Deep Learning

Using a Convolutional Neural Network

N Dr. — Ing. Morris Riedel

O~ _ Adjunct Associated Professor
™ School of Engineering and Natural Sciences, University of Iceland

Research Group Leader, Juelich Supercomputing Centre, Germany

Convolutional Neural Networks Challenges

December 15, 2017
Ghent, Belgium

e\\‘g\lﬂu’,‘p P
S % UNIVERSITY OF ICELAND U L I C H
g)) 05 SCHOOL OF ENGINEERING AND NATURAL SCIENCES
7
i FORSCHUNGSZENTRUM

S TES) ”)
FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Outline

Lecture 4 — Convolutional Neural Network Challenges 2/40

Outline of the Course

Deep Learning Fundamentals & GPGPUs
Convolutional Neural Networks & Tools

Convolutional Neural Network Applications

Convolutional Neural Network Challenges

Transfer Learning Technique

Other Deep Learning Models & Summary

Lecture 4 — Convolutional Neural Network Challenges

Outline

= Regularization

Overfitting as Key Challenge
Fitting Noise & Noise Types

ANN & CNN Examples
Regularization Approaches
Weight Dropout and L2 Examples

= Validation and Model Selection

Many Parameters of Model Selection
Validation Approaches
ANN & CNN Examples

= Complexity in Finding the right Parameters

Lecture 4 — Convolutional Neural Network Challenges

Regularization

Lecture 4 — Convolutional Neural Network Challenges 5/40

Exercises

Lecture 4 — Convolutional Neural Network Challenges

Challenge Two — Problem of Overfitting

= Overfitting refers to fit the data too well — more than is warranted — thus may misguide the learning
= Qverfitting is not just ‘bad generalization’ - e.g. the VC dimension covers noiseless & noise targets
= Theory of Regularization are approaches against overfitting and prevent it using different methods

= Key problem: noise in the target function leads to overfitting

= Effect: ‘noisy target function” and
its noise misguides the fit in learning

(target)

(overfit)

= There is always ‘some noise’ in the data noise)
noise

= Conseqguence: poor target function
(‘distribution’) approximation

= Example: Target functions is second \r
order polynomial (i.e. parabola)
= Using a higher-order polynomial fit (but simple polynomial works good enough)

" (‘over’: here meant as 4th order,
= Perfect fit: low Ein (g) ’ but Iarge Eout (g) a 3" order would be better, 2" best)

Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — Clarifying Terms

= A good model must have low training error (E;,) and low generalization error (E,,)

= Model overfitting is if a model fits the data too well (E,,) with a poorer generalization error (E,,)
than another model with a higher training error (E,)

[1] Introduction to Data Mining

= Qverfitting & Errors
= . (g) goes down error
= F (g)goesup

= ‘Bad generalization area‘ ends
= Good to reduce F. (¢g)

(‘generalization error’) Eout (g)

(“training error’)

E,.(9)

>

= ‘Overfitting area’ starts
= Reducing . (g) does not help

(frya: s o Training time
= Reason "fitting the noise’ g4 generalization€ ¢-> overfitting oCCUrs

= The two general approaches to prevent overfitting are (1) regularization and (2) validation

Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — Model Relationships

" Review ‘overfitting situations’
= When comparing ‘various models® and related to ‘'model complexity’
= Different models are used, e.g. 2"¥ and 4t order polynomial
= Same model is used with e.g. two different instances
(e.g. two neural networks but with different parameters)

m |ntuitive So|uti0n A (‘generalization error?) Eout (g)

Error
= Detect when it happens

= ‘Early stopping regularization [\ \ =~ __.- .
term’ to stop the training

model
complexity

= Early stopping method (later)

(“training error’)

£, (9)

>

(‘model complexity measure: the VC analysis was independent | ,/
of a specific target function — bound for all target functions’) I’

oedeocooopoovoe

Training time
(‘early stopping’)

= ‘Early stopping’ approach is part of the theory of regularization, but based on validation methods

Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — ANN Model Example

Input Hidden Layers Output

= Two Hidden Layers

= Good accuracy and works well

= Model complexity seem to
match the application & data

" Four Hidden Layers

= Accuracy goes down rror A (‘generalization error’) Eout (g)
“ B (g) goes down
- Eout (g) goesup NN 2 .model

= Significantly more weights to train complexity

: : 57"
* Higher model complexity . (‘training error)
P °
Q@ ‘ . >
. Training time
(‘early stopping’)
e

Lecture 4 — Convolutional Neural Network Challenges

Exercises

Lecture 4 — Convolutional Neural Network Challenges

ANN — MNIST Dataset — Add Two More Hidden Layers

Input Hidden Layers Chbpat

= A hidden layer in an ANN can be
represented by a fully connected
Dense layer in Keras by just
specifying the number of hidden
neurons in the hidden layer

L
data output :
print(X_train.shapel[0], '{rain samples')
print(X_test.shape[0], 'tdst samples')

!

]) Input Hidden Layers OQutput
convert vectors to binafy matrices of classes

Y_train = np_utils.to_catggorical(y_train, NB_CLASSES)
Y_test = np_utils.to_categorical(y_test, NB_CLASSES)

ANN model with hidden layers

model = Sequentiall()

model. add (Dense (N_HIDDEN, input_shape=(RESHAPED,)))
model . add (Activation('relu'))

model. add (Dense (N_HIDDEN))

model . add (Activation('relu'))

model. add (Dense (NB_CLASSES))

model.add (Activation('softmax'))

model. summary ()

Compilation
model.compile(loss="'categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy'])

Fit the model
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print('Test score:', score[0])

print('Test accuracy:', score[l])

Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — Noise Term Revisited

= ‘(Noisy) Target function’is not a (deterministic) function

= Getting with ‘same x in” the ‘same y out’ is not always given in practice

= |dea: Use a ‘target distribution’

. . . . Unknown Target Distribution .I'r}{_n';' |}CJ
instead of ‘target function targetfunction f : X — Y plusnoise
(ideal function)
= Fitting some noise in the data
is the basic reason for overfitting (target)
and harms the learning process (overfit)
= Big datasets tend to have more noise (nois
in the data so the overfitting problem . 7 \
might occur even more intense Va

= ‘Different types of some noise’ in data
= Key to understand overfitting & preventing it

(‘function view’)

‘shift the view’

= ‘Shift of view": refinement of noise term) o
(‘# data view)

= Learning from data: ‘matching properties of # data’ P Py
W W A 4

. ‘# samples’
Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — Stochastic Noise

= Stoachastic noise is a part ‘on top of each learnable function
= Noise in the data that can not be captured and thus not modelled by f

= Random noise : aka ‘non-deterministic noise’

= Conventional understanding Unknown Target isrbution o [0
. . Fa . . J
established early in this course target function f : X' —» Y plusnoise

(ideal function)

" Finding a ‘non-existing pattern
in noise not feasible in learning’

" Practice Example

(target)

= Random fluctuations and/or (overfit)
measurement errors in data (nois

" Fitting a pattern that not exists ‘out-of-sample’ \’f\

= Puts learning progress ‘off-track” and ‘away from f

= Stochastic noise here means noise that can‘t be captured, because it‘s just pure ‘noise as is’
(nothing to look for) — aka no pattern in the data to understand or to learn from

Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — Deterministic Noise

= Part of target function f that H can not capture: f(x) — h*(x)
= Hypothesis set H is limited so best h* can not fully approximate f
= h* approximates f, but fails to pick certain parts of the target f

= ‘Behaves like noise’, existing even if data is ‘stochastic noiseless’

» Different ‘type of noise’ than stochastic noise

= Deterministic noise depends on 7—[(determines how much more can be captured by
. . h*
= E.g.same f, and more sophisticated 7{ : noise is smaller |

(stochastic noise remains the same,

nothing can capture it) (f)

= Fixed for a given x, clearly measurable (%)
(stochastic noise may vary for values of x)

(learning deterministic noise is outside the ability to learn for a given
h*)

= Deterministic noise here means noise that can‘t be captured, because it is a limited model
(out of the league of this particular model), e.g. ‘learning with a toddler statistical learning theory’

Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — Impacts on Learning

= The higher the degree of the polynomial (cf. model complexity), the more degrees of
freedom are existing and thus the more capacity exists to overfit the training data

" Understanding deterministic noise & target complexity
" |ncreasing target complexity increases deterministic noise (at some level)
" |ncreasing the number of data N decreases the deterministic noise

= Finite N case: H tries to fit the noise
= Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
= Stochastic (in data) and deterministic (simple model) noise will be part of it

= Two ‘solution methods’ for avoiding overfitting

= Regularization: ‘Putting the brakes in learning’, e.g. early stopping
(more theoretical, hence ‘theory of regularization’)

= Validation: ‘Checking the bottom line‘, e.g. other hints for out-of-sample
(more practical, methods on data that provides ‘hints‘)

Lecture 4 — Convolutional Neural Network Challenges

High-level Tools — Keras — Regularization Techniques

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dropout (rate, . . .
, = Dropout is randomly setting a fraction
noise shape=None,

seed=None) of input units to 0 at each update
during training time, which helps
prevent overfitting (using parameter
rate)

from keras import regularizers - -
P g = L2 regularizers allow to apply penalties
model.add (Dense (64, input dim=64,

kernel regularizer=regularizers.12(0.01), on Iayer parameter or Iayer activity
activity regularizer=regularizers.11(0.01))) during optimization itself — therefore

the penalties are incorporated in the
lost function that the network
optimizes

K e r a S [5] Keras Python Deep Learning Library

Exercises — Underfitting & Dropout Regularizer

= Run with 20 Epochs first (not trained enough); then 250 Epochs

= Training accuracy should be above the test accuracy — otherwise
‘underfitting’

Lecture 4 — Convolutional Neural Network Challenges

ANN — MNIST Dataset — Add Weight Dropout Regularizer

iITIp'D rt numpy np Input Hidden Layers Output
from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.utils import np_utils

parameters
NB_CLASSES = 10
NB_EPOCH = 200
BATCH_SIZE = 128
VERBOSE = 1
N_HIDDEN = 64
OPTIMIZER = 'SGD'

DROPOUT = 0.3 -

= A Dropout() regularizer randomly
ANN model with hidden layers drops with ist dropout probability
model = Sequential()

model . add (Dense (N HIDDEN, _input shape=(RESHAPED,)))_—===22%% some of the values propagated

model.add(Activation('relu’ ——— - e . q
mode1 . add (Dropout (DROPOUT)) - - inside the Dense network hidden

moder. —’—‘ . . .
el add(Actvaton el e Iayers Improving accuracy again
model. add (Dropout(DROPOUT))
moderl. a ense (NB_
model.add(Activation('softmax'))
model.summary ()

Compilation
model.compile(loss="'categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy'])

Fit the model
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT)

evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print('Test score:', score[0])

print('Test accuracy:', score[1])

Lecture 4 — Convolutional Neural Network Challenges

Exercises — Regularizers in non-Standard CNN Model

Lecture 4 — Convolutional Neural Network Challenges

Remote Sensing Dataset — CNN Script — Dropout Regularizer

standard model with dropout
build_model_standard_dropout(input_shape, activation, num_classes, dropout_frac):
model = Sequentialf()
model.add(Conv3D(48, kernel size=(3, 3, 5), activation=activation, input_shape=input_shape))
|mode1.add(ﬁroEout(droeout Trac)) K
model. add (MaxPooling3D(pool_size=(}, 1, 3)))
model.add(ZeroPadding3D((0, 0, 2), daia_format=None))
model.add(Conv3D (32, kernel size=(3, 3%»5), activation=activation))
Model-add (Dropout [dropout Fraclll >,
model. add(MaxPooling3D (pool_size=(D\ 1, 3))
model.add(ZeroPadding3D((0, 0, 2), dé¥a~forma =None))
model.add(Conv3D(32, kernel size=(3, 3, 5L, actlvatlon activation))
|m0§e£ aQE!Drogout(drogout frac)}}

\ \

model.add (MaxPooling3D (pool_size=(17 ~l‘ 2) N N
model.add(Flatten()) S SN = Qur standard model is already
model. add (Dense (128 act1va‘t10n=sct1vat10n)T‘s\ SN .ps . .
mode . add (Dropout (dropout frac)) . Seol NN modified in the python script but
model.add(Dense (128, activation= actlvafiuHQJ Ssa N
model.add(Dense(num_classes, activation=' so'|=1:mal"~).)~~ \‘~\\ needs to set the droPOUt—frac
! model e . ‘~~~__; = A Dropout() regularizer randomly

- - - - - - - - set a e parameters - - = o o oge
num _classes = 16 #58 P ’,/" drops with ist dropout probability
channels = 220 -
window_size = 9 - some of the values propagated
2;‘;2255}23030532000 =" inside the Dense network hidden
learning_rate = 1 ’,.—" layers improving accuracy again
momentum = 0 ',¢

-

decay = 0.000005 -

req factor = 0.0 2= "# for L2-reqularization (see other models at the end of the program)
|dro§ou‘t frac = 0.3 # for droEout I (see other models at the end of the program)
activation = 'relu'

loss = 'mean_squared_error'
optimizer = optimizers.SGD(lr=1learning_rate, momentum=momentum, decay=decay)

Lecture 4 — Convolutional Neural Network Challenges

Remote Sensing Dataset — CNN Script — L2 Regularizer

standard model with L2-regularization
build_model_standard_L2(input_shape, activation, num_classes,
model = Sequential()

reg_factor):

model.

add(Conv3D(48, kernel_size=(3, 3, 5), activation:activatiog,lkernel regularizer:regularizers.12(reg factor), Input_shape=input_shape))

model.
model.

add (MaxPooling3D(pool_size=(1, 1, 3)))
add(ZeroPadding3D((0, 0, 2), data_format=None)) s

’
model.add(Conv3D (32, kernel_size=(3, 3, 5), activation=acjfvati

qg.lkernel_regularizer=regu1arizers.12(reg_factor)))|

model.
model.

add(MaxPooling3D(pool_size=(1, 1, 3))) s

add(ZeroPadding3D((0, O, 2), data_format=None ?’ s

&

model. add(Conv3D(32, kernel_size=(3, 3, 5), activgtio

q;acfivatiogblkernel_regularlzer=regular12ers.12(reg_factor)))|
L d

model. add(MaxPooling3D(pool_size=(1, 1, 2))) ,’ PR
model. add(Flatten()) 27 - -
model. add (Dense (128, activation:activatigne keffrelre€gu
model.add(Dense (128, activation=activatiom?
model. add (Dense (num_classes, activagﬁga.'sh tmax'))

model .‘g >

o”
-

Our standard model is already modified in
the python script but needs to set the

larizer=regularizers.12(reg_factor)))
kgrfiel_regularizer=regularizers.12(reg_factor)))

Elastic net regularization: The complexity of
the model is captured by a combination of
the two preceding techniques

Lecture 4 — Convolutional Neural Network Challenges

reg_factor
. . # o0- - - - - - - set all the parameters - -
= L1 regularization (also known as lasso): The nun_classes = 16 #58
complexity of the model is expressed as the | vindowsize = ¢
hs = 1000 #2000
sum fzgin?ng_rate =1
. . . momentum = 0
. = 0 000005
. Lz regUIarlzatlon (also known as rldgE). The I reg_factor = 0,01 # for L2-regularization (see other models at the endl
complexity of the model is expressed as the areponT_TTac S U0 v ror aropon ‘
- 1 = d '
sum Of the Squares Of the WelghtS o;isimizer:einszggzse?:rgg;('Lr=1earning_rate, momentum=momentum, decay=decay)
]

[Video] Overfitting in Deep Neural Networks

Causes and Outcomes

0 e
will assign weights to features that are not
needed and will add unnecessary complexity

Pl o) 342/ 5:;:3

[2] How good is your fit?, YouTube

Lecture 4 — Convolutional Neural Network Challenges 23/40

Validation and Model Selection

O
O 0

Lecture 4 — Convolutional Neural Network Challenges 24 /40

MNIST Dataset — CNN Python Script — Validation Data

parameters . .
NB_CLASSES = 10 = Rule of thumb: Take 1/5 of validation, aka 20%
NB_EPOCH = 20
BATCH SIZE = 128 i = VALIDATION_SPLIT: Float between 0 and 1
OPTIMIZER = 'Adam' Ss . o
VALIDATION_SPLIT = 0.2 Sso = Fraction of the training data to be used as
ING_ROWS, IMG_COLS = 28, 28 Sso . .
INPUT_SHAPE = (1, IMG_ROWS, IMG_COLS) ~ validation data
S
\Q
dataset 28 x 28 pixels _ = The model fit process will set apart this fraction
(X_train, y_train), (X_test, y_test) = mnist.load_data()
K.set_inage din_ordering("th') of the training data and will not train on it
_train = X_train.astype oa
X_test = X_test.astype('float3z’) = Intead it will evaluate the loss and any model
Y omalzatien metrics on the validation data at the end of
X_test /= 255 each epoch.
input convnet A
X_train = X_train[:, np.newaxis, :, :1] \
X_test = X_test[:, np.newaxis, :, :] \
\
data output \
print(X_train.shape[0], 'train samples') \
print(X_test.shape[@], 'test samples') \
convert vectors to binary matrices of classes \
Y_train = np_utils.to_categorical(y_train, NB_CLASSES) ‘\
Y_test = np_utils.to_categorical(y_test, NB_CLASSES) \
Simple CNN model \\
model = CNN.build(input_shape=INPUT_SHAPE, classes=NB_CLASSES) \
\
Compilation \
model.compile(loss='categorical_crossentropy', optimizer=0PTIMIZER, metrics=['accuracy'l]) \

Fit the model
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, Jvalidation_split=VALIDATION_SPLIT)

evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print('Test score:', score[0])

print('Test accuracy:', score[l])

Lecture 4 — Convolutional Neural Network Challenges

MNIST Dataset — CNN Model — Output using Validation

[vsc42544@gligar@l deeplearningl$ head KERAS MNIST CMM.oll79880
60000 train samples
10006 test samples

| Train on 48000 samples, validate on 12000 samples |

Epoch 1/20
128/ 48000 [... i i et i et e e] - ETA: 10:06 - loss: 2.2997 - acc: 0.1250
25/ B0 [.. e] - ETA: 7:46 - loss: 2.2578 - acc: 0.1992
3B4/4B000 [...t e] - ETA: 6:58 - loss: 2.2127 - acc: 0.2083
BlZ2/4B000 [...t i et e e] - ETA: 6:35 - loss: 2.1632 - acc: 0.2598
BA0/4B000 [...t e] - ETA: 6:20 - loss: 2.0934 - acc: 0.3234

[vsc42544@gligarfl deeplearning]$ tail KERAS MNIST CNN.oll79880

9824/10000 [=.] - ETA: Os
S85E/10000 [=.] - ETA: Os
Sgeg/1o0e0e0 [=.] - ETA: Os
9920/10000 [=.] - ETA: Os
9952/106000 [=.] - ETA: Os
So84/10000 [=.] - ETA: Os
1OEER/10600 [1 - 4ls 4ms/step
€]

Test score: 0.0483192791523

! ast accuracy: [EEE] |
orking directory was /user/scratch/gent/vsc425/vsc42544/KERAS MNIST CNN 1179880 .masterl9.golett.gent.vsc

Lecture 4 — Convolutional Neural Network Challenges

Exercises — Change the Validation to 80% - What happens?

Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — Clarifying Terms — Revisited

= A good model must have low training error (E;,) and low generalization error (E,,)

= Model overfitting is if a model fits the data too well (E,,) with a poorer generalization error (E,,)
than another model with a higher training error (E,)

[1] Introduction to Data Mining

= Qverfitting & Errors
= . (g) goes down error 4
= F (g)goesup

= ‘Bad generalization area‘ ends
= Good to reduce F. (¢g)

(‘generalization error’) Eout (g)

(“training error’)

E,.(9)

>

= ‘Overfitting area’ starts
= Reducing . (g) does not help

(frya: s o Training time
= Reason "fitting the noise’ g4 generalization€ ¢-> overfitting oCCUrs

= The two general approaches to prevent overfitting are (1) regularization and (2) validation

(Decisions about the model are related to the problem of overfitting — need another method to ‘select model well‘)

Lecture 4 — Convolutional Neural Network Challenges

Problem of Overfitting — Impacts on Learning Revisited

= The higher the degree of the polynomial (cf. model complexity), the more degrees of
freedom are existing and thus the more capacity exists to overfit the training data

" Understanding deterministic noise & target complexity
" |ncreasing target complexity increases deterministic noise (at some level)
" |ncreasing the number of data N decreases the deterministic noise

= Finite N case: H tries to fit the noise

= Fitting the noise straightforward (e.g. with linear regression)

= Stochastic (in data) and deterministic (simple model) noise will be part of it
= Two ‘solution methods’ for avoiding overfitting

= Regularization: ‘Putting the brakes in learning’, e.g. early stopping
(more theoretical, hence ‘theory of regularization’)

= Validation: ‘Checking the bottom line‘, e.g. other hints for out-of-sample
(more practical, methods on data that provides ‘hints‘)

(Decisions about the model are related to the model complexity — need another method to ‘select model well‘)

Lecture 4 — Convolutional Neural Network Challenges

Validation & Model Selection — Terminology

= The ‘Validation technique’ should be used in all machine learning or data mining approaches
= Model assessment is the process of evaluating a models performance

= Model selection is the process of selecting the proper level of flexibility for a model

modified from [4] ‘An Introduction to Statistical Learning’
*" ‘Training error’
= Calculated when learning from data (i.e. dedicated training set)
= ‘Test error’
= Average error resulting from using the model with ‘new/unseen data’

= ‘new/unseen data‘ was not used in training (i.e. dedicated test set)

" |n many practical situations, a dedicated test set is not really available

. . split creates a two subsets of comparable size
= ‘Validation Set’ (sp s par)

= Split data into training & validation set
= ‘Variance’ & ‘Variability’ i USRI gy Insplits)
= Result in different random splits (right) i '

Lecture 4 — Convolutional Neural Network Challenges

Validation Technique — Formalization & Goal

= Validation is a very important technique to estimate the out-of-sample performance of a model
= Main utility of regularization & validation is to control or avoid overfitting via model selection

" Regularization & Validation
= Approach: introduce a ‘overfit penalty’ that relates to model complexity
= Problem: Not accurate values: ‘better smooth functions’

(regularization uses a term that captures the overfit penalty)

Eout (h) — E (h) -+ overﬁt penalty (minimize both to be better proxy for E_ ;)

mn

? !

(validation estimates (regularization estimates
this quantity) this quantity)

- V |d . (measuring E_, is not possible as this is an unknown quantity,
alidation another quantity is needed that is measurable that at least estimates it)

m Goal ‘estimate the Out—of—samp|e error’ (establish a quantity known as validation error)

= Distinct activity from training and testing (testing also tries to estimate the E,)

Lecture 4 — Convolutional Neural Network Challenges

Validation Technique — Pick one point & Estimate E_,

TraininglExamples

(X17 yl)J ':" (XNJ yN)

G

‘training set’ ‘test set

(activity below is what we do for testing,
but call it differently for another purpose)

~

(involved in validation)

* Understanding ‘estimate’ E_,
= Onone out-of-sample point (x,y) the erroris e(h(x),y)

» E.g.usesquared error: e(h(x), f(x)) = (h(x) — f(x))

e(h(x),y) = (h(x) — y)”

= Use this quantity as estimate for E_; (poor estimate)

= Term ‘expected value’ to formalize (probability theory)

Probability Distribution
(Taking into account the theory of Lecture 1 with probability distribution on X etc.) Pon X

(aka ‘random variable‘) X = (:131, ey :Ud)<
E [6 (h(X) : y)] — Eout (h) (aka the long-run average value of repetitions of the experiment)

(one point as unbiased estimate of E_ . that can have a high variance leads to bad generalization)

out

Lecture 4 — Convolutional Neural Network Challenges

Validation Technique — Validation Set

= Validation set consists of data that has been not used in training to estimate true out-of-sample
= Rule of thumb from practice is to take 20% (1/5) for validation of the learning model

= Solution for high variance in expected values Ele(h(x),y)] = Eyu(h)

= Take a ‘whole set’ instead of just one point (x,) for validation

TraininglExamples (we need points not used in training
(Xla Yy)3 s (XNa yN) to estimate the out-of-sample performance)

(involved in training+test) K (involved in validation)

= |dea: K data points for validation

(we do the same approach with the
testing set, but here different purpose)

(le yl)? " (XK, yK) (validation set) wl E 6 k-; yk (validation error)
= Expected value to ‘measure’ (expected values averaged over set)
the out-of-sample error
E[Eval Z E k yk)] Eout

= ‘Reliable estimate’ if Kis large
(on rerely used valldatlon- set, (this gives a much better (lower) variance than on a single point given K is large)
otherwise data gets contaminated)

Lecture 4 — Convolutional Neural Network Challenges

Validation Technique — Model Selection Process

= Model selection is choosing (a) different types of models or (b) parameter values inside models
= Model selection takes advantage of the validation error in order to decide = ‘pick the best’

Hypothesis Set

H={h}; geH

(set of candidate formulas across models)

= Many different models

(training not on
full data set)

Use validation error to
perform select decisions

= Careful consideration:

= ‘Picked means decided’
hypothesis has already
bias (= contamination)

= Using Dy M times

Final Hypothesis

gm*%f

(test this on unseen data
good, but depends on
availability in practice)

Lecture 4 — Convolutional Neural Network Challenges

DT?"az’n

w.r.t. Dr.,i,)

11 1

gﬂ/f

(out-of-sample

DVal

l(vahdatel unbiased 1
estlmates)

\ Evall 'Ualg valM

(pick ‘best’ = bias) Y(decides model selection)

Hm* E'valm*

D (final real training
(final training on full set, use to get even better

the validation samples too) g out-of-sample)
m *

Remote Sensing - Experimental Setup @ JSC — Revisited

- C NN SEt u p Feature Representation / Value
) Conv. Layer Filters 48, 32, 32
= Table overview Conv. Layer Filter size | (3,3,5), (3,3,5), (3,3,5)
. Dense Layer Neurons 128, 128
= HPC Machines used opgmizer SGD
Loss Function mean squared error
= Systems JURECA and JURON Activation Functions ReLU
Training Epochs 600
= GPUs Batch Size 50
Learning Rate 1
= NVIDIA Tesla K80 (J URECA) Learning Rate Decay 5x10°°
= NVIDIA Tesla P100 (J U RON) (adding regularization values adds even

more complexity in finding the right parameters)

= While Using MathWorks’

Matlab for the data (having the validation with the full grid search
of all parameters and all combinations
= Frameworks is quite compute — intensive - ~infeasable)

= Keras library (2.0.6) was used

= Tensorflow (0.12.1 on Jureca, 1.3.0rc2 on Juron) as back-end

= Automated usage of the GPU’s of these machines via Tensorflow

Lecture 4 — Convolutional Neural Network Challenges

Remote Sensing Data — Group Exercises L2 Values / Dropouts

= Add Validation (20%) and different L2 / dropouts per group
= Which group performs best?

Lecture 4 — Convolutional Neural Network Challenges

[Video] Overfitting in Deep Neural Networks

20 hidden neurons

e ® o
@ (-]
@
® ® 8
[] @
] <]
. L J v .
L] . S °
L]
L 5]
L] [] ¢
L]
@

BRI the student is, the more patterns he can memorize. JEAEIEEE
PAPERS

> B W 247/233

[3] Overfitting and Regularization For Deep Learning, YouTube

Lecture 4 — Convolutional Neural Network Challenges

Lecture Bibliography

O
O 0

Lecture 4 — Convolutional Neural Network Challenges 38/40

Lecture Bibliography

= [1] Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison Wesley, ISBN
0321321367, English, ~769 pages, 2005

= [2] YouTube Video, ‘How good is your fit? - Ep. 21 (Deep Learning SIMPLIFIED),
Online: https://www.youtube.com/watch?v=cJA5IHIIL30

= [3] YouTube Video, ‘Overfitting and Regularization For Deep Learning | Two Minute Papers #56’,
Online: https://www.youtube.com/watch?v=6aF9sJrzxaM

= [4] An Introduction to Statistical Learning with Applications in R,
Online: http://www-bcf.usc.edu/~gareth/ISL/index.htm|

= [5] Keras Python Deep Learning Library,
Online: https://keras.io/

Lecture 4 — Convolutional Neural Network Challenges

=
£ S new
measurement g @ funding

SErviCes .\ based = concepts Ce tdewce Analysis
forms cross-disciplinary resources E cllmate Computer expertise

ye arllk Computatlﬂﬂal CDm utlﬂ aq ‘..‘.Il---dl:it:lpllmeaimsuh;5 £ Enable 5

Cross-Disciplinary e uM ke
Sci methods blg"‘"‘m Eiprament | odelg &

roaches
stmctiun
Fusion

- centers Es tora 25
=% g€ boe Infrélstrun::turaI =
£t legnce sim |aiéLOD£'ITS S ENES techngp!co gies
EES o increasing [l via iy Pec
1IBig | Ezﬂﬁﬁt?.?g'?g“m B
=5< 2 sing
% databases i European

s € msupercumputlng Work |mages

analy3|s DLCL sy stored Resoures wave & SClentlflczoﬁen

U use . axternal

2 computaetlonal . esearc 52 & geir:fnrn'utance
resealggmmng SCIenceHPC JueIICh &; ﬂsmr"ULan-:Ecaﬂse Sg

Larg
Summary
EHSW

vice

L‘

? o
& ., compute asc
S)"S em Cllmate mﬂdelllng AR5 Hardware E "’E access & = hundreds "= Services £
Understandmg structures Technologies Earth B k) Structure = = network @
DLCLs Slnﬁllatlnne & directory "= = project General 3
L
N
=

Pro'u'lde HhSA Energy systems day o Health

manag

Proce

Lecture 4 — Convolutional Neural Network Challenges

