

Deep Learning

Using a Convolutional Neural Network

Dr. – Ing. Morris Riedel

Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 6

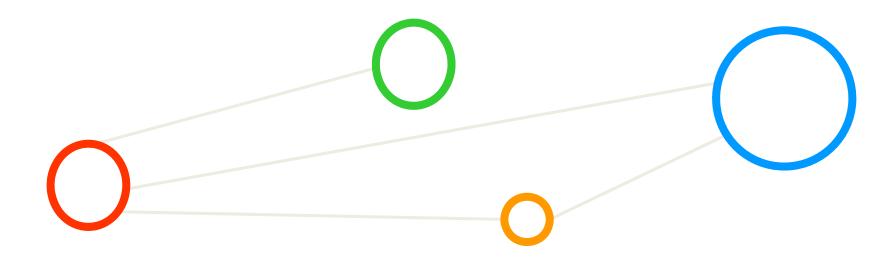
Other Deep Learning Models & Summary

December 1st, 2017 Ghent, Belgium

Outline of the Course

- 1. Deep Learning Fundamentals & GPGPUs
- 2. Convolutional Neural Networks & Tools
- 3. Convolutional Neural Network Applications
- 4. Convolutional Neural Network Challenges
- 5. Transfer Learning Technique
- 6. Other Deep Learning Models & Summary

Outline



Outline

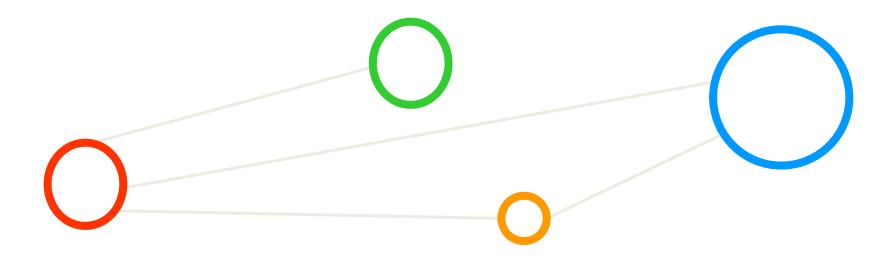
Long-Short Term Memory

- Limitations of Feed Forward Networks
- Recurrent Neural Network (RNN)
- LSTM Model & Memory Cells
- Keras and Tensorflow Tools
- Application Examples

Summary

- Training using Parallel Computing & GPUs
- Increasing Complexity in Applications
- Complexity of Parameters needs HPC
- Group Assignment Discussion
- Deep Learning & Applications

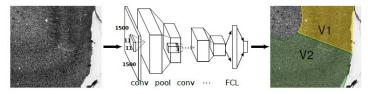
Long-Short Term Memory



Exercises – Group Assignment – Check Status

Deep Learning Architectures

- Deep Neural Network (DNN)
 - 'Shallow ANN' approach with many hidden layers between input/output
- Convolutional Neural Network (CNN, sometimes ConvNet)
 - Connectivity pattern between neurons is like animal visual cortex



- Deep Belief Network (DBN)
 - Composed of mult iple layers of variables; only connections between layers
- Recurrent Neural Network (RNN)

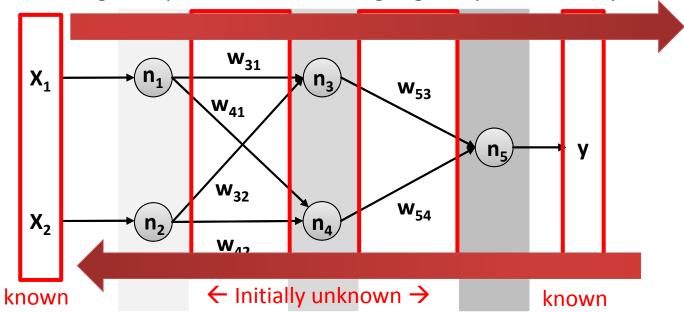
(just short intro in this course)

- 'ANN' but connections form a directed cycle; state and temporal behaviour
- Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica
- Deep Learning needs 'big data' to work well & for high accuracy works not well on sparse data

Exercises – How to Encode a Sequence in ANN?

Limitations of Feed Forward Artificial Neural Networks

- Selected application examples
 - Predicting next word in a sentence requires 'history' of previous words
 - Translating european in chinese language requires 'history' of context



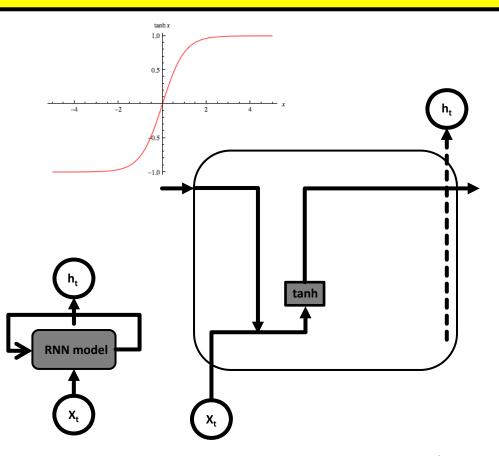
- Traditional feed forward artificial neural networks show limits when a certain 'history' is required
- Each Backpropagation forward/backward pass starts a new pass independently from pass before
- The 'history' in the data is often a specific type of 'sequence' that required another approach

Recurrent Neural Network (RNN)

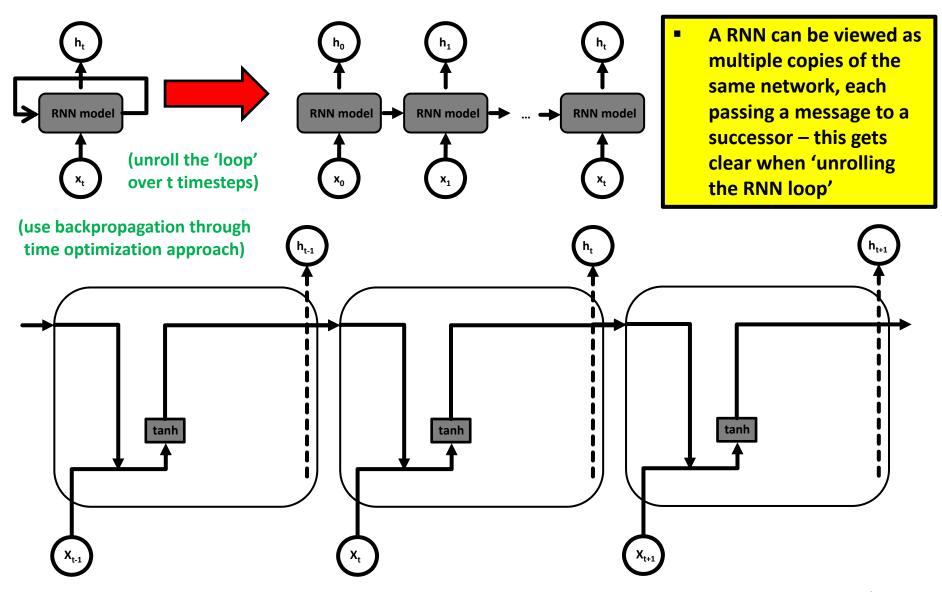
- A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to better model sequence data compared to a traditional feed forward artificial neural network (ANN)
- RNNs consists of 'loops' (i.e. cyclic connections) that allow for information to persist while training
- The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

Selected applications

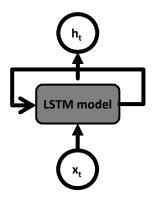
- Sequence labeling
- Sequence prediction tasks
- E.g. handwriting recognition
- E.g. language modeling
- Loops / cyclic connections
 - Enable to pass information from one step to the next iteration
 - Remember 'short-term' data dependencies



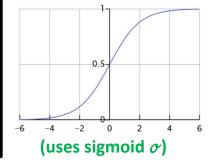
Unrolled RNN

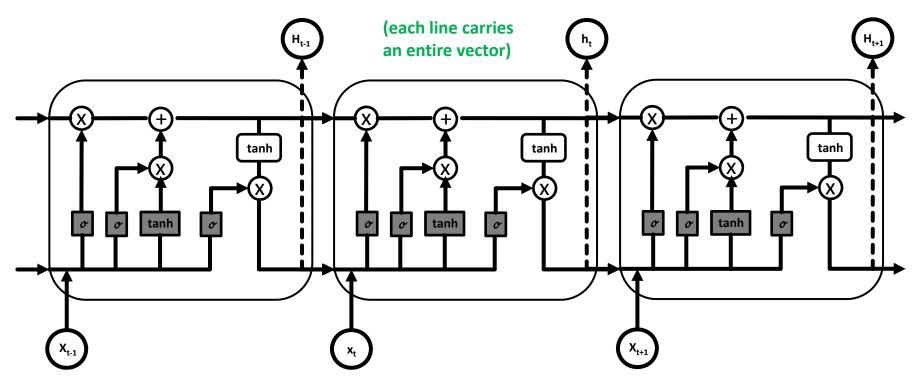


Long Short Term Memory (LSTM) Model



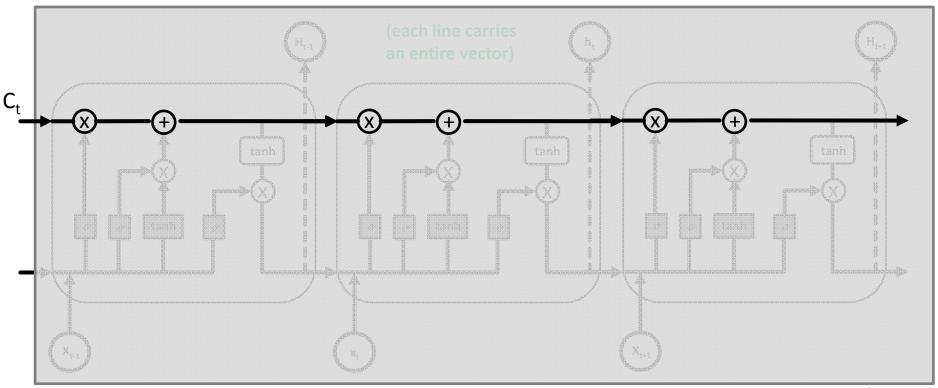
- Long Short Term Memory (LSTM) networks are a special kind of Recurrent Neural Networks (RNNs)
- LSTMs learn long-term dependencies in data by remembering information for long periods of time
- The LSTM chain structure consists of four neural network layers interacting in a specific way



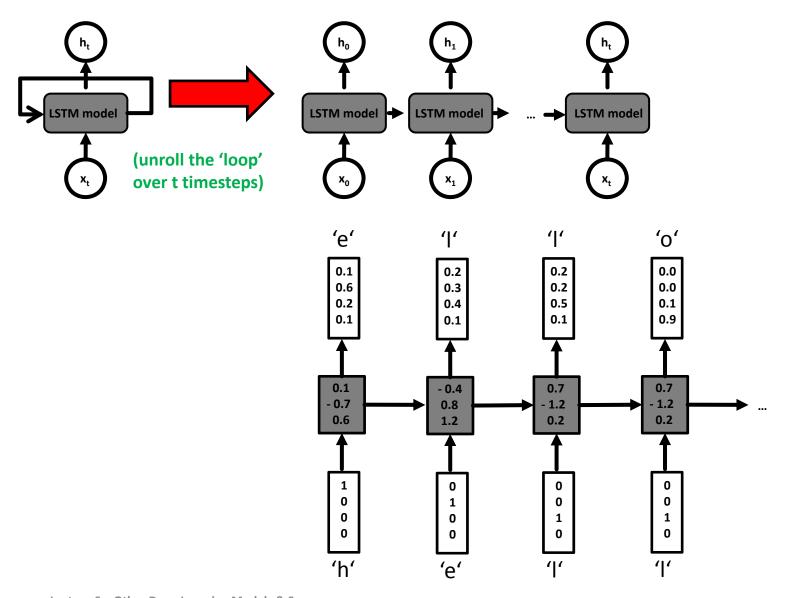


LSTM Model – Memory Cell & Cell State

- LSTM introduce a 'memory cell' structure into the underlying basic RNN architecture using four key elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate
- The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
- The cell state C, can be different at each of the LSTM model steps & modified with gate structures
- Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)
- In order to protect and control the cell state C, three different types of gates exist in the structure



LSTM Application Example – Predict Next Character



High-level Tools – Keras

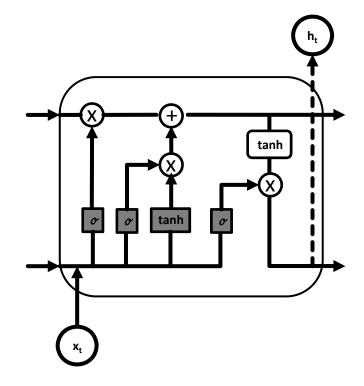
- Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano
- The key idea behind the Keras tool is to enable faster experimentation with deep networks
- Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

```
keras.layers.LSTM(
                    units,
                    activation='tanh',
                    recurrent_activation='hard_sigmoid',
                    use_bias=True,
                    kernel_initializer='glorot_uniform',
                    recurrent_initializer='orthogonal',
                    bias initializer='zeros',
                    unit forget bias=True,
                    kernel_regularizer=None,
                    recurrent regularizer=None,
                    bias regularizer=None,
                    activity regularizer=None,
                    kernel constraint=None,
                    recurrent constraint=None,
                    bias constraint=None,
                    dropout=0.0, ...)
```

Tool Keras supports the LSTM model via keras.layers.LSTM() that offers a wide variety of configuration options

Low-level Tools – Theano

- Theano is a low-level deep learning library implemented in Python with a focus on defining, optimizing, and evaluating mathematical expressions & multi-dimensional arrays
- The Theano tool supports the use of GPUs and CPUs via expressions in NumPy syntax
- Theano work with the high-level deep learning tool Keras in order to create models fast
- LSTM models are created using mathematical equations but there is no direct class for it



[2] Theano Deep Learning Framework

[3] LSTM Networks for Sentiment Analysis

Low-Level Tools – Tensorflow

- Tensorflow is an open source library for deep learning models using a flow graph approach
- Tensorflow nodes model mathematical operations and graph edges between the nodes are so-called tensors (also known as multi-dimensional arrays)
- The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
- Tensorflow work with the high-level deep learning tool Keras in order to create models fast
- LSTM models are created using tensors & graphs and there are LSTM package contributions

[4] Tensorflow Deep Learning Framework

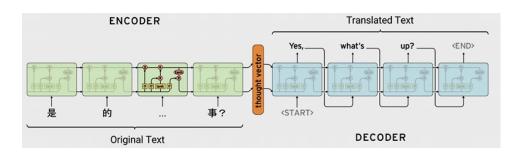
■ The class
BasicLSTMCell()
offers a simple
LSTM Cell
implementation
in Tensorflow

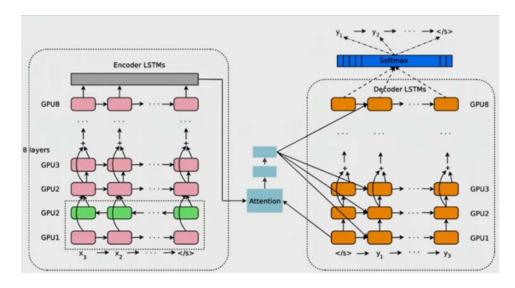
TensorFlow

final state = s

Tensorflow – LSTM Google Translate Example & GPUs

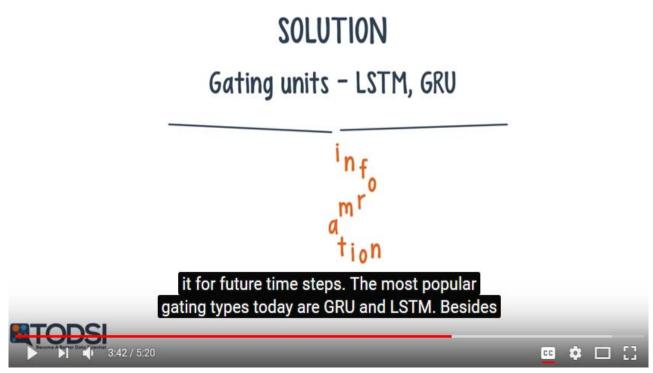
- Use of 2 LSTM networks in a stacked manner
 - Called 'sequence-2-sequence' model
 - Encoder network
 - Decoder network
 - Needs context of sentence (memory) for translation





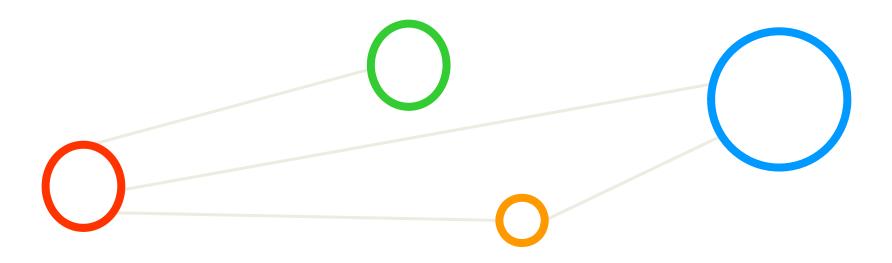
Exercises – Group Assignment – Check Status

[Video] RNN & LSTM



[5] Recurrent Neural Networks, YouTube

Summary



Exercises – Group Assignment – Check Status

ANN – MNIST Dataset – Add Hidden Layers - Output

[vsc42544@gligar03 deeplearning]\$ more KERAS_MNIST_ANN_HIDDEN.o1179466
60000 train samples
10000 test samples

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 128)	100480
activation_1 (Activation)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16512
activation_2 (Activation)	(None, 128)	0
dense_3 (Dense)	(None, 10)	1290
activation_3 (Activation)	(None, 10)	0
Total params: 118,282 Trainable params: 118,282		

Train on 48000 samples, validate on 12000 samples

```
      128/48000 [...
      ] - ETA: 4:29 - loss: 2.3122 - acc: 0.1094

      2176/48000 [>...
      ] - ETA: 16s - loss: 2.2732 - acc: 0.1085

      4864/48000 [==>
      ] - ETA: 7s - loss: 2.2178 - acc: 0.1721

      7424/48000 [===>
      ] - ETA: 4s - loss: 2.1676 - acc: 0.2515
```

[vsc42544@gligar03 deeplearning]\$ tail KERAS MNIST ANN HIDDEN.o1179466

Non-trainable params: 0

Epoch 1/200

Test score: 0.0772481116249

Test accuracy: 0.9773

Working directory was /user/scratch/gent/vsc425/vsc42544/KERAS_MNIST_ANN_HIDDEN_1179466.master19.golett.gent.vsc

MNIST Dataset – CNN Model

```
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Flatten
from keras.utils import np_utils
from keras import backend as K
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, RMSprop, Adam
# model
class CNN:
  @staticmethod
  def build(input shape, classes):
    model = Sequential()
    model.add(Convolution2D(20, kernel size=5, padding="same", input shape=input shape))
    model.add(Activation("relu"))
    model.add(MaxPooling2D(pool size=(2,2), strides=(2,2)))
    model.add(Convolution2D(50, kernel size=5, border mode="same"))
    model.add(Activation("relu"))
    model.add(MaxPooling2D(pool size=(2,2), strides=(2,2)))
    model.add(Flatten())
    model.add(Dense(500))
                                                                                               Dense
                                                                   50 Feature
                                                                                               Layer
                                                                                                             Dense Output
    model.add(Activation("relu"))
                                                                     Maps
                                                                                                               Layer
    model.add(Dense(classes))
                                                  20 Feature
    model.add(Activation("softmax")
                                                   Maps
    return model
                                        Input
                                             Convolution
                                                                Pooling
                                                                          Convolution
                                                                                            Pooling
    [9] A. Gulli et al.
```

MNIST Dataset – CNN Model – Output

```
[vsc42544@qligar01 deeplearning]$ head KERAS MNIST CNN.o1179880
60000 train samples
10000 test samples
Train on 48000 samples, validate on 12000 samples
Epoch 1/20
 128/48000 [....... - eta: 10:06 - loss: 2.2997 - acc: 0.1250
 256/48000 [...... - acc: 0.1992] - ETA: 7:46 - loss: 2.2578 - acc: 0.1992
 384/48000 [...... - acc: 0.2083] - ETA: 6:58 - loss: 2.2127 - acc: 0.2083
 512/48000 [.....] - ETA: 6:35 - loss: 2.1632 - acc: 0.2598
 640/48000 [.....] - ETA: 6:20 - loss: 2.0934 - acc: 0.3234
```

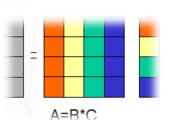
```
[vsc42544@qligar01 deeplearning] tail KERAS MNIST CNN.o1179880
Test score: 0.0483192791523
```

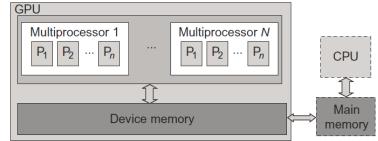
Test accuracy: 0.99

Working directory was /user/scratch/gent/vsc425/vsc42544/KERAS MNIST CNN 1179880.master19.golett.gent.vsc

GPU Acceleration

- CPU acceleration means that GPUs accelerate computing due to a massive parallelism with thousands of threads compared to only a few threads used by conventional CPUs
- GPUs are designed to compute large numbers of floating point operations in parallel
- GPU accelerator architecture example (e.g. NVIDIA card)
 - GPUs can have 128 cores on one single GPU chip
 - Each core can work with eight threads of instructions
 - GPU is able to concurrently execute 128 * 8 = 1024 threads
 - Interaction and thus major (bandwidth) bottleneck between CPU and GPU is via memory interactions
 - E.g. applicationsthat use matrix –vector multiplication



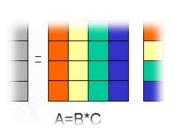


[7] Distributed & Cloud Computing Book

(other well known accelerators & many-core processors are e.g. Intel Xeon Phi → run 'CPU' applications easier)

GPU Application Example – Matrix-Vector Multiplication

Many machine learning problems include matrix multiplications



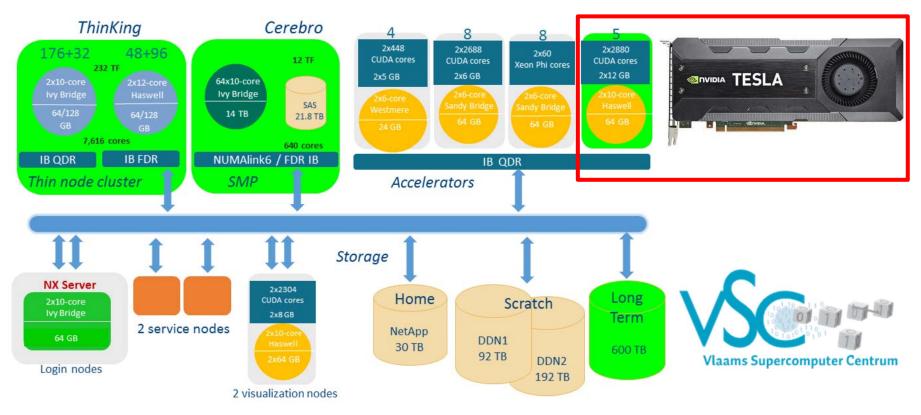
$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} b_{0,0}c_0 + b_{0,1}c_1 + b_{0,2}c_2 + b_{0,3}c_3 \\ b_{1,0}c_0 + b_{1,1}c_1 + b_{1,2}c_2 + b_{1,3}c_3 \\ b_{2,0}c_0 + b_{2,1}c_1 + b_{2,2}c_2 + b_{2,3}c_3 \\ b_{3,0}c_0 + b_{3,1}c_1 + b_{3,2}c_2 + b_{3,3}c_3 \end{bmatrix}$$

$$\begin{array}{c} \mathbf{P0} & \mathbf{P1} & \mathbf{P2} & \mathbf{P3} \end{array}$$

HPC System KU Leuven – GPUs

Accelerators

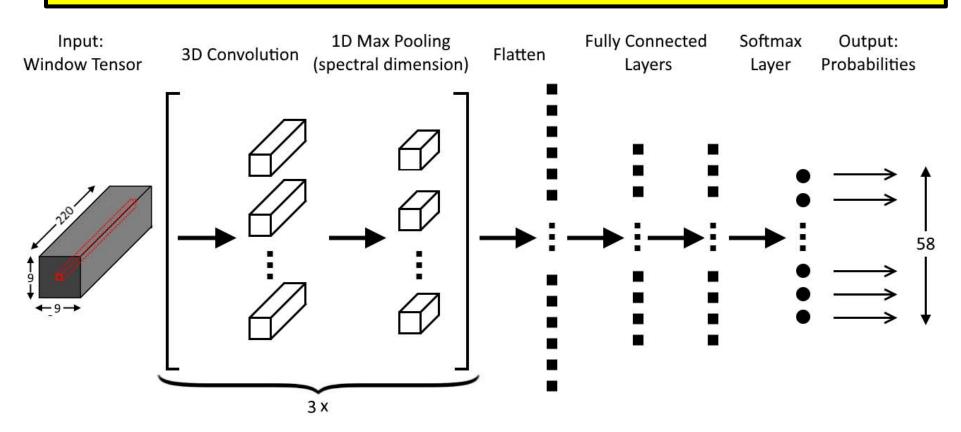
Nodes with two 10-core "Haswell" Xeon E5-2650v3 2.3GHz CPUs,
 64 GB of RAM and 2 GPUs Tesla K40



modified from [8] HPC System KU Leuven

CNN Architecture for Remote Sensing Application

- Classify pixels in a hyperspectral remote sensing image having groundtruth/labels available
- Created CNN architecture for a specific hyperspectral land cover type classification problem
- Used dataset of Indian Pines (compared to other approaches) using all labelled pixels/classes
- Performed no manual feature engineering to obtain good results (aka accuracy)



Small Data – Outputs

> Optimizer: SGD
--> Regularization:
> Dropout: 0.0

> Activation Functions: relu, Loss Function: mean squared error

```
> L2 regularization with factor: 0.0

    End - Information

                                                                    Layer (type)
                                                                                            Output Shape
                                                                                                                  Param #
                                                                    ______
                          Begin - Information
                                                                    conv3d 1 (Conv3D)
                                                                                             (None, 7, 7, 216, 48)
                                                                                                                  2208
--> Data:
                                                                    max pooling3d 1 (MaxPooling3 (None, 7, 7, 72, 48)
                                                                                                                  0
> Number of classes: 16, HS-channels: 220, Window-size: 9
                                                                    zero_padding3d_1 (ZeroPaddin (None, 7, 7, 76, 48)
> Mean: 2524.4013671875 , Standard deviation: 1603.017822265625
> Excluded labels: []
                                                                    conv3d 2 (Conv3D)
                                                                                             (None, 5, 5, 72, 32)
                                                                                                                  69152
> Number of training samples: 1036
> Number of test samples: 9330
                                                                    max pooling3d 2 (MaxPooling3 (None, 5, 5, 24, 32)
                                                                                                                  0
--> Learning:
> Epochs: 1000, Batch size: 50
                                                                    zero_padding3d_2 (ZeroPaddin (None, 5, 5, 28, 32)
                                                                                                                  0
> LR: 1, Momentum: 0, LR-decay: 5e-06
                                                                    conv3d 3 (Conv3D)
                                                                                            (None, 3, 3, 24, 32)
                                                                                                                  46112
                                                                    max pooling3d 3 (MaxPooling3 (None, 3, 3, 12, 32)
                                                                                                                  0
                                                                    flatten 1 (Flatten)
                                                                                             (None, 3456)
                                                                                                                  0
                                                                    dense_1 (Dense)
                                                                                             (None, 128)
                                                                                                                  442496
                                                                    dense 2 (Dense)
                                                                                             (None, 128)
                                                                                                                  16512
                                                                                                                  2064
                                                                    dense_3 (Dense)
                                                                                             (None, 16)
                                                                    Total params: 578.544
     loss: 0.027155295770896957 - acc: 0.7379421221609412
     New loss is bigger --> don't save modet
```

> Time needed for learning and testing: 0.49032413981337514 hours

Full Data – Output (2)

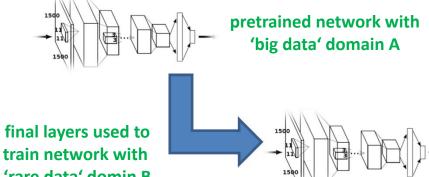
```
[vsc42544@gligar02 .deep learning private]$ sed -n '906765,906824p' IndianPines full 2GPU.o20657803
loss: 0.004567355140805838
                      acc: 0.8353838329111958
New loss is bigger --> dont save model
> Time needed for learning and testing: 16.111324077533144 hours
      - - - - Begin - Information - - -
--> Data:
> Number of classes: 58, HS-channels: 220, Window-size: 9
> Mean: 2424.492431640625 , Standard deviation: 1431.9654541015625
> Excluded labels: []
> Number of training samples: 33424
> Number of test samples: 300821
--> Learning:
> Epochs: 1000, Batch size: 50
> LR: 1, Momentum: 0, LR-decay: 5e-06
> Activation Functions: relu, Loss Function: mean squared error
> Optimizer: SGD
--> Regularization:
> Dropout: 0.0
> L2 regularization with factor: 0.0
               - - End - Information
```

Transfer Learning Results – Transferability

Dense Residential

Sparse Residential

Sparse Residential



'rare data' domin B

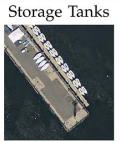
Mobile Park

Buildings

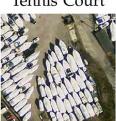
Buildings

Tennis Court

Parking lot



Harbor



Harbor

Intersection

- Data randomly taken from various city images and used with the trained CNN using pretrained ImageNet
- **Even on unseen data from complete** different datasets transfer learning is working well
- Shown for scene-wide classification, not much for pixel-wise classification

[10] D. Marmanis et al., 'Deep Learning Earth **Obervation Classification Using ImageNet** Pretrained Networks', 2016

Problem of Overfitting – Impacts on Learning

- The higher the degree of the polynomial (cf. model complexity), the more degrees of freedom are existing and thus the more capacity exists to overfit the training data
- Understanding deterministic noise & target complexity
 - Increasing target complexity increases deterministic noise (at some level)
 - Increasing the number of data N decreases the deterministic noise
- Finite N case: \mathcal{H} tries to fit the noise
 - Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
 - Stochastic (in data) and deterministic (simple model) noise will be part of it
- Two 'solution methods' for avoiding overfitting
 - Regularization: 'Putting the brakes in learning', e.g. early stopping (more theoretical, hence 'theory of regularization')
 - Validation: 'Checking the bottom line', e.g. other hints for out-of-sample (more practical, methods on data that provides 'hints')

High-level Tools – Keras – Regularization Techniques

- Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano
- The key idea behind the Keras tool is to enable faster experimentation with deep networks
- Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

```
keras.layers.Dropout(rate,
                     noise_shape=None,
                      seed=None)
```

Dropout is randomly setting a fraction of input units to 0 at each update during training time, which helps prevent overfitting (using parameter rate)

```
from keras import regularizers
model.add(Dense(64, input dim=64,
kernel regularizer=regularizers.12(0.01),
activity regularizer=regularizers.l1(0.01)))
```

L2 regularizers allow to apply penalties on layer parameter or layer activity during optimization itself – therefore the penalties are incorporated in the lost function that the network optimizes

Remote Sensing - Experimental Setup @ JSC - Revisited

- CNN Setup
 - Table overview
- HPC Machines used
 - Systems JURECA and JURON
- GPUs
 - NVIDIA Tesla K80 (JURECA)
 - NVIDIA Tesla P100 (JURON)
 - While Using MathWorks' Matlab for the data
- Frameworks
 - Keras library (2.0.6) was used
 - Tensorflow (0.12.1 on Jureca, 1.3.0rc2 on Juron) as back-end
 - Automated usage of the GPU's of these machines via Tensorflow

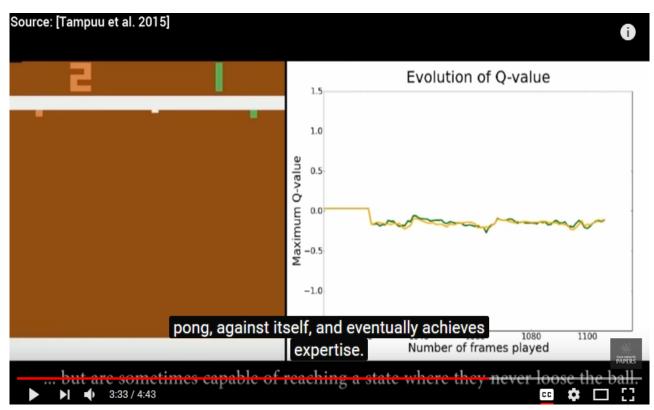
Feature	Representation / Value	
Conv. Layer Filters	48, 32, 32	
Conv. Layer Filter size	(3,3,5), (3,3,5), (3,3,5)	
Dense Layer Neurons	128, 128	
Optimizer	SGD	
Loss Function	mean squared error	
Activation Functions	ReLU	
Training Epochs	600	
Batch Size	50	
Learning Rate	1	
Learning Rate Decay	5×10^{-6}	

(adding regularization values adds even more complexity in finding the right parameters)

(having the validation with the full grid search of all parameters and all combinations is quite compute – intensive → ~infeasable)

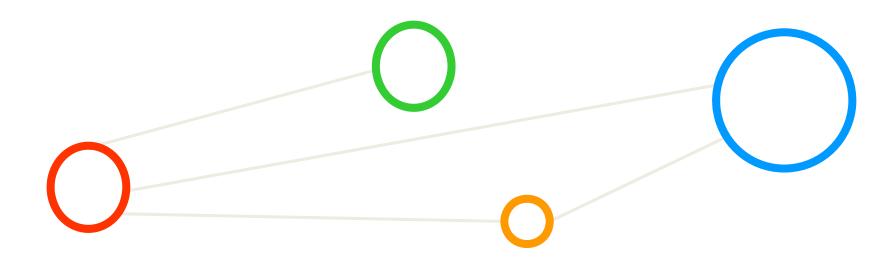
Exercises – Group Assignment – Check Status

[Video] Deep Learning Applications



[6] Deep Learning Applications, YouTube

Lecture Bibliography



Lecture Bibliography (1)

[1] Keras Python Deep Learning Library, Online: https://keras.io/

[2] Theano Deep Learning Framework,

Online: https://github.com/Theano/Theano/Theano

[3] LSTM Networks for Sentiment Analysis,

Online: http://deeplearning.net/tutorial/lstm.html

[4] Tensorflow Deep Learning Framework,

Online: https://www.tensorflow.org/

- [5] YouTube Video, 'Recurrent Neural Networks Ep. 9 (Deep Learning SIMPLIFIED)', Online: https://www.youtube.com/watch?v= aCuOwF1ZjU&t=7s
- [6] YouTube Video, '9 Cool Deep Learning Applications | Two Minute Papers #35', Online: https://www.youtube.com/watch?v=Bui3DWs02h4
- [7] K. Hwang, G. C. Fox, J. J. Dongarra, 'Distributed and Cloud Computing', Book, Online: http://store.elsevier.com/product.jsp?locale=en_EU&isbn=9780128002049
- [8] HPC System KU Leuven,
 Online: https://www.vscentrum.be/infrastructure/hardware/hardware-kul
- [9] A. Gulli and S. Pal, 'Deep Learning with Keras' Book, ISBN-13 9781787128422, 318 pages,
 Online: https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Lecture Bibliography (2)

- [10] Dimitrios Marmanis et al., 'Deep Learning Earth Obervation Classification Using ImageNet Pretrained Networks', IEEE Geoscience and Remote Sensing Letters, Volume 13 (1), 2016, Online: http://ieeexplore.ieee.org/document/7342907/
- [11] Keras Python Deep Learning Library,
 Online: https://keras.io/
- [12] YouTube Video, 'Sequence Models and the RNN API (TensorFlow Dev Summit 2017)', Online: https://www.youtube.com/watch?v=RIR -Xlbp7s

