluster raichu was decommissioned
- new clusters victini and skitty were taken into production
- the SLURM job scheduler was introduced for clusters victini and skitty
- cluster victini was made the default cluster.

2.1.1 Compute clusters

Cluster name	#nodes	CPU per node	Memory per node	Local disk per node	Network interconnect
Raichu	56	2 x 8-core Intel E5- 2670 (Sandy Bridge @ 2.6 GHz)	32 GB Decommis	400 GB ssioned on 15	Gb Ethernet January 2018
Delcatty	124	2 x 8-core Intel E5- 2670 (Sandy Bridge @ 2.6 GHz)	64 GB	400 GB	FDR InfiniBand
Phanpy	16	2 x 12-core Intel E5- 2680v3 (Haswell-EP @ 2.5 GHz)	512 GB	3 x 400 GB (SSD, striped)	FDR InfiniBand

Golett	200	2 x 12-core Intel E5- 2680v3 (Haswell-EP @ 2.5 GHz)	64 GB	500 GB	FDR-10 InfiniBand
Swalot	128	2 x 10-core Intel E5- 2660v3 (Haswell-EP @ 2.6 GHz)	128 GB	1 TB	FDR InfiniBand
Skitty	72	2 x 18-core Intel Xeon Gold 6140 (Skylake @ 2.3 GHz)	192 GB	1 TB	EDR InfiniBand
Victini	96	2 x 18-core Intel Xeon Gold 6140 (Skylake @ 2.3 GHz)	96 GB	1 TB	10 Gb ethernet

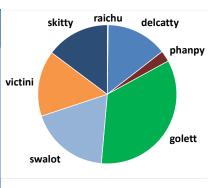
2.1.2 Shared storage


Partition	Size
\$VSC_HOME	35 TB
\$VSC_DATA	702 TB
	(can grow to 1 PB)
\$VSC_SCRATCH	1 PB
\$VSC_SCRATCH_KYUKON	
\$VSC_SCRATCH_PHANPY	35 TB SSD

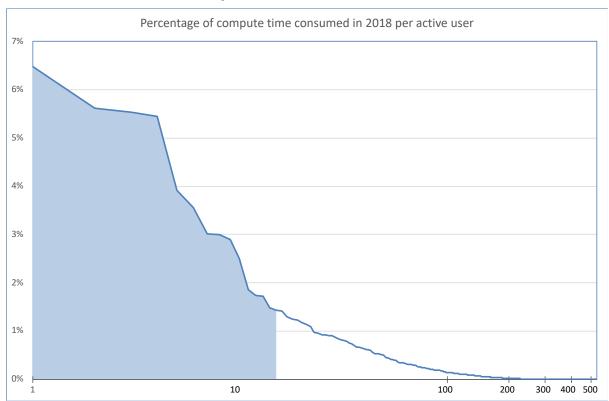
2.2 Usage

Modern CPUs contain many cores that are capable of running a computational task. In the graphs below, the used or available compute time on the compute clusters is typically expressed in *core years*, where 1 core year would correspond to the work done by one core in one year of time. (One core hour is the work done by one core in one hour of time.)

2.2.1 Historical perspective on used compute time


This plot gives a historical perspective on the amount of compute time that is used every month, coloured according to the cluster that does the work. All clusters together, since the start in 2009, have produced more than 464 million core hours. This is equivalent to 53.000 years of compute work on one core.

2.2.2 Consumed compute time in 2018


2.2.2.1 Consumed compute time per compute cluster

Cluster name	Compute time consumed (in core years)	d Effective use percentage
Raichu	(until 15/01/2018) 2	4 65%
Delcatty	155	9 79%
Phanpy	28	1 73%
Golett	375	3 78%
Swalot	202	6 79%
Victini	(from 1/03/2018) 167	6 58%
Skitty	(from 1/03/2018) 161	5 74%
Total	1093	3 74%

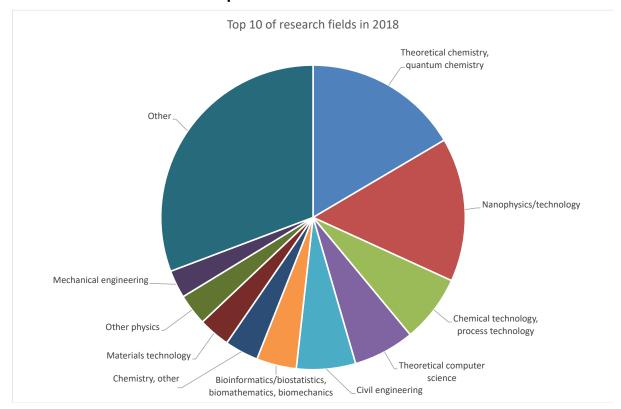
In 2018, a total of 95.559.679 core hours has been consumed on the Tier-2 compute clusters of Ghent University. This corresponds to 10.933 core years. The effective use percentage expresses how much of the theoretically available compute power in one year (#nodes x #cores/node) was used. Down-times were not taken into account, so the percentages represent a lower bound. Effective use percentages are quite high for typical HPC systems and indicate good economic usage of the infrastructure.

2.2.2.2 Consumed compute time versus active users

In 2018, 602 persons actively used the Tier-2 compute clusters of Ghent University. The user base typically contains a limited number of power users in addition to

regular users with a lower usage profile. The plot above graphs per user (x axis) what percentage of all compute time produced in 2018 this user consumed. The blue area indicates that 50% of all Tier-2 compute time was consumed by 15 power users.

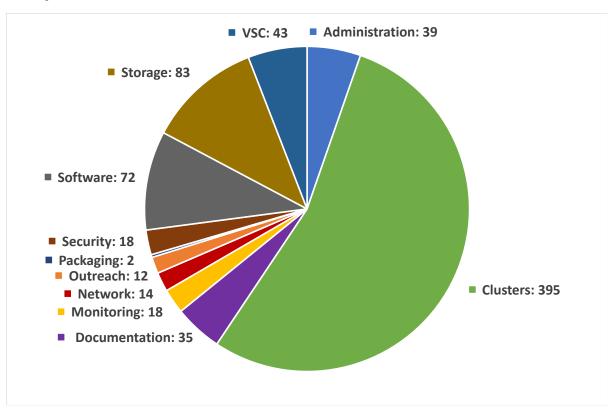
Everyone can get access to the Tier-2 compute clusters of Ghent University. The conditions that apply depend on the affiliation of the researcher. Researchers affiliated with Flemish university associations (constituting the Flemish Supercomputer Center – VSC) get free access. Other Flemish or federal research institutes can get access for their researchers on a contract basis, with 1500 euro worth of compute time given out free of charge per year. Industry can buy compute time in a pay-what-you-use model.


Breakdown of consumed compute time by affiliation		
UAntwerpen	0.251%	
VUB	0.000%	
UGent	97.647%	
KULeuven / UHasselt	1.886%	
Other research institutes	0.216%	
Industry	0.001%	
Total	100.000%	

Master or Bachelor students enrolled in a Flemish university association can also get access to the Tier-2 compute clusters of Ghent University. Several teachers effectively rely on the infrastructure for training purposes, stimulating several students to become a user. Master students often rely on the infrastructure to perform research included in their Master thesis.

Number of students/researchers versus breakdown of consumed compute time by category				
Ma/Ba students 118 0.001%				
Researchers 484 99.999%				
Total 602 100.000%				

2.2.2.3 Consumed compute time versus research field


These are the research fields that users enter when requesting their account to access HPC-UGent resources. No doubt, there is overlap between certain fields and some users have not listed a research field at all. As such, the above distribution merely gives an indication of the top research fields that actively use scientific computing.

3 DEVELOPMENT AND MAINTENANCE

To maintain compute infrastructure capabilities, HPC-UGent continuously performs maintenance works. On hardware, such as installing new components or replacing broken ones, and on software, ranging from the operating system to higher-level software that enables services directly available to the end user. To report, plan and follow-up hardware and software bugs, issues or developments, these are managed with the aid of a tracker, JIRA. Larger developments, grouping many individual or interrelated issues are grouped as 'Epics'. These effectively track the main development and maintenance projects that HPC-UGent executes. Github services are used to facilitate software development and Jenkins services for continuous integration. The number of 'commits' by HPC-UGent staff to the various repositories is indicative of the effort spent over the last year.

3.1 Number of JIRA issues resolved in 2018, grouped per main component

3.2 Projects finalized in 2018

In a see all	Title	0
Issue #	Title	Summary
HPC-346	reboot-on-idle script/master cron	Automation of node management.
HPC-1797	userwiki page way out of date	Outdated userwiki was scrapped, after alle relevant information was ported to user manual.
HPC-5435	Account page: non- standard users	Adjustments to VSC accountpage to better accomodate non-academic users.
HPC-5864	Ceph next stage: ncm- ceph and new ceph features	Implementation of new features in Ceph, in run-up to new Ceph storage.
HPC-6181	Issues since running MOAB9.0.1 +Torque6.0.2	Wrap up outstanding support issues for Moab, in run-up to switch to Slurm.
HPC-6184	Our portal needs a major rewrite + cleanup	Rewrite and restructuring of our website https://www.ugent.be/hpc.
HPC-6630	regular maintenance 2017Q4	General maintenance of all Tier2 clusters and servers. Started end of 2017, last bits finished in 2018.
HPC-6677	Evaluate potential Moab/Torque replacements	Examine usability of other job schedulers, including Slurm.
HPC-6703	Tier 2 site update 2018Q2	General maintenance of all Tier2 clusters and servers.
HPC-6778	Install new tier2 infrastructure	Installation and integration of clusters skitty and victini.
HPC-6810	Extend existing ceph storage	New additional Ceph storage.
HPC-6855	Set up new scheduler to replace Moab + Torque	Set up new job scheduler Slurm on skitty and victini.
HPC-6906	Tier2 site update 2018Q4	General maintenance of all Tier2 clusters and servers.
HPC-6943	Support for Victini Skitty clusters	Support actions for new job scheduler Slurm on skitty and victini.
HPC-7071	Gpfs nodes to 7.5	Update of GPFS on shared storage.
HPC-7199	Storage maintenance: move to gpfs 5.x	Update of GPFS on shared storage.
HPC-7225	Move to ceph mimic	Implementation of new features in Ceph.
HPC-7257	replace misty with rundeck	Automation of node management.
HPC-346	reboot-on-idle script/master cron	Automation of node management.
HPC-1797	userwiki page way out of date	Outdated userwiki was scrapped, after all relevant information was ported to user manual.

3.3 Github commits in 2018 by HPC-UGent staff, per repository

github.com/hpcugent			
Repository	#commits		
vsc_user_docs	356		
vsc-administration	118		
vsc-mympirun	47		
vsc-base	36		
vsc-utils	25		
vsc-filesystems	11		
vsc-ldap	1		

github.ugent.be/hpcugent				
Repository	#commits			
es-scripts	29			
clusterbuildrpm-server	28			
vsc-backup	15			
reposnap	3			
ONEconnector	1			
vsc-rpms	1			
vsc-project	1			
vsc-cloud	1			

github.com/easybuilders			
Repository	#commits		
easybuild-easyconfigs	846		
easybuild-framework	393		
easybuild-easyblocks	174		
easybuild	89		

github.com/quattor	
Repository	#commits
configuration-modules-core	171
release	29
pan	17
CCM	10
CAF	8
ncm-ncd	7
aii	7
maven-tools	6
template-library-core	6
configuration-modules-grid	5
template-library-standard	3
quattor.github.com	2
ncm-lib-blockdevices	1

4 TRAINING AND SUPPORT

4.1 Training overview and evaluations

4.1.1 Introduction to HPC @ Ghent University

Trainer: Kenneth Hoste (HPC-UGent)

Date	#participants
17/01/2018	13
28/03/2018	21
12/09/2018	19
09/11/2018	36

Satisfaction scores ¹	
Training content	98%
Lecturer	99%
Hands-on	60%

Selected suggestions for improvement and remarks:

- Maybe make a step-by-step tutorial video?
- This is a very good manual, the courses are a good way of learning to use HPC.
- Give more example exercises and problems with solutions afterwards.
- This tutorial is great!
- Provide some exercises that participants could make next to the examples in the slides.

¹ These satisfaction scores indicate positive response of evaluation respondents on questions "The presentation gave me all the information I wanted" (Yes or Mostly), "The lecturer presented well" (Strongly Agree or Agree) and "The hands-on session was in accordance with my expectations" (Strongly agree or Agree).

Annual review HPC-UGent

4.1.2 Introduction to Linux

Trainer: Kenneth Hoste (HPC-UGent)

Date	#participants
21/02/2018	20

Satisfaction scores ¹	
Training content	100%
Lecturer	100%
Hands-on	93%

Selected suggestions for improvement and remarks:

- Short pause in the afternoon.
- Ice breaker in the morning self-introduction for all participants (department, why attending the course, etc.).
- Hands-on exercises that participants can submit online or email.

4.1.3 Specialist Workshops in Scientific Computing – Introduction to multithreading and OpenMP

Trainer: Reinhold Bader (Leibniz Supercomputing Centre LRZ, Germany)

Date	#participants
22-23/05/2018	16

Satisfaction scores ²	
Training content	100%
Lecturer	100%

Selected suggestions for improvement and remarks:

- Good lecturer, up to date course
- The course covers a too wide range of topics. Concentrate on features that are most commonly used?
- Very competent and well-spoken lecturer.

4.1.4 Specialist Workshops in Scientific Computing – Introduction to MPI

Trainer: Jan Fostier (INTEC, IDLab, UGent & imec)

Date	#participants
30/05/2018	16

Satisfaction scores ²		
Training content	100%	
Lecturer	100%	

Selected suggestions for improvement and remarks:

- Perfect introduction to MPI
- The methodology used by the lecturer was excellent.

² These satisfaction scores indicate positive response of evaluation respondents on questions "In general I judge this course as" (Very good or Good) and "The lecturer has the specialized expertise required to teach this course" (Fully agree or Agree).

TITLE
Annual review HPC-UGent

4.1.5 Specialist Workshops in Scientific Computing - Modern Fortran

Trainer: Reinhold Bader (Leibniz Supercomputing Centre LRZ, Germany)

Date	#participants
3-4/10/2018	16

Satisfaction scores ²		
Training content	100%	
Lecturer	100%	

Selected suggestions for improvement and remarks:

- The course met the expectations of the attendees and has lots of relevant examples.
- Expert in the field, good exercises
- The pace of course was sometimes a bit fast to follow thoroughly.

4.1.6 Suggestions from participants for new training sessions

- Intel inspector and analyzer
- Code optimization
- Code performance profiling
- Fortran Co-arrays
- Advanced Linux scripting
- Python
- Commercial software like ASPEN+
- Exception handling in Fortran
- Object oriented programming in Fortran
- Dynamic Link Libraries
- Best practices to construct Fortran projects
- Parallelization (C, C++)
- High-performance programming (C, C++)
- Porting of Fortran to C

4.2 Lectures and community meetings

4.2.1 Presentations by Todd Gamblin & Georg Rath

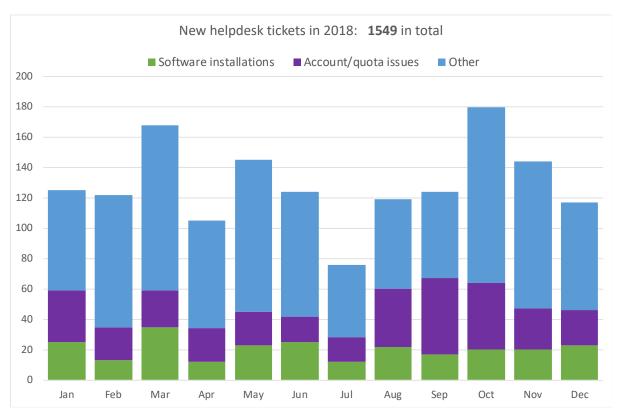
Lecturers:

Todd Gamblin (Lawrence Livermore National Laboratory, UK) Georg Rath (National Energy Research Scientific Computing Center, US)

Topics:

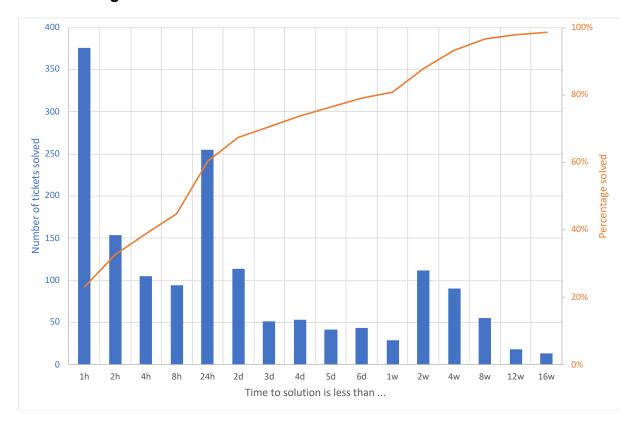
- The Spack Project: State of the community and roadmap
- Performance Analysis is Data Science
- Slurm in Action: Batch Processing for the 21st Century

Date	#participants	
1/02/2018	10	

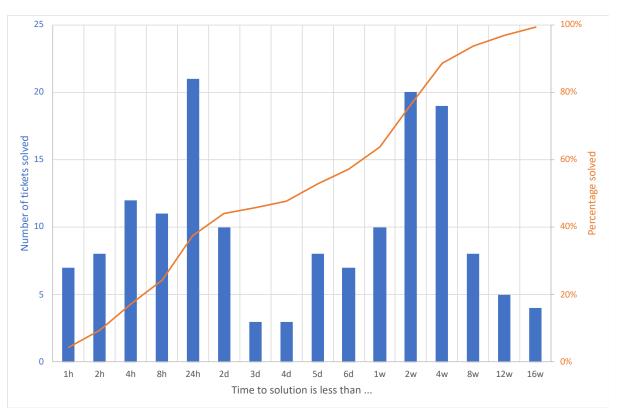

4.2.2 Tier1 information session

Learn more about the VSC Tier-1 infrastructure and how to write a good proposal.

Date	#participants	
9/01/2018		9

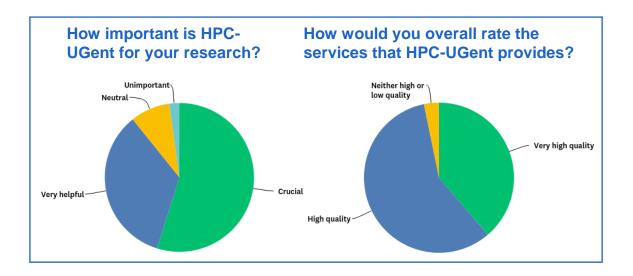

4.3 Helpdesk

4.3.1 Number of new tickets per month



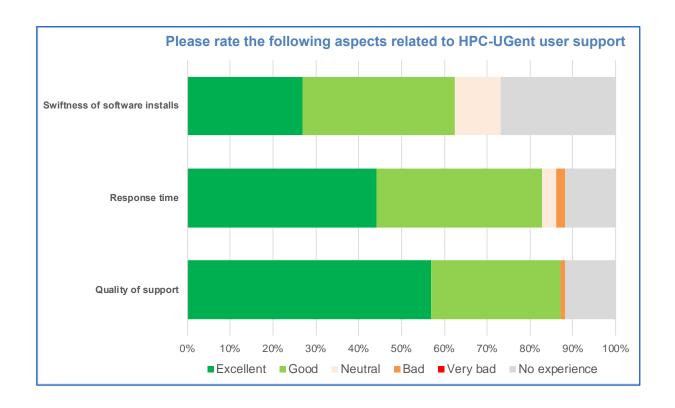
4.3.2 Average time to resolution - overall

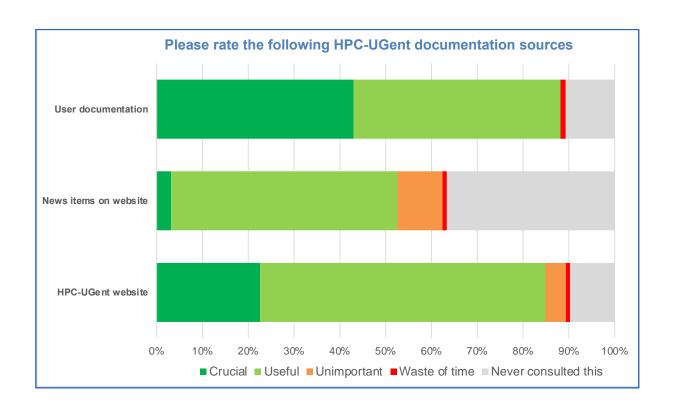
4.3.3 Average time to resolution – software installation requests



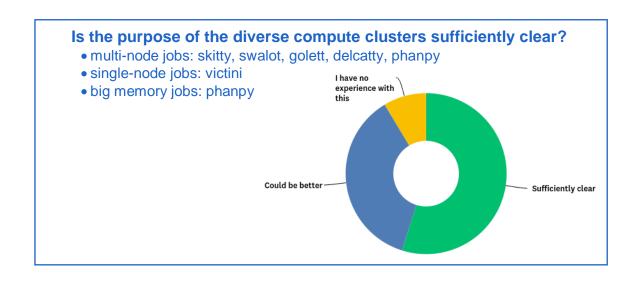
4.4 User evaluation

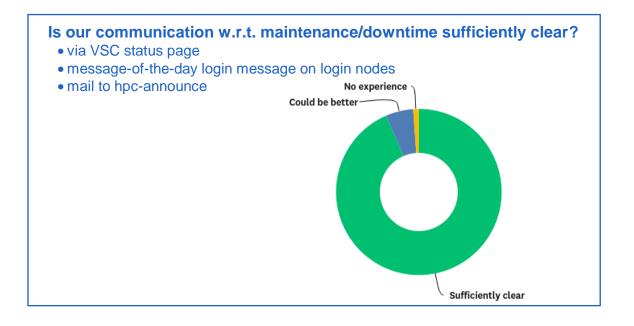
In order to improve HPC-UGent services, all current users were asked to complete a user survey. This survey was anonymous, short (average completion time 3 minutes) and in all 93 users responded. A selection of questions and responses is shown.

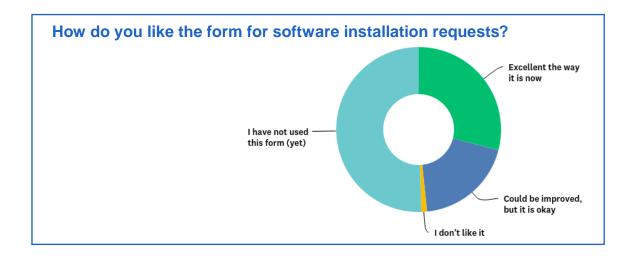

How often do you use the HPC-UGent scientific computing infrastructure?				
#responses %				
On a daily basis	30	32%		
(More than) once per week	28	30%		
(More than) once per month	20	22%		
1-2 times per year or less	15	16%		



How important is HPC-UGent for your research?				
	#responses	%		
Crucial - I can't do my research without	51	55%		
Very helpful - It allows me to do my research at a faster pace and at a higher level	32	34%		
Neutral	8	9%		
Unimportant - I can just as well do my research in another way	2	2%		
Unnecessary - I don't need it at all to do my research	0	0%		


How would you overall rate the services that HPC-UGent provides?			
	#responses	%	
Very high quality	36	39%	
High quality	54	58%	
Neither high or low quality	3	3%	
Low quality	0	0%	
Very low quality	0	0%	





Would your research benefit from specific IT hardware or services that HPC-UGent currently does not provide?					
#responses %					
No – The current compute platform suffices	49	53%			
I don't know 32 34%					
Yes – I need specific hardware/services 12 13%					

- GPU
- Seamless integration with a big data repository
- More high-memory nodes
- Longer wall-clock time
- Dedicated servers for compiling and testing our code
- GUI
- A profiling service

How could we further improve HPC-UGent services?

Documentation

- Expert items from the (defunct) userwiki, e.g. compile Java programs on login nodes
- Documentation better geared towards beginners
- Update and expand HPC manual
- More hands-on experience
- Monthly Q&A session
- Graphical scheme of clusters and storage organization

User experience

- Shorter queue times
- Way to estimate queue time
- Quota overview page of all clusters, including Tier-1 scratch quota
- Longer wall-clock time

Infrastructure

- More clusters
- GPU

Data

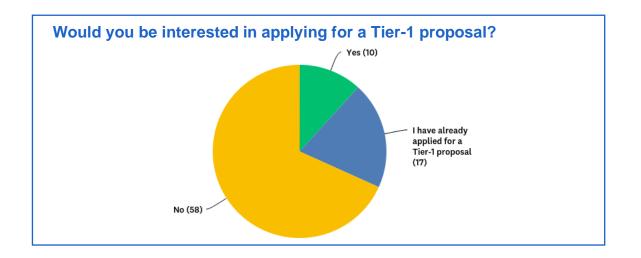
- Faster data transfer across campus
- Easier sharing of data between users collaborating on a project
- Lower latency on shared file systems
- VSC-wide shared storage capabilities, shared between institutes
- More storage volume per user

Training

More programming courses

Policy

Higher priority for multi-node jobs on MPI clusters


Software

Possibility to perform MATLAB calculations on multiple nodes

User support

- Speed up software installation
- Debugging and profiling of codes as a service

User encouragements

"Keep up the good work and please continue as you have been doing the past years!"

"HPC-UGent services are awesome @!"

"Overall I am delighted by the service of the HPC team! Thanks for the support!"

"The user support via email is excellent!"

"Thanks for your good job in keeping the clusters up."

5 OUTREACH

5.1 Within Ghent University

Date	Event
5/02/2018	Information session FWO call 2018 for Research Grants, Research Projects and SBO
29/03/2018	HPC introduction and UGent datacenter tour for students in field of study of 'networks and IT' (Sint-Lievenscollege Business, Ghent)
5/11/2018	UGent datacenter tour for Zeus WPI, the student association for Computer Science at Ghent University.

5.2 To policy makers, industry and general public

Date	Event
10-11/04/2018	Participation in CESAER Task Force Research Infrastructures (TFRI) visit to Politecnico di Milano Milano, Italy http://www.cesaer.org/en/projects/task-force-research-infrastructures-tfri
29-30/09/2018	Participation in Open Days event at the Royal Meteorological Institute of Belgium (KMI)
19/11/2018	Innovation through supercomputing - Laboratory of Chemical Technology, Ghent University Video-testimonial in collaboration with HPC-UGent https://www.youtube.com/watch?v=hlH_s3cB6oQ

Highlighted event:

Open Days event at the Royal Meteorological Institute of Belgium (KMI) (29-30 September 2018)

Our cluster-on-wheels 'ditto' featured at the Open Days event at the KMI.

It attracted considerable attention as eye-catcher (and noise-maker) at the climate center exhibition.

In collaboration with the Atmospheric Physics research group of UGent, KMI frequently engages in computational research, both at HPC-UGent and at the Tier-1 level.

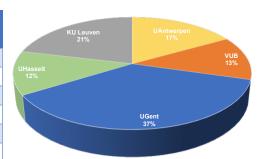
Links:

- KMI: http://www.meteo.be/
- Atmospheric Physics research group of UGent: https://www.ugent.be/we/physics-astronomy/en/research/atmophys

5.3 Within international HPC community

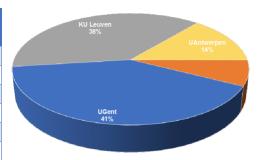
Date	Event
29-31/01/2018	Workshop on Cloud Services for Synchronisation and Sharing Krakow, Poland http://cs3.cyfronet.pl
30-31/01/2018	3 rd EasyBuild User Meeting Amsterdam, the Netherlands https://github.com/easybuilders/easybuild/wiki/3rd-EasyBuild-User-Meeting
3-4/02/2018	FOSDEM'18 Co-organisation of HPC, Big Data and Data Science devroom Brussels, Belgium https://archive.fosdem.org/2018/schedule/track/hpc , big data https://archive.fosdem.org/2018/schedule/track/hpc , big data https://archive.fosdem.org/2018/schedule/track/hpc , big data
18-19/04/2018	Spectrum Scale (GPFS) User Group 2018 London, UK https://www.spectrumscaleug.org/spectrum-scale-uk-april-2018-report/
25-27/04/2018	25th Quattor workshop Orsay-Ville, France https://indico.cern.ch/event/718567/overview
24-28/06/2018	ISC High Performance 2018 Frankfurt, Germany https://www.isc-hpc.com
25-26/09/2018	Slurm User Group meeting 2018 Madrid, Spain https://slurm.schedmd.com/meetings.html
22/10/2018	EasyBuild HPC-SIG workshop Birmingham, UK https://www.eventbrite.com/e/easybuild-hpc-sig-workshop- tickets-51023835666
29-31/10/2018	26 th Quattor Workshop Ghent, Belgium https://indico.cern.ch/event/757868/

6 **BUDGET**


Budget line	UGent budget statement	Income
Central compute infrastructure	1.200.000	
Central compute infrastructure (wages)	775.000	
Central compute infrastructure training and events	50.000	
FWO subsidy for personnel (Tier1+2)		728.333
FWO subsidy for investment and operations		1.198.150

7 TIER-1 USAGE

Every year, three calls are open to apply for access to the Tier-1 system of the Flemish Supercomputer Center (VSC). HPC-UGent stimulates and assists researchers as much as possible to apply for access. The tables and graphs below give insight in the number of proposals (#proj) and the awarded compute time (#nd, expressed in Tier1 nodedays), listed per institute.


Call 1 5/02/2018	Requested		Grant	ed
Institute	#proj	#nd	#proj	#nd
UAntwerpen	4	19540	3	10950
VUB	2	8245	2	8245
UGent	9	28720	8	23856
UHasselt	2	8205	2	8205
KU Leuven	7	18286	5	13834

Call 2 4/06/2018	Requested Granted			ed
Institute	#proj	#nd	#proj	#nd
UAntwerpen	2	8036	2	8036
VUB	2	6050	1	1000
UGent	18	51687	17	48115
UHasselt	0	0	0	0
KU Leuven	4	8002	4	8002

KU Leuven 12%	UAntwerpen 12%	
UGent 74%		

Call 3 1/10/2018	Requested		Grant	ed
Institute	#proj	#nd	#proj	#nd
UAntwerpen	3	14424	2	7862
VUB	3	9409	2	4180
UGent	7	29317	6	22768
UHasselt	0	0	0	0
KU Leuven	8	22735	7	21435

Percentage of awarded compute time, listed per institute per call

8 USER IN THE SPOTLIGHT

Dr Christophe Vandeviver (FWO, UGent-IRCP) uses supercomputing to study how offenders behave and better understand crime and offending. The HPC-UGent facilities proved crucial to examine how burglars in Flanders select a house to burglarize.

Christophe Vandeviver is a senior Postdoctoral Fellow Fundamental Research of the Research Foundation Flanders (FWO) at the Institute for International Research on Criminal Policy, a Ghent University based research group that conducts international research into criminal policy related issues. As an International Research Fellow, he is also affiliated with the Netherlands Institute for the

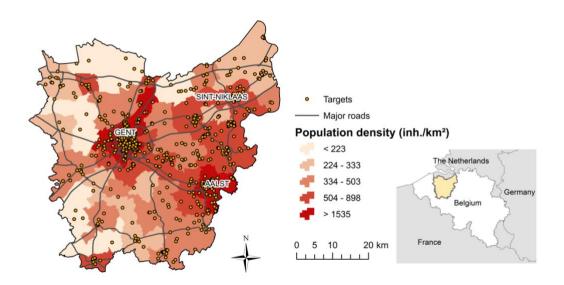
Study of Crime and Law Enforcement, a world-leading Amsterdam-based criminology research institute that conducts fundamental interdisciplinary research into the interaction between crime and law enforcement.

"Understanding where burglars offend and how burglars decide on a suitable target for their burglary is a major concern to law enforcement and society. Burglaries do not only result in a material loss but also have a significant psychological impact on the victim. If we better understand what makes a house attractive for a burglar, we can improve crime prevention strategies and target those houses most at risk of burglary."

"Previous research examined burglary target selection strategies exclusively at the neighborhood level and tried to find out why certain neighborhoods are more attractive for burglars by systematically comparing large samples of neighborhoods. But burglars ultimately select a house to burglarize. Therefore, I really wanted to systematically examine burglary target selection at the house level."

"It is not surprising that most previous studies focused on neighborhoods because the challenge with studying burglary target selection at the house-level is data. Not only is quality house-level data on burglary rare, but when you have data available it quickly becomes too much to handle. The HPC-UGent resources proved crucial to help me handle the amount of data available and dramatically reduce my model computing times."

"In my research, I have used police recorded crime data on a sample of 650 residential burglaries and Land Registrar data on more than 500.000 residences in East Flanders. For each of these burglaries, I have modeled which house characteristics of those 500.000 residences made them stand out for a burglar. While this might not seem much, this results in 325 million comparisons that must be simultaneously solved. Luckily, I managed to reduce this to approximately 41 million comparisons. But even after applying methods to reduce the number of



TITLE
Annual review HPC-UGent

comparisons, the data still proved too large to be handled on my laptop. Moreover, it would simply take too much computing time."

"In the end, I established that terraced houses, houses without a garage, houses that have not been outfitted with a central heating and/or air-conditioning system and houses nearby burglars' residences are more significantly likely to be selected for burglary."

"As part of my senior FWO Postdoctoral Fellowship, I am currently extending my models to also include neighborhood characteristics. I am particularly eager to find out how the interaction of neighborhood and residence characteristics influence the decision of a burglar to burglarize a particular house. Again, the HPC-UGent resources will prove essential to estimate these models."

Links

IRCP (http://www.ircp.org)

Publications

Christophe performed his research as part of his PhD dissertation 'Understanding variation in distance to crime from within the rational choice perspective', supervised by Prof. Tom Vander Beken and Dr. Stijn Van Daele. (http://hdl.handle.net/1854/LU-5954294)

His research is published in Applied Geography:

Vandeviver, C., Neutens, T., Van Daele, S., Geurts, D., & Vander Beken, T. (2015). A Discrete Spatial Choice Model of Burglary Target Selection at the House-Level. Applied Geography, 64, 24-34. doi:http://dx.doi.org/10.1016/j.apgeog.2015.08.004 (http://hdl.handle.net/1854/LU-6914894)

Christophe also features in an engaging video testimonial for the Flemish Supercomputer Center (VSC):

https://www.linkedin.com/feed/update/urn:li:activity:6467708105542107136

