Deep Learning

Using a Convolutional Neural Network

N Dr. — Ing. Morris Riedel

O~ _ Adjunct Associated Professor
™ School of Engineering and Natural Sciences, University of Iceland

Research Group Leader, Juelich Supercomputing Centre, Germany

Other Deep Learning Models & Summary

December 1%, 2017
Ghent, Belgium

QE“ SITq >,
O

>
g
2,
2
/sfs %3“

W,

UNIVERSITY OF ICELAND !) J U L I C H

SCHOOL OF ENGINEERING AND NATURAL SCIENCES
FORSCHUNGSZENTRUM

UM y,
St

FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Outline of the Course

Deep Learning Fundamentals & GPGPUs
Convolutional Neural Networks & Tools
Convolutional Neural Network Applications
Convolutional Neural Network Challenges

Transfer Learning Technique

Other Deep Learning Models & Summary

Lecture 6 — Other Deep Learning Models & Summary

Outline

Lecture 6 — Other Deep Learning Models & Summary 3/41

Outline

" Long-Short Term Memory

Limitations of Feed Forward Networks
Recurrent Neural Network (RNN)
LSTM Model & Memory Cells

Keras and Tensorflow Tools
Application Examples

= Summary

Training using Parallel Computing & GPUs
Increasing Complexity in Applications
Complexity of Parameters needs HPC
Group Assignment Discussion

Deep Learning & Applications

Lecture 6 — Other Deep Learning Models & Summary

Long-Short Term Memory

O
O 0

Lecture 6 — Other Deep Learning Models & Summary 5/41

Exercises — Group Assignment — Check Status

Lecture 6 — Other Deep Learning Models & Summary

Deep Learning Architectures

= Deep Neural Network (DNN)
= ‘Shallow ANN‘ approach with many hidden layers between input/output

= Convolutional Neural Network (CNN, sometimes ConvNet)

= Connectivity pattern between neurons is like animal visual cortex

4

= Deep Belief Network (DBN)

= Composed of mult iple layers of variables; only connections between layers

= Recurrent Neural Network (RNN) (just short intro in this course)

= ‘ANN‘but connections form a directed cycle; state and temporal behaviour

Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural
Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristica

Deep Learning needs ‘big data‘’ to work well & for high accuracy — works not well on sparse data

Lecture 1 — Deep Learning Fundamentals & GPGPUs

Exercises — How to Encode a Sequence in ANN?

Lecture 6 — Other Deep Learning Models & Summary

Limitations of Feed Forward Artificial Neural Networks

= Selected application examples
= Predicting next word in a sentence requires ‘history‘ of previous words
® Translating european in chinese language requires ‘history‘ of context

X gl
1 1 W,
Wy,

Hng— v

W3,
X o(n, ¥ *(n Wsa
2 2 4
W
known < Initially unknown - known

= Traditional feed forward artificial neural networks show limits when a certain ‘history’ is required
= Each Backpropagation forward/backward pass starts a new pass independently from pass before
= The ‘history’ in the data is often a specific type of ‘sequence’ that required another approach

Lecture 6 — Other Deep Learning Models & Summary

Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to
better model sequence data compared to a traditional feed forward artificial neural network (ANN)

RNNs consists of ‘loops’ (i.e. cyclic connections) that allow for information to persist while training
The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh)

= Selected applications IV

= Sequence labeling

= Sequence prediction tasks

.
—
.

» E.g. handwriting recognition . /

= E.g. language modeling

* Loops / cyclic connections

= Enable to pass information @ ?
from one step to the .

next iteration \

NETPETPPPes PP

= Remember ‘short-term’
data dependencies @

Lecture 6 — Other Deep Learning Models & Summary

Unrolled RNN

L T

(unroll the ‘loop’
over t timesteps)

oo

A RNN can be viewed as
multiple copies of the
same network, each
passing a message to a
successor — this gets
clear when ‘unrolling
the RNN loop’

(use backpropagation through
time optimization approach)

..@

\

NS
N

NS DG
2

NEETPPPPPPS BV

Xt-l < Xt > < Xt+1>

Lecture 6 — Other Deep Learning Models & Summary

Long Short Term Memory (LSTM) Model

= Long Short Term Memory (LSTM) networks are a
special kind of Recurrent Neural Networks (RNNs)

remembering information for long periods of time

network layers interacting in a specific way

v

I/_J//l Py 1 1

A0
3

(each line carries
an entire vector)

@

—>t—{(X + 1
tanh

Xt- 1

Lecture 6 — Other Deep Learning Models & Summary

tanh

ST P

. = LSTMs learn long-term dependencies in data by
= The LSTM chain structure consists of four neural

-6

-4 -2 0 2 4 6
(uses sigmoid ¢)

..@

tanh

ST B

LSTM Model — Memory Cell & Cell State

LSTM introduce a ‘memory cell’ structure into the underlying basic RNN architecture using four key
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)
The cell state C, can be different at each of the LSTM model steps & modified with gate structures
Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)

In order to protect and control the cell state C, three different types of gates exist in the structure

LSTM Application Example — Predict Next Character

Ly PTG

?E

(unroll the ‘loop’
over t timesteps)

(0]
0.1 0.2 0.2 0.0
0.6 0.3 0.2 0.0
0.2 0.4 0.5 0.1
0.1 0.1 0.1 0.9

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
{ { raN4 ()¢
h ‘ef I

Lecture 6 — Other Deep Learning Models & Summary

High-level Tools — Keras

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.LSTM(

units,
activation="tanh",

recurrent_activation="hard_sigmoid-,
use_biras=True,

kernel __initializer="glorot_uniform®,
recurrent_initializer="orthogonal ",
bias _initializer="zeros",
unit_forget bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,

dropout=0.0, ...)

K e r a S [1] Keras Python Deep Learning Library

Tool Keras supports the LSTM
model via keras.layers.LSTM()
that offers a wide variety of
configuration options

Low-level Tools — Theano

= Theano is a low-level deep learning library implemented in Python with a focus on

defining, optimizing, and evaluating mathematical expressions & multi-dimensional arrays

= The Theano tool supports the use of GPUs and CPUs via expressions in NumPy syntax

= Theano work with the high-level deep learning tool Keras in order to create models fast

= LSTM models are created using mathematical equations but there is no direct class for it

import numpy

import theano
from theano import config t h ea n 0 \\
import theano.tensor as tensor //r |
’ l v
Tt |
def Istm_layer(tparams, state below, tanh J
options, prefix="Istm®, mask=None): :
T |
i = tensor.nnet.sigmoid(_slice(preact, O, . . |
options[*dim_proj~])) :
T = tensor.nnet.sigmoid(_slice(preact, 1, > 1

options[*dim_proj~ 1))

0 = tensor.nnet.sigmoid(_slice(preact, 2,
options[*dim_proj"]))

tensor.tanh(_slice(preact, 3, X,
options[*dim_proj"]))

O
I

[2] Theano Deep Learning Framework [3] LSTM Networks for Sentiment Analysis

Low-Level Tools — Tensorflow

= Tensorflow is an open source library for deep learning models using a flow graph approach

= Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

= The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
= Tensorflow work with the high-level deep learning tool Keras in order to create models fast
= LSTM models are created using tensors & graphs and there are LSTM package contributions

[4] Tensorflow Deep Learning Framework

Istm = rnn_cel‘-BasicLSTMCeII(Istm_size, state_is_tuple:False)l | ""'5

R \ s

stacked_Istm = rnn_cell .MultiRNNCell([Istm] * number_of_layers,
state_is_tuple=False) \

initial_state = state = stacked_Istm.zero_state(batch_size, tf-fl‘oat32)
\

\

for 1 iIn range(num_steps): \

The value of state is updated \|® Theclass

after processing each batch of words. \ BasicLSTMCell()

output, state = stacked_ Istm(words[:, 1], state) | offers a simple

The rest of the code. LSTM Cell

oo, implementation
final state = s in Tensorflow

Tensorflow — LSTM Google Translate Example & GPUs

= Use of 2 LSTM networks in a stacked manner

= Called ‘sequence-2-sequence’ model
= Encoder network

ENCODER Translated Text
(= Yes, what's up?
- N R

ErRIPEIEr] IFR

T [T e

= Decoder network

<END>

» Needs context of sentence
(memory) for translation e

Original Text DECODER

Ul
=l

i GPUB GPUS
s;loyers

GPU3

GPU2 GPU3

. GPU2 GPU2

; GPUL GPUL

[12] Sequence Models e e

Lecture 6 — Other Deep Learning Models & Summary

Exercises — Group Assignment — Check Status

Lecture 6 — Other Deep Learning Models & Summary

[Video] RNN & LSTM

SOLUTION
Gating units - LSTM, GRU

[]
o
= =
e |
& g
e il
S g
> E
a*m
L ==
2 3
Em
[7s]
o
o o
(p M=)
s
S 4
L o>
3 @
|—3
mo
— 4
il o
= 0
m o
m C
“ o
ﬂ__l
D
]

[5] Recurrent Neural Networks, YouTube

Lecture 6 — Other Deep Learning Models & Summary

Summary

Lecture 6 — Other Deep Learning Models & Summary 21/41

Exercises — Group Assignment — Check Status

Lecture 6 — Other Deep Learning Models & Summary

ANN — MNIST Dataset — Add Hidden Layers - Output

[vsc42544@gligard3 deeplearningl$ more KERAS_MNIST_ANN_HIDDEN.01179466
60000 train samples
10000 test samples

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 128) 100480
activation_1 (Activation) (None, 128) 0
dense_2 (Dense) (None, 128) 16512
activation_2 (Activation) (None, 128) 0
dense_3 (Dense) (None, 10) 1290
activation_3 (Activation) (None, 10) 0

Total params: 118,282
Trainable params: 118,282
Non-trainable params: 0

Train on 48000 samples, validate on 12000 samples
Epoch 1/200

128/48000 [.......covviiiii i 1 - ETA: 4:29 - loss: 2.3122 - acc: 0.1094
2176/48000 [>........cviiiiiiiii i 1 - ETA: 16s - loss: 2.2732 - acc: 0.1085
4864/48000 [==>.......... .0, 1 - ETA: 7s - loss: 2.2178 - acc: 0.1721
7424748000 [===>...... ... it] - ETA: 4s - loss: 2.1676 - acc: 0.2515

[vsc42544@gligar03 deeplearningl$ tail KERAS_MNIST_ANN_HIDDEN.o01179466

32710000 [....vviiii i 1 - ETA: Os
2272710000 [=====>. it 1 - ETA: 0Os
4544/10000 [============>,,...............] - ETA: Os
6784/10000 [=::=::=::=::=::=::=::=::=::=:>] - ETA: 0Os
9088/10000 [==========================>,,,] - ETA: 0Os

10000/10000 [==============================] - 0s :22L15}f5133p

Working directory was /user/scratch/gent/vsc425/vsc42544/KERAS_MNIST_ANN_HIDDEN_1179466.masterl9.golett.gent.vsc

Lecture 6 — Other Deep Learning Models & Summary

MNIST Dataset — CNN Model

layers.core import Dense, Activation, Flatten

layers.convolutional import Convolution2D, MaxPooling2D

add(Convolution2D (20, kernel_size=5, padding="same", input_shape=input_shape))

.add (MaxPooling2D (pool_size=(2,2), strides=(2,2)))

add(Convolution2D (50, kernel_size=5, border_mode="same"))

from keras.datasets import mnist

from keras.models import Sequential

from keras.

from keras.utils import np_utils

from keras import backend as K

from keras.

from keras.optimizers import SGD, RMSprop, Adam

model

class CNN:

@staticmethod
def build(input_shape, classes):

model = Sequential()
model.
model.add(Activation("relu"))
model
model.
model.add(Activation("relu"))
model
model.add(Flatten())
model. add (Dense(500))
model.add(Activation("relu"))
model. add(Dense(classes))
model.add(Activation("softmax":
return model

[9] A. Gulli et al.

20 Feature
Maps

Input

.add (MaxPooling2D(pool_size=(2,2), strides=(2,2)))

50 Feature
Maps

Lecture 6 — Other Deep Learning Models & Summary

e

" N
Convolution

J

e

e

Paoling ﬁ | Convolution'l]

Dense Output
Layer

MNIST Dataset — CNN Model — Output

[vsc42544@gligar@l deeplearningl$ head KERAS MNIST CMM.oll79880
60000 train samples

1OBE0 test samples

Train on 48000 samples, validate on 12000 samples

Epoch 1/20
128/ 48000 [... i i et i et e e] - ETA: 10:06 - loss: 2.2997 - acc: 0.1250
25/ B0 [.. e] - ETA: 7:46 - loss: 2.2578 - acc: 0.1992
3B4/4B000 [...t e] - ETA: 6:58 - loss: 2.2127 - acc: 0.2083
BlZ2/4B000 [...t i et e e] - ETA: 6:35 - loss: 2.1632 - acc: 0.2598
BA0/4B000 [...t e] - ETA: 6:20 - loss: 2.0934 - acc: 0.3234

[vsc42544@gligarfl deeplearning]$ tail KERAS MNIST CNN.oll79880

9824/10000 [=.] - ETA: Os
S85E/10000 [=.] - ETA: Os
Sgeg/1o0e0e0 [=.] - ETA: Os
9920/10000 [=.] - ETA: Os
9952/106000 [=.] - ETA: Os
So84/10000 [=.] - ETA: Os
1OEER/10600 [1 - 4ls 4ms/step
€]

Test score: 0.0483192791523

! ast accuracy: [EEE] |
orking directory was /user/scratch/gent/vsc425/vsc42544/KERAS MNIST CNN 1179880 .masterl9.golett.gent.vsc

Lecture 6 — Other Deep Learning Models & Summary

GPU Acceleration

= CPU acceleration means that GPUs accelerate computing due to a massive parallelism with
thousands of threads compared to only a few threads used by conventional CPUs

= GPUs are designed to compute large numbers of floating point operations in parallel

" GPU accelerator architecture example (e.g. NVIDIA card)
= GPUs can have 128 cores on one single GPU chip
= Each core can work with eight threads of instructions
= GPU is able to concurrently execute 128 * 8 = 1024 threads

= |nteraction and thus major (bandwidth)
bottleneck between CPU and GPU &PU
iS Via memory interactions Multiprocessor 1 Multiprocessor N R

- (P[] - (&))[R [Rl | epu
= E.g.applications |

that use matrbx — 4 S—
vector multiplication

A=B*C [7] Distributed & Cloud Computing Book

(other well known accelerators & many-core processors are e.g. Intel Xeon Phi = run ‘CPU’ applications easier)

Lecture 6 — Other Deep Learning Models & Summary

GPU Application Example — Matrix-Vector Multiplication

= Many machine learning problems include matrix multiplications

a, bo,ocoE by cil] by 26+ b0=3c3
a | bl,oco+ b1,101+ bl,zcz‘*‘ b1,303
a, b, yCoft| 6216 b2204H 8,565
L4 _b3,oco+ b, et b5 .00 b3,3c3_

Lecture 6 — Other Deep Learning Models & Summary

HPC System KU Leuven — GPUs

= Accelerators

= Nodes with two 10-core "Haswell" Xeon E5-2650v3 2.3GHz CPUs,
64 GB of RAM and 2 GPUs Tesla K40

ThinKing Cerebro

2x10-core 64x10-core
Ivy Bridge Ivy Bridge
= — 1} V- SAS
64/128 14 TB 21.8TB
GB

¥eon Phi cores

IB QDR NUMAIlink6 / FDR IB

Accelerators

1

NX Server

2x10-core
Ivy Bridge
2 service nodes

A cores Home | Scratch
i | ‘318 || DDNI
G 92 TB DDN2
Login nodes L 192 TB |

VG =
64 GB 7,

Vlaams Supercomputer Centrum

2 visualization nodes

modified from [8] HPC System KU Leuven

Lecture 6 — Other Deep Learning Models & Summary 28 /41

CNN Architecture for Remote Sensing Application

= (Classify pixels in a hyperspectral remote sensing image having groundtruth/labels available
= Created CNN architecture for a specific hyperspectral land cover type classification problem
= Used dataset of Indian Pines (compared to other approaches) using all labelled pixels/classes

= Performed no manual feature engineering to obtain good results (aka accuracy)

Input: . 1D Max Pooling Fully Connected Softmax Output:
Window Tensor 30 Convolution (spectral dimension) Flatten Layers Layer Probabilities
- o |
|
|
] | |
] | | o ——> 4
] | | PY 3
e - > —>: 58
. . - - - o —>
- m n o —
B | u ® —> v
] | |
- — |
- —— ot B
3x

Lecture 6 — Other Deep Learning Models & Summary

Small Data —

Begin - Information - - & = = -

--> Data:

> Number of classes: 16, HS-channels: 220, Window-size: 9

> Mean: 2524.4013671875 , Standard deviation: 1603.017822265625
> Excluded labels: []

> Number of training samples: 1036

> Number of test samples: 9330

--> Learning:

> Epochs: 1000, Batch size: 50

> LR: 1, Momentum: 0, LR-decay: 5e-06

Outputs

> Activation Functions: relu, Loss Function: mean_squared_error

> Optimizer: SGD

--> Regularization:

> Dropout: 0.0

> L2 regularization with factor: 0.0

End - Information

loss: 8.82?155295??8896951 - acc: 0.7379421221609412

Mew loss is bigger --= dont Save moder

1036/1036 []

Layer (type) Output Shape Param #
conv3d_1 (Conv3D) (None, 7, 7, 216, 48) 2208
max_pooling3d_1 (MaxPooling3 (None, 7, 7, 72, 48) 0
zero_padding3d_1 (ZeroPaddin (None, 7, 7, 76, 48) 0
conhv3d_2 (Conv3D) (None, 5, 5, 72, 32) 69152
max_pooling3d_2 (MaxPooling3 (MNone, 5, 5, 24, 32) 0
zero_padding3d_2 (ZeroPaddin (None, 5, 5, 28, 32) 0
cohv3d_3 (Conv3D) (None, 3, 3, 24, 32) 46112
max_pooling3d_3 (MaxPooling3 (None, 3, 3, 12, 32) 0
flatten_1 (Flatten) (None, 3456) 0
dense_1 (Dense) (None, 128) 442496
dense_2 (Dense) (None, 128) 16512
dense_3 (Dense) (None, 16) 2064

Total params: 578,544

= Time needed for learning and testing: 0.49032413981337514 hours

Lecture 6 — Other Deep Learning Models & Summary

- 65 bms/step - loss: 8.0197e-04 - acc: 0.9894

Full Data — Output (2)

[vsc42544@gligar02 .deep learning private]$ sed -n '906765,906824p' IndianPines full 2GPU.o20657803
300821/300821 | s 457Us/step

loss: 0.004567355140805838 | acc: 6.8353838329111958|

Mew loss i1s bigger --= dont save model

33424,/33424 [] - 182s bms/step - loss: 4.8412e-04 - acc: 0.9762
= Time needed for learning and testing: 16.111324077533144 hours

- - - - - - - Begin - Information - - - - - - -

--= Data:

= Mumber of classes: 58, HS-channels: 220, Window-size: 9

> Mean: 2424 .492431640625 , Standard deviation: 1431.9654541015625
= Excluded Labels: []

= Number of training samples: 33424

= MNumber of test samples: 300821

--= Learning:

= Epochs: 1000, Batch size: 50

= LR: 1, Momentum: @, LR-decay: 5e-0&

= Activation Functions: relu, Loss Function: mean_squared error
= Optimizer: SGD

--= Reqularization:

= Dropout: 0.0

= LZ regularization with factor: 0.0

- - - - - - - End - Information - - - - - - -

Lecture 6 — Other Deep Learning Models & Summary

Transfer Learning Results — Transferability
3 retrained network with
-b%\ﬁ%@@(m}_ ’ ‘big data‘ domain A

final layers used to 5o

train ngtwork with) ﬁ@@@{@]—

‘rare data‘ domin B =X

Dense Residential
RS TRE A ariXT

o % o |

= Data randomly taken from various city images
and used with the trained CNN using pre-
trained ImageNet

= Even on unseen data from complete
different datasets transfer learning
is working well

= Shown for scene-wide classification,
not much for pixel-wise classification

[10] D. Marmanis et al., ‘Deep Learning Earth
Obervation Classification Using ImageNet

: ’ \ “ . ’
Harbor - Pretrained Networks’, 2016

Lecture 6 — Other Deep Learning Models & Summary

Problem of Overfitting — Impacts on Learning

= The higher the degree of the polynomial (cf. model complexity), the more degrees of
freedom are existing and thus the more capacity exists to overfit the training data

" Understanding deterministic noise & target complexity
" Increasing target complexity increases deterministic noise (at some level)
" |ncreasing the number of data N decreases the deterministic noise

= Finite N case: ‘H tries to fit the noise
= Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
= Stochastic (in data) and deterministic (simple model) noise will be part of it

= Two ‘solution methods’ for avoiding overfitting

= Regularization: ‘Putting the brakes in learning’, e.g. early stopping
(more theoretical, hence ‘theory of regularization’)

= Validation: ‘Checking the bottom line‘, e.g. other hints for out-of-sample
(more practical, methods on data that provides ‘hints‘)

Lecture 6 — Other Deep Learning Models & Summary

High-level Tools — Keras — Regularization Techniques

= Keras is a high-level deep learning library implemented in Python that works on top of
existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
= Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras. layers.Dropout(rate, . . .
Y pout(_ _ = Dropout is randomly setting a fraction
noise_shape=None,

seed=None) of input units to 0 at each update
during training time, which helps
prevent overfitting (using parameter
rate)

f k i t lari i i
rom keras Amport regufarazers = L2 regularizers allow to apply penalties
model .add(Dense(64, input_dim=64,

kernel_regularizer=regularizers.12(0.01), on layer parameter or layer activity
activity regularizer=regularizers.11(0.01))) during optimization itself — therefore

the penalties are incorporated in the
lost function that the network
optimizes

K e r a S [11] Keras Python Deep Learning Library

Remote Sensing - Experimental Setup @ JSC — Revisited

- CN N SEtU p Feature Representation / Value
) Conv. Layer Filters 48, 32, 32
= Table overview Conv. Layer Filter size | (3,3,5), (3,3,5), (3,3,5)
. Dense Layer Neurons 128, 128
= HPC Machines used opgmizer SGD
Loss Function mean squared error
= Systems JURECA and JURON Activation Functions ReLU
Training Epochs 600
= GPUs Batch Size 50
Learning Rate 1
= NVIDIA Tesla K80 (J URECA) Learning Rate Decay 5x10°°
= NVIDIA Tesla P100 (J U RON) (adding regularization values adds even

more complexity in finding the right parameters)

= While Using MathWorks’

Matlab for the data (having the validation with the full grid search
of all parameters and all combinations
= Frameworks is quite compute — intensive = ~infeasable)

= Keras library (2.0.6) was used

= Tensorflow (0.12.1 on Jureca, 1.3.0rc2 on Juron) as back-end

= Automated usage of the GPU’s of these machines via Tensorflow

Lecture 6 — Other Deep Learning Models & Summary

Exercises — Group Assignment — Check Status

Lecture 6 — Other Deep Learning Models & Summary

[Video] Deep Learning Applications

Source: [Tampuu et al. 2015]

E Evolution of Q-value

¢ F\"-'\J\"df\l.g

Maximum Q-value

1080 1100
[expertise_ Number of frames played

Laton o o oo b 2 s L PaPe e la““.-u- iln.n :qull

@ s O

[6] Deep Learning Applications, YouTube

Lecture 6 — Other Deep Learning Models & Summary

Lecture Bibliography

O
O 0

Lecture 6 — Other Deep Learning Models & Summary 38/41

Lecture Bibliography (1)

[1] Keras Python Deep Learning Library,
Online: https://keras.io/

[2] Theano Deep Learning Framework,
Online: https://github.com/Theano/Theano

[3] LSTM Networks for Sentiment Analysis,
Online: http://deeplearning.net/tutorial/lstm.html

[4] Tensorflow Deep Learning Framework,
Online: https://www.tensorflow.org/

[5] YouTube Video, ‘Recurrent Neural Networks - Ep. 9 (Deep Learning SIMPLIFIED)’,
Online: https://www.youtube.com/watch?v= aCuOwF1ZjU&t=7s

[6] YouTube Video, ‘9 Cool Deep Learning Applications | Two Minute Papers #35/,
Online: https://www.youtube.com/watch?v=Bui3DWs02h4

[7] K. Hwang, G. C. Fox, J. J. Dongarra, ‘Distributed and Cloud Computing’, Book,
Online: http://store.elsevier.com/product.jsp?locale=en EU&isbn=9780128002049

[8] HPC System KU Leuven,
Online: https://www.vscentrum.be/infrastructure/hardware/hardware-kul

[9] A. Gulli and S. Pal, ‘Deep Learning with Keras‘ Book, ISBN-13 9781787128422, 318 pages,
Online: https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Lecture 6 — Other Deep Learning Models & Summary

Lecture Bibliography (2)

= [10] Dimitrios Marmanis et al., ‘Deep Learning Earth Obervation Classification Using ImageNet
Pretrained Networks’, IEEE Geoscience and Remote Sensing Letters, Volume 13 (1), 2016,
Online: http://ieeexplore.ieee.org/document/7342907/

= [11] Keras Python Deep Learning Library,
Online: https://keras.io/

= [12] YouTube Video,‘Sequence Models and the RNN API (TensorFlow Dev Summit 2017),
Online: https://www.youtube.com/watch?v=RIR -Xlbp7s

Lecture 6 — Other Deep Learning Models & Summary

=
£ S new
measurement g @ funding

SErviCes .\ based = concepts Ce tdewce Analysis
forms cross-disciplinary resources E cllmate Computer expertise

ye arllk Computatlﬂﬂal CDm utlﬂ aq ‘..‘.Il---dl:it:lpllmeaimsuh;5 £ Enable 5

Cross-Disciplinary e uM ke
Sci methods blg"‘"‘m Eiprament | odelg &

roaches
stmctiun
Fusion

- centers Es tora 25
=% g€ boe Infrélstrun::turaI =
£t legnce sim |aiéLOD£'ITS S ENES techngp!co gies
EES o increasing [l via iy Pec
1IBig | Ezﬂﬁﬁt?.?g'?g“m B
=5< 2 sing
% databases i European

s € msupercumputlng Work |mages

analy3|s DLCL sy stored Resoures wave & SClentlflczoﬁen

U use . axternal

2 computaetlonal . esearc 52 & geir:fnrn'utance
resealggmmng SCIenceHPC JueIICh &; ﬂsmr"ULan-:Ecaﬂse Sg

Larg
Summary
EHSW

vice

L‘

? o
& ., compute asc
S)"S em Cllmate mﬂdelllng AR5 Hardware E "’E access & = hundreds "= Services £
Understandmg structures Technologies Earth B k) Structure = = network @
DLCLs Slnﬁllatlnne & directory "= = project General 3
L
N
=

Pro'u'lde HhSA Energy systems day o Health

manag

Proce

Lecture 6 — Other Deep Learning Models & Summary

