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Outline of the Course

Deep Learning Fundamentals & GPGPUs

Convolutional Neural Networks & Tools
Convolutional Neural Network Applications
Convolutional Neural Network Challenges
Transfer Learning Technique

Other Deep Learning Models & Summary
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Outline

= Deep Learning Foundations

Biological Inspiration & Perceptron Limits
Artificial Neural Networks & Backpropagation
Application Examples in Science & Industry
Deep Learning Properties & Feature Learning
Parallel Computing Methods & Architectures

= GPGPUs & Tools

Terminology & Many-core Architecture
GPU Acceleration

NVidia & CUDA Examples

OpenCL Programming Models

Usage Models & Applications
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Deep Learning Foundations

O
O 0
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Learning Models derived from Biological Inspiration

" Biological Inspiration (cf. Machine Learning Tutorial last week)

Humans learn (a biological function) 2 machines can learn
Means we are interested in ‘replicating” the ‘biological function’

= Approach: Replicating the ‘biological structure’

Neurons connected to synapses (large number)

Action of neurons depends on ‘stimula of different synapses’
Synapses have ‘weights’

Principle: neurons are in the following like a ‘single perceptron’
Neural network: put together a ‘bunch of perceptrons’ in layers

Deep learning network: create many layers with ‘smart functionalites’

[1] Neural Networks
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Solution Tools: Artificial Neural Networks Learning Model

Unknown Target Distribution P (y ‘ X)
target function f .4 — Y plus noise

(ideal ftj.nction)

<_____-_-_-

Training Examples

(X,,9,), -

’ (XN7 yN)

(historical records, gropndtruth data, examples)

\

Learning Algorithm (‘train a system?)

x = (z

19 °°

Probability Distribution

P on X

!

Lo e— x

Error Measure

>e(xX)<€

A 4 /

Final Hypothesis

A <

(Perceptron I.’?arning Algorithm)

Hypothesis Set

H={h}; ge™H

(Linear Perceptron)

g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset



Perceptron Learning Algorithm — Revisited

= When: If we believe there is a linear pattern to be detected

= Assumption: Linearly seperable data (lets the algorithm converge)
= (cf. Machine learning tutorial last week)

Training Examples

L

G

(xlayl)a---a($NryN) ®

(existing dataset alreazliy being labelled as +1/-1)

A4

Learning Algorithm (‘train a system?) u
A h(x) = sign

(Perceptron’tea rning Algorithm)

h(x) = sign ((
Hypothesis Set '

H={h}; geH

h(X) = Sign(WTX) (vector notation, using transpose)
(Perceptron model)

(transpose = reflecting elements along main diagonal)
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Exercises
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Practice: Non-linearly Seperable Data

= More often in practice, requires a ‘soft threshold’

= ‘soft-threshold means allowing ‘some errors’ being ‘overall’ better
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Simple Application Example: Limitations of Perceptrons

= Simple perceptrons fail: ‘not linearly seperable’

(Idea: instances can be classified using

0 0 -1 two lines at once to model XOR)
1 0 1
0 1 1
1 1 -1
Labelled Data Table X
1
N\
X,
X,
Decision Boundary Two-Layer, feed-forward Artificial Neural Network topology
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Multi Layer Perceptrons — Artificial Neural Networks

= Key Building Block (decision boundary)
= Perceptron learning model . w °:;3:t \'
= Simplest linear learning model ‘%f
" Linearity in learned weights w, % o Z )
= QOne decision boundary X, il .

function)

input nodes X, (bias)
(perceptron model)

= Artificial Neural Networks (ANNs)

= Creating more complex structures

* Enable the modelling of more complex (input
relationships in the datasets layer)

= May contain several intermediary layers
(hidden

» E.g.2-4 hidden layers with hidden nodes  |ayer)

= Use of activation function that can
produce output values that are (output
. . .. layer)
nonlinear in their input parameters
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Solution Tools: Artificial Neural Networks Learning Model

Unknown Target Distribution P (y ‘ X)
target function f .4 — Y plus noise

(ideal ftj.nction)

<_____-_-_-

Training Examples

(X,,9,), -

’ (XN7 yN)

(historical records, gropndtruth data, examples)

\

Learning Algorithm (‘train a system?)

x = (z

19 °°

Probability Distribution

P on X

!

Lo e— x

Error Measure

>e(xX)<€

A 4 /

Final Hypothesis

A <

(Backprcfaagation)

Hypothesis Set

H={h}; ge™H

(Artificial Neural Networks)

g~ f

(final formula)

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Elements
that we derive
from our skillset
and that can be
computationally
intensive

Elements
that we
derive from
our skillset



Artificial Neural Networks (ANN) — Layers & Nodes

Input
Layer

Hidden
Layer

Output
Layer

Think each hidden node as a
‘simple perceptron’ that each
creates one hyperplane

Think the output node simply
combines the results of all the
perceptrons to yield the
‘decision boundary’ above

Feed-forward neural network:
nodes in one layer are
connected only to the nodes
in the next layer (‘a constraint
of network construction’)




ANN - Learning Algorithm & Optimization

" Determine a set of weights w that

‘minimize the total sum of squared errors’:

Sum of squared errors depend on w, because predicted
class y is a ‘function of the weights’ assigned to the

Hidden
Layer

Output
Layer

hidden and output nodes

Lo o
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y = sign (w - x)

Linear perceptron

»

N
1
E(w) =E§:|(y,- _Vluz
i=1

L4

/
U4
4
/4

Error term, associated
with each hidden node

Error function is quadratic in
its parameters and a

global minimum can

be easily found

Other objective / loss
functions possible, e.g.
categorical cross-entropy




Gradient Descent Method (1)

(x)|

(finding this peint x is the
goal of gradient descent)

(increasing
(decreasing values)

values)

negative

positive
gradient

gradient

(stationary)

X, zero gradient X, X; X

f(x)|

(minimization: substract gradient term
because we move towards local minima)

position a (current position)
(the derivative of f
with respect to a)

b=a-~Vf
?’Y (a)

(one step towards
local minimum)

position b
(next position)

(old position (gradient term s
before the step) is steepest ascent) ] . .
; [6] Big Data Tips,
(new position  (weighting factor known‘ as stgp-size, l R Gradient Descent
after the step) can change at every iteration, -
also called learning rate) Xy X X
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Gradient Descent Method (2)

= Gradient Descent (GD) uses all the training samples available for a step within a iteration
=  Stochastic Gradient Descent (SGD) converges faster: only one training samples used per iteration

b=a-~V f(a) b:a—fy%f(a) b=a—~v di; f(a)

(all slightly different notations, but often used in different literature for same derivative term)

f(x) <=0 >= 0
d d
Xinext = X1 — 7 E f(x1) Xonext = Xg — 7 d—XQ f(x,)
(negative derivative (positive derivative
at point x,) at point x,)

) Xt = X; — 7 *negative number

& X200t = X2 — 7 * positive number
positive

negative
gradient

gradient

Xy - Xinext

* » > [6] Big Data Tips,
Xynexe CHR X, X Gradient Descent
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ANN - Backpropagation Algorithm (BP) Basics

" One of the most widely used algorithms for supervised learning

= Applicable in multi-layered feed-forward neural networks

= ‘Gradient descent method’ can be used to learn the weights
of the output and hidden nodes of a artificial neural network

known

’"\
P d \\
\\
X 8 W3, N il "==17
— 1>§
1 3 W;s;
Wy,
: y
W3, W
. 54
Wy,

[3] Introduction to Data Mining

Hidden nodes problem:
computing error term
hard: d E / 3 wj

Their Output values are
unknown to us (here)...

A 4

< Initially unknown =
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The backpropagation
algorithm solves exactly
this problem with two
phases per iteration(!)

known




ANN - Backpropagation Algorithm Forward Phase

1. ‘Forward phase (does not change weights, re-use old weights)’:

=  Weights obtained from the previous iteration are used to compute the
output value of each neuron in the network (‘initialize weights randomly’)

=  Computation progresses in the ‘forward direction’,
i.e.Joutputs ‘out’]of the neurons at level k are computed prior to level k+1

= Use corresponding
‘activation function’

U but with ‘old weights’
W31 ]
X Ny )@‘ L
NG }9 )
oul/ Ws2 u
X, n, " "Ny (applicable for
42 i
Layer Cayer multiclass to)
K K+1
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ANN - Backpropagation Algorithm Backward Phase

2. ‘Backward phase (‘learning’” = change the weights in the ANN)’:
=  Weight update formula is applied in the ‘reverse direction’
=  Weights at level K + 1 are updated before the weights at level k

= |dea: use the errors for neurons at layer k + 1 to estimate errors
for neurons at layer k

v, < - 2T
w; wj )

X ‘/n‘\ W3, ,@\ weight update formula
1 \lj\ Wgj of the ‘gradient descent method’
Wi \
)@_, y Now that can compute
/ the error one-by-one
W3,
VA R Ws, A T
% N I L E, (w)+ W
42
Layer Layer

(regularization method ‘weight decay’
or ‘weight drop’ is used in neural networks‘)

K K+1
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[Video] Towards Multi-Layer Perceptrons

:

|

_ Connection
~ Weight

[2] YouTube Video, Neural Networks — A Simple Explanation
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High-level Tools — Keras

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks

= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dense (units,

activation=None,

use bias=True,

kernel initializer='glorot uniform',
bias initializer='zeros',

kernel regularizer=None,

bias regularizer=None,

activity regularizer=None,

kernel constraint=None,
bias constraint=None)

keras.optimizers.SGD(1lr=0.01,

momentum=0.0,
decay=0.0,
nesterov=False)

Tool Keras supports inherently
the creation of artificial neural
networks using Dense layers
and optimizers (e.g. SGD)

Includes regularization (e.g.
weight decay) or momentum

K e r a S [19] Keras Python Deep Learning Library




Methods Overview — Focus in this Lecture

Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

Classification

)

Groups of data exist =
New data classified =
to existing groups

Lecture 1 — Deep Learning Fundamentals & GPGPUs

Clustering Regression
No groups of data exist = |dentify a line with
Create groups from a certain slope
data close to each other describing the data



ANN — Application Example Remote Sensing ‘SALINAS’

= Hyperspectral data (AVIRIS sensor)

= ‘Salinas’ Valley, California

= Spectral resolution: 224 bands

= Spatial resolution: 3.7 meter pixels

(DAFE = Discriminant Analysis Feature Extraction;
SDAP = Self Dual Attribute Profile)

224 bands

DAFE (14 Feat.)

v

SDAP (243 Feat.)

DAFE (14 Feat.)

>{ ANN LEARNING

TRAINING SAMPLES

T

GROUNDTRUTH

v

[ Broceohi_grean_wesds 1
I Brocech_grean_wesds I
B Fallow

[ Faliow_rough_plow

[ Fallow_smooth

B subble

[ celery

[ Grapes_untrsined

[ 5ail_vineyard_develap
B Com_senesced_gresn_weeds
D Lettuce romaine_ 4 weeks
. Lettuce_romaing_5_weeks
[ Lettuce_romaine_6_wweks
B Lettuce_romsine_7T_wesbs
[[] vimeyard_untrained

[] Vineyard_vertical_trellis

(OA = Overall Accuracy; AA = Average Accuracy;
K = Kappa coefficient obtained by classifiers)

TEST SAMPLES

Original DAFE DAFE_SDAP_DAFE
(204 Feat.) (14 Feat.) (14 Feat.)
¢ RF SVM ANN RF SVM | ANN RF SVM | ANN
ANN PREDICTION AA 91.46 93,11 84,73 94,38 | 94,23 | 92,92 | 97,68 | 98,02 | 95,84
OA 87.75 89,12 92,27 89,89 | 88,22 | 94,91 | 96,02 | 96,77 | 97,16
K 86.34 87,87 91,37 88,72 | 86,89 | 94,32 | 95,57 | 96,4 | 96,84
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ANN - Application Example in Industry

= ~2009 - Netflix Prize Challenge 2009
= Data: Netflix company provided data to learn from previous movie rentals
= Challenge: Improve Netflix in-house movie recommender system
= Prize: 1.000.000 US S for team with 10% improvements
= Approaches: Machine learning algorithms and collaborative filterings
= Winner: Prize received by working with Artificial Neural Network (ANNs)

NETELIX

Congratulations!

[5] A. Téscher and M. Jahrer,
‘The BigChaos Solution to the
Netflix Grand Prize’, 2009

Lecture 1 — Deep Learning Fundamentals & GPGPUs



ANN - Handwritten Character Recognition MNIST Dataset

* Metadata
= Subset of a larger dataset from US National Institute of Standards (NIST)
= Handwritten digits including corresponding labels with values 0 to 9

= All digits have been size-normalized to 28 * 28 pixels
and are centered in a fixed-size image for direct processing

* Not very challenging dataset, but good for experiments / tutorials

OHZRANZITNH I
= Dataset Samples g%%%%%%%%%
= Labelled data (10 classes) %}1 % % % % % I% %} % %

= Two separate files ~ - :
for trairrw)ing and test % % % % % % %
= 60000 training samples (~47 MB) Zl 1 [el 3182 /]2 7
= 10000 test samples (~7.8 MB) % % % % % %
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MNIST Dataset for the Tutorial

» When working with the dataset

Dataset is not in any standard image format like jpg, bmp, or gif
File format not known to a graphics viewer
One needs to write typically a small program to read and work for them

Data samples are stored in a simple file format that is designed for
storing vectors and multidimensional matrices

The pixels of the handwritten digit images are organized row-wise with
pixel values ranging from O (white background) to 255 (black foreground)

Images contain grey levels as a result of an anti-aliasing technique used
by the normalization algorithm that generated this dataset.

" Available already for the tutorial

Part of the Tensorflow tutorial package and Keras tutorial package

# download & unpack MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mhist = input_data.read_data_sets("MNIST_data/", one_hot=True)
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Exercises
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Ugent Tier-2 Clusters

» Using Parallel Computing
= Compiled from open source
= Requires MPI library

" |ntended to be used
by High Performance
Computing system
(i.e. good interconnects)

" Jobruns
: = Use our ssh keys to get an
- US? of job access and useyresefvation
scripts = Put the private key into :
= Depend on your ./ssh directory (UNIX) . ﬂ'
scheduler = Use the private key with Vlaams Supercomputer Centrum
your putty tool (Windows)

[2] UGent Tier-2 Clusters
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UGent Tier-2 Clusters — GOLETT in the Tutorial

#nodes CPU Mem/node  Diskspace/node Network

Raichu 64 2 x 8-core Intel E5-2670 32GB 400 GB GbE
{Sandy Bridge @ 2.6 GHz)

DEICatt}' 160 2 x 8-core Intel E5-2670 64 GB 400 GB FDR InfiniBand
{Sandy Bridge @ 2.6 GHz)

Phanpy 16 2 x 12-core Intel E5-2680v3 512 GB 3x 400 GB (55D, striped) FDR InfiniBand
(Haswell-EP @ 2.5 GHz)

Golett 200 2 x 12-core Intel E5-2680v3 64 GB 500 GB FDR-10 InfiniBand
(Haswell-EP @ 2.5 GHz)

Swalot 128 2 x 10-core Intel E5-2660v3 128 GB 1TB FDR InfiniBand

[2] UGent Tier-2 Clusters

(Haswell-EP @ 2.6 GHz)
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UGent Tier-2 Clusters — Login & Module Swap Cluster/golett

adminuser@linux-8djg:~= ssh vscd2544@login.hpc.ugent.be
Last login: Wed Nov 22 17:15:00 2017 from pool-216-7-zam&@6.vpn.kfa-juelich.de

STEVIN HPC-UGent infrastructure status on Wed, 22 Nov 2017 22:15:01

cluster - full - free -

delcatty
golett
phanpy
raichu
swalot

ance and ed downtime can be found on
centrum.be/en/user-portal tem-status

[vscd2544@gligar@l ~]% module swap cluster/golett

The following have been reloaded with a version change:
1) cluster/delcatty == cluster/golett

Vlaams Supercomputer Centrum

[2] UGent Tier-2 Clusters
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Copy Files to your Home Directory

[vsc42544agligar03 deeplearning]$ pwd
/user/home/gent/vsc425/vsc42544 /deeplearning
[vsc42544@gligar03 deeplearningl$ 1s -al

total 1152

drwxrwxr-x 2 vsc42544 vsc42544 4096 Nov 29 22:28 .

drwx------ 6 vsc42544 vsc42544 4096 Nov 29 22:57 ..

-rwxrw-r--_1 vsc42544 ysc42544 581 Nov 29 19:27 job _ann _hidden.sh

-rwxrw-r-- 1 vsc42544 vsc42544 567 Nov 29 19:17 job_ann.sh

TW-T--T-- I V . Jo— T

-rwxrw-r-- 1 vsc42544 vsc42544 594 Nov 29 22:27 job_cnn.sh

-rwxrw-r-- 1 vsc42544 vsc42544 550 Nov 29 16:07 job_data.sh

-rwW------- 1 vsc42544 vsc42544 26 Nov 29 21:21 KERAS_MNIST_ANN.ell79465
-rwW------- 1 vsc42544 vsc42544 26 Nov 29 21:32 KERAS_MNIST_ANN_HIDDEN.el179466
-rwW------- 1 vsc42544 vsc42544 348173 Nov 29 21:32 KERAS_MNIST_ANN_HIDDEN.0l1179466
-rw-r--r-- 1 vsc42544 vsc42544 1571 Nov 29 21:20 KERAS_MNIST_ANN_HIDDEN.py

oY e 1 _vscd2544 yscd2544 216975 Noy 29 21:21 KFRAS MNTST ANN. 01179465
-rw-r--r-- 1 vsc42544 vsc42544 1396 Nov 29 21:10 KERAS_MNIST_ANN.py

-ftW-r--1-- I vscdZ583 vscadZ533 2170 Nov 29 2228 KERAS_MNIST_CNN.py

-rw-r--r-- 1 vsc42544 vsc42544 739 Nov 29 16:07 KERAS_MNIST_DATA.py

-rw-r--r-- 1 vsc42544 vsc42544 1418 Nov 29 16:41 TF_MNIST basic.py
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ANN —MNIST Dataset — Parameters & Data Normalization

import numpy np
from keras.datasets import mnist
from keras.models import Sequential

from keras.layers.core import Dense, Activation

from keras.utils import np_utils

# parameters
NB_CLASSES = 10
NB_EPOCH = 200
BATCH_SIZE = 128 e
VERBOSE = 1 [
N_HIDDEN = 128
OPTIMIZER = 'SGD'
VALIDATION_SPLIT = 0.2

-
=
-

-
———
-

-
—"
-

-
-

NB_CLASSES: 10 Class Problem

NB_EPOCH: number of times the model is
exposed to the training set — at each
iteration the optimizer adjusts the weights
so that the objective function is minimized

BATCH_SIZE: number of training instances
taken into account before the optimizer
performs a weight update

OPTIMIZER: Stochastic Gradient Descent
(‘SGD’) — only one training sample/iteration

# dataset 28 x 28 pixels = 784 reshaped

(X_train, y_train), (X_test, y_test) = mnist.load_datal()

RESHAPED = 784

X_train = X_train. reshape (60000, RESHAPED)
X_test = X_test.reshape (10000, RESHAPED)
X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

# normalization
X_train /= 255
X_test /= 255

# data output
print(X_train.shape[Q], 'train samples')
print(X_test.shape[0], 'test samples')

= Data load shuffled between
training and testing set

= Data preparation, e.g. X_train is
60000 samples / rows of 28 x 28
pixel values that are reshaped in
60000 x 784 including type
specification (i.e. float32)

= Data normalization: divide by
255 — the max intensity value
to obtain values in range [0,1]
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ANN — MNIST Dataset — A Simple Model

= The Sequential() = Dense() represents a = The non-linear Activation function
Keras model is a fully connected layer ‘softmax’ represents a generalization of
linear pipeline (aka used in ANNs that the sigmoid function — it squashes an n-
‘a stack’) of various means that each dimensional vector of arbitrary real
neural network layers neuron in a layer is values into a n-dimenensional vector of
including Activation connected to all real values in the range of 0 and 1 — here
functions of different neurons located in it aggregates 10 answers provided by
types (e.g. softmax) the previous layer the Dense layer with 10 neurons
- & ’4'
\\ "” "’,'
# convert vectors to\binary matrices of ,c?a'sses ‘,"
Y_train = np_utils.to_dategorical (}t'ln‘gin, NB_CLASSES) P e
Y_test = np_utils.to_ca%egoric’aj\{'y_test, NB_CLASSES) _o"
\ _o P
# Simple ANN model ,—" _
model = Sequential() ,—" c;oftmax(x)- — eXp(X,_,,)
model. add (Dense (NB_CLASSES, input_shape=(RESHAPED, ))) S ! 3 exp(x;)
model.add(Activation( 'softmax')) ) J
“model. summary ()
# Compilation
model.compile(loss='categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy']) -6 -4 -2 0 2 a 6
# Fit the model Ssao
history = model.fit(X_train, Y_train, batch_size=BATC’f—l:ﬂZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT)
\\\
# evaluation Sso . - - q .
score = model.evaluate(X_test, Y_test, verbose=VERBOSE) ‘~~ - LOSS funCtlon ISa mUItICIaSS |Ogarlthmlc
print(‘Test score:", scorel0]) loss: target is ti,j and prediction is pi,j
print('Test accuracy:', score[l]) Lz = _Zﬂci.j log(pi,j} g i P pLJ
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ANN — MNIST Dataset — Job Script

#!/bin/bash

#PBS -1 nodes=1:ppn=all
#PBS -1 walltime=1:0:0

#PBS -N KERAS_MNIST_ANN

module load TensorFlow/1.4.0-intel-2017b-Python-3.6.3
module load Keras/2.1l.1l-intel-2017b-Python-3.6.3

# make sure Keras is using TensorFlow as backend
export KERAS_BACKEND=tensorflow

export WORKDIR=$VSC_SCRATCH/${PBS_JOBNAME}_${PBS_JOBID}
mkdir -p $WORKDIR
cd $WORKDIR

export OMP_NUM_THREADS=1
python $PBS_0_WORKDIR/KERAS_MNIST_ANN.py

echo "Working directory was $WORKDIR"
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ANN —MNIST Dataset — A Simple Model — Output

[vsc42544@gligar03 deeplearningl]$ more KERAS_MNIST_ANN.ell79465
Using TensorFlow backend.

[vsc42544@gligar03 deeplearning]$ more KERAS MNIST ANN.o0l1179465

60000 train sampleé
10000 test samples

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 10) 7850
activation_1 (Activation) (None, 10) 0

Total params: 7,850
Trainable params: 7,850
Non-trainable params: 0

Train on 48000 samples, validate on 12000 samples

[vsc42544@gligar03 deeplearningl$ tail KERAS_MNIST_ANN.o01179465

48000/48000 [==============================] - 1s l2us/step - loss: 0.2760 - acc: 0.9227 - val_loss: 0.2747 - val_acc: 0.9234
32/10000 [..... .. e 1 - ETA: Os

3104/10000 [========>,, ... 0 00t iiarirr1s 1 - ETA: Os

6208/10000 [s================>,,.......... 1 - ETA: Os

9344/10000 [===========================>,,] - ETA: 0Os

10000/10000 [::::::::::::::::::::::::::::::] - 0Os 16u5/step

H 6
cy: 00,9221

Working directory was /user/scratch/gent/vsc425/vsc42544/KERAS _MNIST ANN_1179465.masterl9.golett.gent.vsc
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Artificial Neural Network — Feature Engineering & Layers

= Approach: Prepare data before Engeneer %

Transfrom
Reduce

= Classical Machine Learning
oot — - FESKIS—> NN

= Feature engineering (e.g. SDAP)

= Dimensionality reduction techniques ( e.g. DAFE: smaller, better data)
= Low number of layers (many layers computationally infeasible in the past)
= Very succesful for speech recognitition (‘state-of-the-art in your phone’)

hidden output

output ioc
node

layer layer layer

X,
y
[ activation X,
X. (bi function
i 1as
Input nodes 0 ( ) known < Initially unknown = known

(Perceptron model: designed after human brain neuron)  (Artificial neural network two layer feed — forward)
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Deep Learning — Feature Learning & More Smart Layers

Engeneer

" Approach: Learn Features Transfrom

Reduce

= (Classical Machine Learning -—>“

= (Powerful computing evolved)

" Deep (Feature) Learning --

= Very succesful for image recognition and other emerging areas

<2

= Assumption: data was generated by the interactions of many different
factors on different levels (i.e. form a hierarchical representation)

= QOrganize factors into multiple levels, corresponding to different levels
of abstraction or composition(i.e. first layers do some kind of filtering)

= Challenge: Different learning architectures: varying numbers of layers,
layer sizes & types used to provide different amounts of abstraction

(Example: Parcellation [

of cytoarchitectonic
cortical regions

in the human brain)

conv pool conv --- FCL
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Deep Learning — Feature Learning Benefits

elephants chairs faces, cars, airplanes, motorbikes

TG .0 O
Oahhen N

= Traditional machine learning applied feature engineering
before modeling

= Feature engineering requires expert knowledge, is time-
consuming and a often long manual process, requires
often 90% of the time in applications, and is sometimes
even problem-specific

= Deep Learning enables feature learning promising a

[3] H. Lee et al., ‘Convolutional Deep ive ti d t
Belief Networks for Scalable massive time advancemen

Unsupervised Learning of Hierarchical
Representations’
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Deep Learning — Key Properties & Application Areas

In Deep Learning networks are many layers between the input and output layers enabling multiple
processing layers that are composed of multiple linear and non-linear transformations

Layers are not (all) made of neurons (but it helps to think about this analogy to understand them)

Deep Learning performs (unsupervised) learning of multiple levels of features whereby higher
level features are derived from lower level features and thus form a hierarchical representation

= Application before modeling data with other models (e.g. SVM)

= Create better data representations and create deep learning models to
learn these data representations from large-scale unlabeled data

- Application aleas (Deep Learning is often characterized as ‘buzzword’)

= Computer vision (Deep Learning is often ‘just’ called
) o rebranding of traditional neural networks)
= Automatic speech recognition

= Natural language processing

= Bioinformatics

(hierarchy from low level to high level features)
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Basic ImageNet Dataset as Base for Learning

= Dataset: ImageNet
= Total number of images: 14.197.122

= Number of images with
bounding box annotations: 1.034.908

1 Treemap Visualization Jownloads

W mb

ImageNet 2011 Fall Release (32326) -
plant flora, plant life (4486)
geolagical formation, formation (1
natural object (1112)
sport, athletics (176)
artifact, artefact (10504)

Instrumentality, instrumentatior
device (2760)
musical instrument, inst
acoustic device (27)

Traditional CV @ Deep Learning

4

[7] J. Dean et al., ‘Large-Scale Deep Learning
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High level
category

amphibian
animal
appliance
bird
covering
device
fabric

fish

flower

food

fruit

fungus
furniture
geological formation
invertebrate
mammial
musical instrument
plant

reptile

sport
structure
tool

tree

utensil
vegetable
vehicle

person

# synset
[subcategories)

94
3822
51
856
946

2385

452
1485
309
303
187
151
728
138
157

1666

1238
318
993
86
178
431

2035

Avg # images per
synset

591
732
1164
949
219
575
690
494
735
670
807
453
1043
238
573
a1
291
500
707
1207
783
551
568
912
764
778

4568

[8] ImageNet Web page

Total # images

556K
ZTHEK
SR
312K
TT4K
1810K
181K
ZBOK
335K
100K
188K
137K
195K
127K
TR
934K
140K
SOOK
180K
200K
S48k
174K
554K
TEK
135K
374K

S52K



Exercises — Add Hidden Layers
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ANN — MNIST Dataset — Add Two Hidden Layers

= A hidden layer in an ANN can be
represented by a fully connected
Dense layer in Keras by just
specifying the number of hidden
neurons in the hidden layer

# data output :
print(X_train.shapel[0], '{rain samples')
print(X_test.shape[0], 'tdst samples')

!

# convert vectors to binafy matrices of classes
Y_train = np_utils.to_catggorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)

# ANN model with hidden layers

model = Sequentiall()

model. add (Dense (N_HIDDEN, input_shape=(RESHAPED, )))
model.add(Activation('relu')) L =~
model . add (
model . add (Activation('relu'))
model. add (Dense (NB_CLASSES) )
model.add (Activation('softmax'))

-

model. summary ()

# Compilation

-
-

-
-
-

The non-linear Activation function ‘relu’
represents a so-called Rectified Linear
Unit (ReLU) that only recently became
very popular because it generates good
experimental results in ANNs and more
recent deep learning models — it just
returns 0 for negative values and grows
linearly for only positive values

-
-
-

-
-
-

Dense (N_HIDDEN) ) f(x) = max(O,x)

o=
-
-

41

3+

2k

1

0

model.compile(loss="'categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy'])

# Fit the model

history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

# evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print('Test score:', score[0])

print('Test accuracy:', score[l])
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ANN — MNIST Dataset — Add Hidden Layers — JobScript

#!/bin/bash

#PBS -1 nodes=1:ppn=all

#PBS -1 walltime=1:0:0

#PBS -N KERAS_MNIST_ANN_HIDDEN

module load TensorFlow/1l.4.0-intel-2017b-Python-3.6.3
module load Keras/2.1l.1-intel-2017b-Python-3.6.3

# make sure Keras is using TensorFlow as backend
export KERAS_BACKEND=tensorflow

export WORKDIR=$VSC_SCRATCH/${PBS_JOBNAME} ${PBS_JOBID}
mkdir -p $WORKDIR
cd $WORKDIR

export OMP_NUM_THREADS=1
python $PBS_0_WORKDIR/KERAS_MNIST_ANN_HIDDEN.py

echo "Working directory was $WORKDIR"
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ANN — MNIST Dataset — Add Hidden Layers - Output

[vsc42544@gligard3 deeplearningl$ more KERAS_MNIST_ANN_HIDDEN.01179466
60000 train samples
10000 test samples

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 128) 100480
activation_1 (Activation) (None, 128) 0
dense_2 (Dense) (None, 128) 16512
activation_2 (Activation) (None, 128) 0
dense_3 (Dense) (None, 10) 1290
activation_3 (Activation) (None, 10) 0

Total params: 118,282
Trainable params: 118,282
Non-trainable params: 0

Train on 48000 samples, validate on 12000 samples
Epoch 1/200

128/48000 [.......covviiiii i 1 - ETA: 4:29 - loss: 2.3122 - acc: 0.1094
2176/48000 [>........cviiiiiiiii i 1 - ETA: 16s - loss: 2.2732 - acc: 0.1085
4864/48000 [==>.......... .0, 1 - ETA: 7s - loss: 2.2178 - acc: 0.1721
7424748000 [===>...... ... it ] - ETA: 4s - loss: 2.1676 - acc: 0.2515

[vsc42544@gligar03 deeplearningl$ tail KERAS_MNIST_ANN_HIDDEN.o01179466

32710000 [....vviiii i 1 - ETA: Os
2272710000 [=====>. ... .. it 1 - ETA: 0Os
4544/10000 [============>,,............... ] - ETA: Os
6784/10000 [=::=::=::=::=::=::=::=::=::=:> .......... ] - ETA: 0Os
9088/10000 [==========================>,,,] - ETA: 0Os

10000/10000 [==============================] - 0s :22L15}f5133p

Working directory was /user/scratch/gent/vsc425/vsc42544/KERAS_MNIST_ANN_HIDDEN_1179466.masterl9.golett.gent.vsc
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Deep Learning Architectures

= Deep Neural Network (DNN)
= ‘Shallow ANN‘ approach with many hidden layers between input/output

= Convolutional Neural Network (CNN, sometimes ConvNet)

= Connectivity pattern between neurons is like animal visual cortex

(focus in this course)

= Deep Belief Network ( DBN)

= Composed of mult iple layers of variables; only connections between layers

= Recurrent Neural Network (RNN)

= ‘ANN‘but connections form a directed cycle; state and temporal behaviour

Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

Deep Learning needs ‘big data’ to work well & for high accuracy — works not well on sparse data
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Deep Learning — Parallel Computing Methods

= Exploiting two kinds of parallelism
= Model and data parallelism (‘hierarchical domain decomposition®)
= Challenge: distributed asynchronous stochastic gradient descent algorithm
= Minimal network cost: most densely connected areas are on one partition

Parameter Server P =p +4p

___________ L00ddd

> - A
A N ,
Ap p
Partition ||Partition 2] Partition 3 La_yer N

00000000

Layer |

1 1 t 1 A
Model ||
&
I Partition | Partition 2 Partition 3 I O

_"_
.
_"_
_"_

B8
res

Workers
/ 5
/ y = — = e S Data
=N Shards ——

[7] J. Dean et al., ‘Large-Scale Deep Learning’
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[Video] Deep Learning ‘Revolution’

Google Deep Mind® &

AlphaGO defeats world champuon‘ YAy

P »l o 200/235

[9] The Deep Learning Revolution, YouTube



GPGPUs
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Multi-core CPU Processors

= Significant advances in CPU Muiticore processor
(or microprocessor chips) Corel | | Core2 || - Core n
L1 cache| (L1 cache| | - - L1 cache
= Multi-core architecture with dual, " X Fa Val
'
guad, six, or n processing cores % « ¥ L‘
. . L2 cache
|
Processing cores are all on one chip T“a. one chip
= Multi-core CPU chip architecture Il

L3 cache/DRAM

= Hierarchy of caches (on/off chip)

[10] Distributed & Cloud

= L1 cache is private to each core; on-chip Computing Book
omputing Boo

= |2 cache is shared; on-chip
= |3 cache or Dynamic random access memory (DRAM); off-chip

Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies




Many-core GPUs

=  Graphics Processing Unit (GPU) is great for data parallelism and task parallelism

=  Compared to multi-core CPUs, GPUs consist of a many-core architecture with
hundreds to even thousands of very simple cores executing threads rather slowly

= Use of very many simple cores
= High throughput computing-oriented architecture
= Use massive parallelism by executing a lot of concurrent threads slowly
= Handle an ever increasing amount of multiple instruction threads
= CPUs instead typically execute a single long thread as fast as possible

= Many-core GPUs are used in large
clusters and within massively lrocessor Al |

(B ][] B[R] [Be] - [B] |1 ey

parallel supercomputers today
* Named General-Purpose ———

Com pUtI ng on GPUs (G PG PU) [10] Distributed & Cloud Computing Book
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GPU Acceleration

=  CPU acceleration means that GPUs accelerate computing due to a massive parallelism with
thousands of threads compared to only a few threads used by conventional CPUs

=  GPUs are designed to compute large numbers of floating point operations in parallel

" GPU accelerator architecture example (e.g. NVIDIA card)
= GPUs can have 128 cores on one single GPU chip
= Each core can work with eight threads of instructions
= GPU is able to concurrently execute 128 * 8 = 1024 threads

= |nteraction and thus major (bandwidth)
bottleneck between CPU and GPU &PU
is Via memory interactions Multiprocessor 1 Multiprocessor N R

(B ][] B[R] [Be] - [B] |1 ey

= E.g. applications
fhat use maur ﬂi —
vector multiplication

A=B*C [10] Distributed & Cloud Computing Book

(other well known accelerators & many-core processors are e.g. Intel Xeon Phi = run ‘CPU’ applications easier)
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Exercises
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GPU Application Example — Matrix-Vector Multiplication

* What are the benefits of using GPUs in this application?

a, by oCole] L0114 Bo 24 bo,3c3
a | b1,oco b1,101+ bl,zcz‘*‘ 61,303
a, b, yCoft| 6216 b2200H 8,565
45 | _bloco b, et b; ,0pH b3,3c3_
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NVIDIA Fermi GPU Example

[10] Distributed &
Cloud Computing
Book
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GPGPUs — Terminology

General-Purpose Computing On Graphics Processing Units (GPGPUs)
GPUs have been traditionally used to perform computing for computer graphics (e.g games)

GPGPUs use GPUs to perform application computation instead or in addition to normal CPUs

" QOrigin & HPC relationships
= Starting ~2001 with reformulating computational problems in terms of
graphics primitives (e.g. matrix multiplications)
" Programming Models

" OpenCL as open general-purpose GPU programming model

= NVidia Compute Unified Device Architecture (CUDA)
as dominant propriety framework

= Selected Application Fields [11] NVidia Tesla

= GPU-accelerated scientific computing applications increasing

" |ncreasing machine learning & statistical data mining implementations
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GPGPUs — Architecture

= Parallelizes the already ‘parallel nature of graphics processing’

= Use of multiple graphics cards on one computer

= Use of large numbers of graphics chips

» Terminology
= GPU ‘device’
= CPU ‘host’

= Function ‘kernel’
(runs on device)

= Vertices & fragments are
elements in processing ‘streams’

| Application |
]

| Command |

| Vertex |
1

| Geometry |
!

| Rasterization |

| Fragment |

| Display |

=

Application/ e
Command (CPU)
]
Command Disﬂlay ‘Q
i
Fragment |}es]
Vertex .
Mem
: Raster-
Geometry [™] ization B

GPU

[11] J. Owens, GPGPU Architecture Overview

GPUs have a parallel throughput architecture that emphasizes executing many concurrent

threads slowly, rather than executing a single thread very quickly

In the context of GPUs, the Kernel is a function that runs on the GPU device
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GPGPUs — From Pure Graphics to General Processing

" Rendering Pipeline

Application
1

Geometry

Rasterization

!
Composite

GPU

Compute 3D geometry
Make calls to graphics API

" Programmable Pipeline

Application
1

Transform geometry from 3D to
2D (in parallel)

Compute 3D geometry
Make calls to graphics API

Geometry ‘

Generate fragments from 2D
geometry (in parallel)

Transform geometry from 3D to
2D [vertex programs]

Rasterization

Combine fragments into image

3

Generate fragments from 2D
geometry [fragment programs]

Composite

[11] J. Owens, GPGPU Architecture Overview

GPU

Combine fragments into image

= Rendering pipeline designed for massively parallelism and independent operations

= General processing in science and engineering partly rely on independent operations & data




GPGPUs - Performance & Programming Approach

= GPUs are ‘massively multithreaded” many-core chips
® Hundreds of cores & thousands of concurrent threads

= Aggressive performance growth

B
8

== MNVIDIA GPU
Intel CPU

= Different to plain ‘multi-core’

g8 3 8§

»
&
3
o
o
-
L
&

(multi-core — heavy weight fast threads)

(GPUs - fine light-weight slow threads)

[31] NVidia Training Introduction

= ‘Stream’/ data parallel programming approach

= ‘Set of records’ that require similar computation (less communication)
= Kernel functions are applied to each element of the stream

GPGPUs are very restrictive in operations and programming, but ideal for data parallel tasks
GPGPUs are very effective for a set of records that require similar computation named as streams




GPGPUs - Programming Model OpenCL

[12] Khronos Group, OpenCL

"= Open Computing Language (OpenCL)
= The open standard for parallel programming of heterogeneous systems

= Enable algorithms & programming
patterns to be easily ‘accelerated’

Processing

Host
Element

" Practice

= Hard to compete with NVidia
CUDA & emerge as standard
(e.g. MPI took > 10 years to position [13] Rastergrid, OpenCL platform model
itself as the programming standard)

Compute Unit Compute Device

= OpenCLis the open general-purpose GPU programming model approach that is vendor neutral
= Despite of the open standard OpenCL the de-facto standard in GPU programming is CUDA today
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GPGPUs - Programming Model CUDA

= Compute Unified Device Architecture (CUDA)
= |ndustry standard programming model
= Dominant since NVidia is major producer of GPGPUs in the market
= Subset of programming language C
= Defines a programming model and a memory model

"= (Unlimited) Scalability
= Parallel portions of application executed on the GPU device as kernels
= Program for one thread can be instantiated on many parallel threads

" Program runs on any number of processors without recompiling

= CUDA is the dominant propriety general-purpose GPU programming model that is vendor-specific
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GPGPUs — NVidia Usage Models

= Example: Three ‘different types of NVidia GPUs'

= Designed for different levels of performance requirements

GeForce® Quadro® Tesla™ (constant
Entertainment\ Design & Creation High-Performance Computing

evolution:
NVidia Fermi
as successor of
NVidia Tesla)

(constant
innovation:
NVidia Kepler)
as successor of
NVidia Fermi)

[14] NVidia Training Introduction
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Hybrid Programming: CPUs & GPGPUs Revisited

" Emerging ‘hybrid programming model’
= Using General-purpose computing on graphics processing units (GPGPUs)
= Combine with traditional CPUs to accelerate elements of processing
= |dea: exploit parallelism across host CPU cores in addition to the GPU cores

CPU GPU CPU GPU
“erial code I I N N N N Serial code ——-r---------u
|

_ ! | )

I";,:'—_'|'|',ﬁ.| T U O e e e |: | _: ---------{--{-I F:H'l'ni—'gl o e g A II| _,' --------[--ll'--l
wailting L ggg lgﬁl&

l 1 ] Serial code VS S S

I lal A ---II---------I + h

* ; Execution ims reducton

[15] ‘Boosting CUDA Applications with CPU-GPU Hybrid Computing’

(constant innovation: new generation Intel Knights Landing many integrated cores (MIC) = run directly as host CPUs)

=  One drawback of a typical GPU is that it requires a host CPU in order to be used in a HPC system
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GPGPUs - Selected Applications

= Human brain research

= Example: Registration of high resolution brain images

Remote access

“  Fixed Image

JULICH

APPLICATION LAB

[16] NVidia Application Lab Juelich

= AMBER / CHARMM applications

(N
= Traditional HPC Applications @-
= Molecular dynamics package to simulate
o . AutoDock,
molecular dynamics on biomolecules FlexK docking)

-

. ,*_

Intermediate

Results (data)

o

~>

AMBER
(dynamics)

= Emerging support for GPGPU processing
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HPC System KU Leuven — GPUs

= Accelerators

= Nodes with two 10-core "Haswell" Xeon E5-2650v3 2.3GHz CPUs,
64 GB of RAM and 2 GPUs Tesla K40

ThinKing Cerebro

2x10-core 2x12-core 64x10-core
Ivy Bridge Haswell Ivy Bridge
S == SAS
64/128 64/128 1478 21.3TB
GB GB

2%60
Xeon Phi cores

IB QDR IB FDR NUMAIlink6 / FDR IB

Accelerators

U el

P . .
2x10-core Home
2l oy iy -
2 service nodes NetApp
i o 30TB DON1 I ,
: 9278 DDN2 Vlaams Supercomputer Centrum
Login nodes 167 T8

2 visualization nodes

modified from [18] HPC System KU Leuven
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Exercises — Check Login into the KU Leuven System

[vsc42544@gligar03 ~1$ ssh login.hpc.kuleuven.be
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Keras with Tensorflow Backend — GPU Support

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

K e r a S [19] Keras Python Deep Learning Library

= Tensorflow is an open source library for deep learning models using a flow graph approach

= Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

= The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
= Tensorflow work with the high-level deep learning tool Keras in order to create models fast

[20] Tensorflow Deep Learning Framework

worker A
GPUy | | CPU,
run 21] A Tour o
client > master g_ ] K f
worker B ensorjiow
CPUy | |CPU,




[Video] GPGPUs & Applications

Q

8%

|
\J

scientific
simulations

medicinge, financial application or earth observation.

[17] ‘HPC — GPGPUs’, YouTube Video
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