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Outline of the Course

1. Deep Learning Fundamentals & GPGPUs

2. Convolutional Neural Networks & Tools

3. Convolutional Neural Network Applications

4. Convolutional Neural Network Challenges

5. Transfer Learning Technique

6. Other Deep Learning Models & Summary
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Outline

 Remote Sensing Applications
 Introduction to Application Domain
 Rome and Indian Pines Dataset
 Traditional Classifier Accuracy using SVMs
 LibSVM Format & Cross-Validation
 Indian Pines Dataset in HDF5 Format

 CNN Architecture for Application
 Window Tensor Approach
 Job Submission & Scripts on GPUs
 CNN ‘Standard Model‘ in Keras
 Experimental Setup & CNN Parameters
 Selected Results & Parameter Changes
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Remote Sensing Application Domain
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Introduction to Application Field

 The overall system is complex: 
 Scattering or emission of energy from the earth’s surface 
 Transmission through the atmosphere to instruments mounted on the 

remote sensing platform 
 Sending data back to the earth’s surface 
 Processing into images products ready for application by the user 
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[1] Wikipedia on ‘Remote Sensing’ 

 Remote sensing is the acquisition of information about an object or 
phenomenon without making physical contact with an object
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Supervised Learning Application – Labelled Data

[2] G. Cavallaro & M. Riedel et al., 2014

Sattelite Data

Groundtruth

Model & Algorithm

Classification
Study of 

Land Cover
Types

(Quickbird)

Pansharpened (UDWT) low-resolution 
(2.4m) multispectral images

(high
dimension)
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Remote Sensing Application – The Dataset

 Example dataset: Geographical location: Image of Rome, Italy
 Remote sensor data obtained by Quickbird satellite

 High-resolution (0.6m) 
panchromatic image 

Pansharpened (UDWT) low-resolution 
(2.4m) multispectral images

[3] Rome Image dataset

(Reasoning for picking SVM: Good classification
accuracies on high dimensional datasets,

even with a small ‚rare‘ number of training samples)

(high
dimension)
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Inspect and Understanding the Data – Rome, Italy

 Data is publicly available in EUDAT B2SHARE tool

(persistent handle link for 
publication into papers)
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[3] Rome Image dataset
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Remote Sensing Dataset – Indian Pines – Metadata

 Relevant Metadata
 Image itself was taken by Nasa’s Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) on June 12, 1992
 Covers a mostly agricultural and wooded area in the west of the 

Purdue University in Indiana (USA)
 The image consists of 1417 × 617 pixels with 

a spatial resolution of around 20 m
 For each pixel the image provides 220 

spectral channels covering wavelengths 
in the range of 0.4 m to 2.5 m (i.e. ‘cube’)

 The pixel-wise labelling was done by 
M. Baumgardner and her studends

 This resulted in a label-map of the dataset
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[8] P. U. R. Repository [9] M.F. Baumgardner et al.
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Remote Sensing Dataset – Indian Pines – Approaches

 Full dataset
 58 different classes
 Distribution of the number of

samples per class is highly 
unbalanced: Biggest class 
contains more than 60.000 
pixels whereas there are 
several classes with less 
than 100 pixels

 Approaches
 Some of the under-represented classes 

are excluded, e.g. six classes 
containing less than 100 pixels

 Some of the spectral channels
removed (e.g. only 200)
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Representation of the dataset together with 
the intensity spectrum given for every pixel

[4] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., 
Journal of Selected Topics in Applied Earth Observation 
and  Remote Sensing, 2015

[10] A. Romero et al., ‘Unsupervised deep feature
extraction for remote sensing image classification‘
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Advanced Supervised Learning Application – Indian Pines

 Challenging dataset
 52 classes (out of 58); rare groundtruth; mixed pixels; high dimensions
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[4] G. Cavallaro, M. Riedel, 
J.A. Benediktsson et al., 
Journal of Selected Topics in 
Applied Earth Observation and 
Remote Sensing, 2015
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Importance of Features Engineering & Process Overview

 Application
 Using dataset raw (1)
 Using dataset processed (2)

 Feature Enhancement & Selection
 Kernel Principle Component Analysis (KPCA)
 Extended Self-Dual Attribute Profile (ESDAP)
 Nonparametric weighted feature extraction (NWFE)
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[4] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., 
Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2015
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Publicly Available Datasets – Location 

 Indian Pines Dataset Raw and Processed
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[5] Indian Pine Image dataset
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Available Datasets – Training Data Example
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 Indian Pines Dataset Processed – Training 
 Indian_processed_training.el
 LibSVM data format: class feature1:value1 feature2:value2

[5] Indian Pine Image dataset
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Lecture 6 – Applications and Parallel Computing Benefits

Parallelization Benefit: Parallel 10-Fold Cross-Validation 

 Example: 10-fold cross-validation, Support Vector Machine (SVM)
 2 x benefits of parallelization possible in a so-called ‘gridsearch‘
 (1) Compute parallel; (2) Do all cross-validation runs in parallel (all cells)
 Evaluation between Matlab (aka ‘serial laptop‘) & parallel (80 cores)

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

(1) First Result: best parameter set from 14.41 min to 1.02 min

(2) Second Result: all parameter sets from ~9 hours to ~35 min

‘(1) each cell inherent parallel’ ‘(2) all cells 
in parallel’

[4] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., 
Journal of Selected Topics in Applied Earth Observation 
and Remote Sensing, 2015

 10-fold cross-validation achieves parallelization benefits (1) in each grid cell and (2) across all cells
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Hierarchical Data Format (HDF) often used in HPC

 HDF is a technology suite that enables the work with extremely large and complex data collections 

 Simple ‘compound type‘ example: 
 Array of data records with some 

descriptive information (5x3 dimension)
 HDF5 data structure type with int(8); 

int(4); int(16); 2x3x2 array (float32)

[7] HDF@ I/O workshop

‘HDF5 file is a container’ 
to organize data objects
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Exercises
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Available Datasets – Training & Testing Data Example
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 Indian Pines Dataset Raw Images
 Already available for the tutorial
 HDF5 data format

 Full Dataset (USE AFTER TUTORIAL ONLY – LIMITED # GPUs)
 All 58 classes; 10% training set / 90 % test set

 Small Dataset (PLEASE USE THIS DATASET IN THE TUTORIAL)
 16 classes; crop of original image (145 *145 pixels); 10% train / 90% test
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[Video] Remote Sensing

[6] YouTube Video, ‘Remote Sensing’
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Remote Sensing Application Domain
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Methods Overview

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Machine learning methods can be roughly categorized in classification, clustering, or regression 
augmented with various techniques for data exploration, selection, or reduction

Lecture 3 – Convolutional Neural Network Applications 22 / 48



CNN Architecture for Application – Overview 
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 Classify pixels in a hyperspectral remote sensing image having groundtruth/labels available
 Created CNN architecture for a specific hyperspectral land cover type classification problem 
 Used dataset of Indian Pines (compared to other approaches) using all labelled pixels/classes
 Performed no manual feature engineering to obtain good results (aka accuracy)
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HPC System KU Leuven – GPUs – Careful Usage Please

Lecture 1 – Deep Learning Fundamentals & GPGPUs

modified from [11] HPC System KU Leuven

 Accelerators
 Nodes with two 10-core "Haswell" Xeon E5-2650v3 2.3GHz CPUs, 

64 GB of RAM and 2 GPUs Tesla K40

24 / 48



Exercises – Login into the KU Leuven System from Ghent
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Remote Sensing Small Data CNN – Script Locations
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Remote Sensing Small Data CNN – GPU Job Script – Part 1
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Remote Sensing Small Data CNN – GPU Job Script – Part 2
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Remote Sensing Small Data CNN – GPU Python
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Keras – Remote Sensing CNN ‘Standard‘ Model
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Remote Sensing Dataset – Training and Testing Images (1)

 LibSVM format approach
 One possibility is to convert 

the data saved as image 
into the often used LibSVM format

 One file for the training and 
one for the test data, 
each containing rows started 
by the label of the pixel and 
then containing the channel contents

 Easy way to read in the samples
 Disadvantage of loosing the information 

where the pixel was located and this way any spatial information
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Remote Sensing Dataset – Training and Testing Images (2)

 Pixel with surroundings in HDF5 (9x9)
 Store not only every pixel and its label but also the surrounding pixels 

(with all the spectral information, but without label) 
and also the pixel coordinates

 Redundant way of saving the data but brings the advantage of using 
not only the spectral, but also the spatial 
information in the classification process

 Increases the data size by a 
factor determined by the 
number of neighbouring 
pixels saved

 HDF5 to decrease the data size, 
and in order to keep the I/O 
routines later on simple

 Allows to store arrays of arbitrary 
dimensions in an optimized way
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Label only describes the central pixel
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Keras – Remote Sensing CNN – Imports 
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Keras – CNN Main Program & Parameters
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Keras – CNN Load and Preprocess Training Data 
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Keras – Remote Sensing CNN – Build the model 
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Experimental Setup @ Juelich Supercomputing Centre

 CNN Setup
 Table overview 

 HPC Machines used
 Systems JURECA and JURON

 GPUs
 NVIDIA Tesla K80 (JURECA)
 NVIDIA Tesla P100 (JURON)
 While Using MathWorks’ Matlab for the

 Frameworks
 Keras library (2.0.6) was used 
 Tensorflow (0.12.1 on Jureca, 1.3.0rc2 on Juron) as back-end
 Automated usage of the GPU’s of these machines via Tensorflow
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Experimental Setup – Results – Full Dataset – Accuracy 
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SVM comparison
~ 77% with
manual feature
engineering
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Experimental Setup – Results – Full Dataset – Class Checks
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Experimental Setup – Results – Full Dataset – Class Checks

 Blue: correctly classified / training data
 Red: incorecctly classified
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Exercises – Check GPU Job Runs
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Small Data – Outputs 
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Full Data – Output (1)

Lecture 3 – Convolutional Neural Network Applications 43 / 48



Full Data – Output (2)
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