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Outline	of	the	Course

1. Deep	Learning	Fundamentals	&	GPGPUs

2. Convolutional	Neural	Networks	&	Tools

3. Convolutional	Neural	Network	Applications

4. Convolutional	Neural	Network	Challenges

5. Transfer	Learning	Technique

6. Other	Deep	Learning	Models	&	Summary
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Outline

§ Transfer	Learning	Technique
§ Feature	Learning	Benefits	&	Motivation
§ Pre-Trained	Models	on	ImageNet	Dataset
§ Remote	Sensing	Data	Application	Example
§ Whole	Scene	vs.	Pixel-wise	Classification	
§ Industry	Example

§ Transfer	Learning	Applications
§ Medical	Datasets
§ X-Ray	Security	Screening	Images
§ Media	Dataset	PASCAL
§ Tool	Support
§ Summary	Transfer	Learning
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Transfer	Learning	Technique
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Exercises	– Group	Assignment	– Check	Status
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Deep	Learning	– Feature	Learning	Benefits	– Revisited	
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[1]	H.	Lee	et	al.,	‘Convolutional	Deep	

Belief	Networks	for	Scalable	

Unsupervised	Learning	of	Hierarchical	

Representations’

§ Traditional	machine	learning	applied	feature	engineering	
before	modeling

§ Feature	engineering	requires	expert	knowledge,	is	time-
consuming	and	a	often	long	manual	process,	requires	
often	90%	of	the	time	in	applications,	and	is	sometimes	
even	problem-specific

§ Deep	Learning	enables	feature	learning	promising	a	
massive	time	advancement
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Transfer	Learning	– Motivation	

§ Rare	Data	Application	Example
§ Indian	Pines	Dataset
§ Extremely	less	data	to	train

a	deep	learning	network
§ Common	in	remote	sensing

and	other	engineering	or
academic	discplines

§ Massively	risk	in	overfitting
the	data	due	to	less	available
training	data	with	labels

§ Complexity:	pixel-wise	
classification	vs.	whole	scene

§ Too	costly	to	acquire	
high	quality	labels
(e.g.	groundtruth	compaigns)
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pretrained	network	with
‘big	data‘	domain	A

final	layers	used	to
train	network	with	
‘rare	data‘	domain	B

§ Representations	from	very	deep	networks	are	
generic	and	can	facilitate	transfer	learning	
between	different	application	domains

§ Representation	contained	in	the	last
layers	of	deep	pretrained	networks
is	of	major	influence	in	classification	accuracy

§ Earlier	– the	more	shallow	– layers	
insignificantly	affect	the	classification	
outcome

[2]	J.	Donahue	et	al.,	“Decaf:	A	deep	convolutional	

activation	feature	for	generic	visual	recognition,”	
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Basic	ImageNet	Dataset	as	Base	for	Learning	– Revisited	

§ Dataset:	ImageNet
§ Total	number	of	images:	14.197.122
§ Number	of	images	with

bounding	box	annotations:	1.034.908
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[3]	J.	Dean	et	al.,	‘Large-Scale	Deep	Learning’ [4]	ImageNet	Web	page
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AlexNet	&	Overfeat	Pre-Trained	ImageNet	Networks

Lecture	5	– Transfer	Learning

[14]	Overfeat	on	Github	

[6]		P.	Sermanet	et	al.,	‘OverFeat:	Integrated	Recognition,	

Localization	and	Detection	using	Convolutional	Networks’

[15]	AlexNet
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Remote	Sensing	Dataset	– UC	Merced	Land	

§ Metadata
§ Consists	of	21	land	use	

and	land	cover	classes
§ Each	class	has	100	images	

and	the	contained	images	
measure	256x256	pixels	

§ Spatial	resolution	of	
about	30	cm	per	pixel

§ All	images	are	in	the	RGB	color	space	
§ Extracted	from	the	USGS	

National	Map	Urban	Area	Imagery	
collection,	i.e.	the	underlying	images	
were	acquired	from	an	aircraft

§ Drawback:	dataset	with	100	images	per	class	is	very	small-scale
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[13]	UC	Merced	Land	Remote	Sensing	Dataset	
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CNN	Architecture	– Using	a	Pre-Trained	Networks
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[5]	D.	Marmanis	et	al.,	‘Deep	Learning	Earth	

Obervation	Classification	Using	ImageNet	

Pretrained	Networks’,	2016

Using	available	Overfeat	as	pre-trained	network

Overfeat	is	an	improved	version	of	AlexNet	and	is	trained	on
1.2	million	labeled	images	from	ImageNet
[6]		P.	Sermanet	et	al.,	‘OverFeat:	Integrated	Recognition,	

Localization	and	Detection	using	Convolutional	Networks’
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Selected	Evaluations	vs.	Traditional	Classifiers
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[5]	D.	Marmanis	et	al.,	‘Deep	Learning	Earth	

Obervation	Classification	Using	ImageNet	

Pretrained	Networks’,	2016

UC	Merced	Land
Dataset
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Transfer	Learning	Results	– Support	Classifier
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[5]	D.	Marmanis	et	al.,	‘Deep	Learning	Earth	

Obervation	Classification	Using	ImageNet	

Pretrained	Networks’,	2016

§ Learned	features	in	(b)	already	help
the	classifier	to	distinguish	classes
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Transfer	Learning	Results	– Transferability
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[5]	D.	Marmanis	et	al.,	‘Deep	Learning	Earth	

Obervation	Classification	Using	ImageNet	

Pretrained	Networks’,	2016

§ Data	randomly	taken	from	various	city	images	
and	used	with	the	trained	CNN	using	pre-
trained	ImageNet

§ Even	on	unseen	data	from	complete
different	datasets	transfer	learning
is	working	well

§ Shown	for	scene-wide	classification,
not	much	for	pixel-wise	classification

pretrained	network	with
‘big	data‘	domain	A

final	layers	used	to
train	network	with	
‘rare	data‘	domin	B
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Deep	Learning	– Selected	Challenges	– Revisited	

§ Pixel-wise	is	different	then	the	whole	scene	àmore	work!
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remote sensing cube & ground reference

[7]	G.	Cavallaro,	M.	Riedel,	

J.A.	Benediktsson	et	al.,	

Journal	of	Selected	Topics	in	

Applied	Earth	Observation	and	

Remote	Sensing,	2015

§ Example:	Fully	connected	Artificial	Neural	Network
(ANN)	achieved	around	20%	w/o	feature	engineering

§ CNN	architecture	required	some	work	(e.g.	Tensors)
§ Transfer	Learning	a	good	option,	but	more	feature	work
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Exercises	– Group	Assignment	– Check	Status
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[Video]	Transfer	Learning	in	Industry	– Part	One

[11]	Transfer	Learning	– Part	One,	YouTube
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Transfer	Learning	in	Other	Domains
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Media:	PASCAL	Visual	Object	Classes	Dataset

§ Media	images
§ Pre-trained	on	ImageNet	with	good	results	(source	task)
§ Pre-trained	parameters	of	the	internal	layers	(aka	learned	features)	of	

the	network	(C1-FC7)	are	then	transferred	to	the	target	tasks
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[10]	M.	Oquab	et	al.,	‘Learning	and	Transferring	Mid-Level	Image	

Representations	Using	Convolutional	Neural	Networks’,	2014
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Medical	Image	Datasets

§ Science:	Medical	image	datasets
§ Use	pre-trained	CNN	features	as	input	for	SVM	classifier
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[8]	L.	Nanni	et	al.’How	Could	a	Subcellular	Image,	or	a	Painting	

by	Van	Gogh,	Be	Similar	to	a	Great	White	Shark	or	to	a	Pizza?’,	

Pattern	Recognit.	Lett.	2017
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Society:	X-Ray	Security	Screening	Images

§ Civil	Security	
§ Different	types	of	

pre-trained	networks	used
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[9]	S.	Akçay	et	al.,	‘Transfer	Learning	using	Convolutional	Neural	Networks	for	

Object	Classification	within	X-ray	Baggage	Security	Imagery,	2016
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Transfer	Learning	Summary

§ Key	Messages
§ Unique	possibilities	for	

certain	scientific	areas	
with	a	lack	of	labels

§ Good	for	relatively	‘simple‘	
datasets	(whole	scence	classification)

§ Quite	challenging	for	‘tough‘	datasets	(e.g.	pixel-wise	classification)

§ Tool	Support
§ Existing	pre-trained	networks	can	be	easily	downloaded

(e.g.	AlexNet	or	Overfeat)
§ Extraxtion	of	features	possible	to	be	subsequently	used	in

deep	learning	frameworks	(e.g.	Keras,	Tensorflow,	etc.)

Lecture	5	– Transfer	Learning

§ Studies	reveal	transferability	of	different	layers	in	deep	CNNs	pretrained	with	ImageNet
§ Transfer	learning	is	relevant	for	all	sciences	&	worth	studying	when	lack	of	labels	exist

pretrained	network	with
‘big	data‘	domain	A

final	layers	used	to
train	network	with	
‘rare	data‘	domin	B
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Exercises	– Group	Assignment	– Check	Status
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[Video]	Transfer	Learning	in	Industry	– Part	Two

[12]	Transfer	Learning	– Part	One,	YouTube
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