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Review of Lecture 1

= Machine Learning Prerequisites (decision boundary)

1. Some pattern exists i

output
2. No exact mathematical formula % Wde
3. Data exists X ——(O 2| —v
= Linearly seperable dataset Iris " w1 (acthation
. . function)
= Perceptron Model as hypothesis inputnodes X, (bias)
(simplest linear learning model, (perceptron model)

linearity in learned weights w,) [4) Modelling phase |

= Understood Perceptron
Learning Algorithm (PLA)

" Learning Approaches N \L'/"

= Supervised Learning

petalwidth (in cm)

(%0, 9,) e (X2 Yy)

\ (N =100 samples)

\ (decision boundary)

épetal length (in cm)

= Unsupervised Learning

=  Reinforcement Learning
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Outline
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Outline of the Course

Machine Learning Fundamentals

Unsupervised Clustering and Applications

Supervised Classification and Applications
Classification Challenges and Solutions
Regularization and Support Vector Machines

Validation and Parallelization Benefits
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Outline

* Unsupervised Clustering
= Clustering Methods and Approaches
= K-Means & K-Median Clustering Algorithms
= DBSCAN Clustering Algorithm

= Point Cloud Applications
= |ntroduction to Application Domain
= Dataset Examples
= Bremen Datasets & Locations

= Parallel Computing & Tools
= High Performance Computing (HPC)
= GOLETT Supercomputer for Tutorial
= Parallel & Scalable HPDBSCAN on GOLETT
= Batch System Usage on GOLETT
= Apply HPDBSCAN to Point Cloud Data
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Unsupervised Clustering
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Methods Overview

=  Statistical data mining methods can be roughly categorized in classification, clustering, or
regression augmented with various techniques for data exploration, selection, or reduction

Classification Clustering Regression
P
‘.’
-
v @9 Vv
-
9
" Groups of data exist = | No groups of data exist = |dentify a line with
= New data classified = | Create groups from a certain slope
to existing groups data close to each other describing the data
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What means Learning — Revisited

= The basic meaning of learning is ‘to use a set of observations to uncover an underlying process’
= __The three different learning approaches are supervised, unsupervised, and reinforcement learnin

= Supervised Learning
= Majority of methods follow this approach in this course
= Example: credit card approval based on previous customer applications

= Unsupervised Learning
= Often applied before other learning = higher level data representation

= Example: Coin recognition in vending machine based on weight and size

= Reinforcement Learning
= Typical ‘human way‘ of learning
= Example: Toddler tries to touch a hot cup of tea (again and again)
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Learning Approaches — Unsupervised Learning — Revisited

* Each observation of the predictor measurement(s)
has no associated response measurement:
" lnput xX=2,,...,7,
= No output
= Data (x,),...,(x,)
" Goal: Seek to understand relationships between the observations

= Clustering analysis: check whether the observations fall into distinct groups

" Challenges
= No response/output that could supervise our data analysis
= Clustering groups that overlap might be hardly recognized as distinct group

= Unsupervised learning approaches seek to understand relationships between the observations
= Unsupervised learning approaches are used in clustering algorithms such as k-means, etc.
= Unupervised learning works with data = [input, ---]

[1] An Introduction to Statistical Learning
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Learning Approaches — Unsupervised Learning Use Cases

= Earth Science Data (PANGAEA, cf. Lecture 1)
= Automatic quality control and event detection

,?wﬂ
(S

= Collaboration with the University of Gothenburg

= Koljoefjords Sweden — Detect water mixing events

= Human Brain Data
= Analyse human brain images as brain slices
= Segment cell nuclei in brain slice images
= Step in detecting layers of the cerebral cortex

= Point Cloud Data

= Analysis of point cloud datasets of various sizes
= 3D/4D LIDAR scans of territories (cities, ruins, etc.)

= Filter noise and reconstruct objects

» This clustering lecture uses a point cloud dataset of the city of Bremen as one concrete example I
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Unsupervised Learning — Earth Science Data Example

= Earth Science Data Repository
= Time series measurements (e.g. salinity)
= Millions to billions of data items/locations
= Less capacity of experts to analyse data

. . o Total number of data sets 349 871
= Selected Scientific Case t Dats ftame ~7.9 ilions @
= Data from Koljofjords in Sweden (Skagerrak)

= Each measurement small data, but whole sets are ‘big data’
= Automated water mixing event detection & quality control (e.g. biofouling)

= Verification through domain experts

E e

L
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m Hydrosphere

m Lithosphere
Atmosphere
Cryosphere

[2] PANGAEA data collection



Unsupervised Learning — Human Brain Data Example

» Research activities jointly with T. Dickscheid et al. (Juelich Institute of Neuroscience & Medicine)
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Learning Approaches — Unsupervised Learning Challenges

" Practice: The number of clusters can be ambiguities
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[1] An Introduction to Statistical Learning
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Unsupervised Learning — Different Clustering Approaches

i
R PP
e
ety .
Vg s o \-‘.; e
At e l
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(hierarchical) (centroid) (density) (distribution)

= Clustering approaches can be categorized into four different approaches:
(1) hierarchical, (2) centroid, (3) density, (4) distribution
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Unsupervised Learning — Clustering Methods

" Characterization of clustering tasks
= No prediction as there is no associated response Y to given inputs X
= Discovering interesting facts & relationships about the inputs X
= Partitioning of data in subgroups (i.e. ‘clusters’) previously unknown
= Being more subjective (and more challenging) than supervised learning

" Considered often as part of ‘exploratory data analysis’
= Assessing the results is hard, because no real validation mechanism exists

= Simplifies data via a ‘small number of summaries’ good for interpretation

=  Clustering are a broad class of methods for discovering previously unknown subgroups in data I
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Selected Clustering Methods

= K-Means Clustering — Centroid based clustering

= Partitions a data set into K distinct clusters (centroids can be artificial)

* K-Medoids Clustering — Centroid based clustering (variation)

= Partitions a data set into K distinct clusters (centroids are actual points)

= Sequential Agglomerative hierarchic nonoverlapping (SAHN)

= Hiearchical Clustering (create tree-like data structure - ‘dendrogram’)

* Clustering Using Representatives (CURE)

= Select representative points / cluster — as far from one another as possible

* Density-based spatial clustering of applications + noise (DBSCAN)

=  Assumes clusters of similar density or areas of higher density in dataset

Lecture 2 — Unsupervised Clustering and Applications



Clustering Methods — Similiarity Measures

" How to partition data into distinct groups?
= Data in same (homogenous) groups are somehow ‘similiar’ to each other
= Data not in same sub-groups are somehow ‘different’ from each other
= Concrete definitions of ‘similiarity’ or ‘difference’ often domain-specific

= Wide variety of similiarity measures exist, e.g. distance measures

= Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance, ...

= A distance measure in some space is a function d(x,y) that takes
two points in the space as arguments and produces a real number

= Often used ‘similiarity measure’ example

= Distance-based: Euclidean distance d([z1, 20, ..., 20], [¥1,90,. .., Yn]) = JZ{J?; — ;)2

" n-dimensional Euclidean space:

. ruler distance
A space where points are vectors of n real numbers ( )
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Clustering Methods — K-Means Approach

= Approach Overview
= Partitions a data set into K distinct (i.e. non-overlapping) clusters
= Requires the definition of the desired number of clusters K in advance
= Assigns each observation / data element to exactly one of the K clusters
= Example: 150 observations; 2 dimensions; 3 different values of K

s

° ...0

o':c

[1] An Introduction to Statistical Learning

Lecture 2 — Unsupervised Clustering and Applications



Clustering Methods — K-Means Algorithm

0. Set the desired number of clusters K
= Picking the right number k is not simple (= later)

1. Randomly assign a number from 1 to K to each observation
= |nitializes cluster assignments for the observations

=  Requires algorithm execution multiple times
(results depend on random assignment, e.g. pick ‘best’ after 6 runs)

2. lterate until the cluster assignments stop changing

a. For each of the K clusters: compute the cluster centroid

=  The kth cluster centroid is the vector of the p feature means
for all the observations in the kth cluster

b. Assign each observation to the cluster K whose centroid is closest
=  The definition of ‘closest’ is the Euclidean distance
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Clustering Methods — K-Means Algorithm Example

Data Step 1 Iteration 1, Step 2a
o® k = o® L
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lteration 2, Step 2a
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[1] An Introduction to Statistical Learning

Lecture 2 — Unsupervised Clustering and Applications

Randomly assign a
number from 1 to K
to each observation

lterate until the
cluster assignments
stop changing

d.

For each of the K
clusters: compute
the cluster centroid
[centroids appear
and move]

Assign each
observation to the
cluster K whose
centroid is closest

[Euclidean distance]



Clustering Methods — K-Means Usage

= Advantages
= Handles large datasets (larger than hierarchical cluster approaches)
= Move of observations / data elements between clusters
(often improves the overall solution)
= Disadvantages
= Use of ‘means’ implies that all variables must be continous
= Severaly affected by datasets with outliers ( 2 means)
= Perform poorly in cases with non-convex (e.g. U-shaped) clusters

= ‘Big Data‘ Application Example
= |mage processing: 7 million images
= 512 features/attributes per image;

= 1 million clusters

= 10000 Map tasks; 64GB broadcasting; f,s;,],{,'ﬁ,’;g;:," zgﬂecwe communication

= 20 TB intermediate data in shuffling;
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[Video] K-Means Clustering
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[4] Animation of the k-means clustering algorithm, YouTube Video
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Selected Clustering Methods

= K-Means Clustering — Centroid based clustering

= Partitions a data set into K distinct clusters (centroids can be artificial)

* K-Medoids Clustering — Centroid based clustering (variation)

= Partitions a data set into K distinct clusters (centroids are actual points)

= Sequential Agglomerative hierarchic nonoverlapping (SAHN)

= Hiearchical Clustering (create tree-like data structure - ‘dendrogram’)

* Clustering Using Representatives (CURE)

= Select representative points / cluster — as far from one another as possible

* Density-based spatial clustering of applications + noise (DBSCAN)

=  Assumes clusters of similar density or areas of higher density in dataset
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DBSCAN Algorithm

= DBSCAN Algorithm [5] Ester et al.

® |ntroduced 1996 and most cited clustering algorithm
= Groups number of similar points into clusters of data

= Similarity is defined by a distance measure
(e.g. euclidean distance)

= Distinct Algorithm Features

= Clusters a variable number of clusters O D;y‘ FOLL9 N
= Forms arbitrarily shaped clusters (except ‘bow ties’) @ : @ '
= |dentifies inherently also outliers/noise P ’

(I\/IinPc;i-r;E; =4)

=" Understanding Parameters

" Looks for a similar points within a given search radius  (pg - pensity rReachable)
> Parameter eps:/on (DDR = Directly Density

= A cluster consist of a given minimum number of points Reachable)
—> Parameter minPoints (DC = Density Connected)
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DBSCAN Algorithm — Non-Trivial Example

= Compare K-Means vs. DBSCAN — How would K-Means work?
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I = DBSCAN forms arbitrarily shaped clusters (except ‘bow ties‘) where other clustering algorithms fail




Exercises
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[Video] DBSCAN Clustering

_. IN(x)| = 2
O - |

@ Border

minpts = 4 O © Core
4> 2 O OO

[6] DBSCAN, YouTube Video



Point Cloud Applications

O
O 0
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Point Cloud Applications

= ‘Big Data‘’: 3D/4D laser scans

= Captured by robots or drones

= Millions to billion entries ity

= |nner cities (e.g. Bremen inner city)
= Whole countries (e.g. Netherlands)

= Selected Scientific Cases
= Filter noise to better represent real data
= Grouping of objects (e.g. buildings)
= Study level of continous details

-
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Point Cloud Application Example — Within Buildings

" Point based rendering example
= Aachen Cathedral based on 3D laser scans and photos
= Points are rendered as textured and blended splats

= Visualisation can run in real-time on a desktop PC
showing 6 million splats based of a 120 million point laser scan

[7] Aachen Cathedral Point Cloud Rendering, YouTube Video
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Bremen Dataset & Locations

= Different clusterings of the inner city of Bremen
= Using smart visualizations of the point cloud library (PCL)

[vsc42544agl1igar0l Bremen]$ pwd = The Bremen Dataset is encoded

/apps/gent/tutorials/machine learning/clustering/Bremen in the HDF5 format
[vscd2544@gligar@l Bremen]$ 1s -al
total 2684416

drwxr-xr-x 2 vscd@003 vscdl@EE3 4098 MNov 22 15:42

drwxr-xr-x 5 vscd@003 vscd@EE3 4096 Mov 22 15:44 .,

CrwW-r--r-- 1 vsc4B003 vsc4G003 1302382632 Nov 22 14:07 bremen.hs.h5 [15] Bremen Dataset
-rw-r--r-- 1 vscd4BB03 vsc40003 72002416 Jan 13 2017 bremenSmall.h>.h5

(oon) B2SHARE

Store and Share Research Data



Exercises
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[Video] Point Clouds

[8] Point Based Rendering of the Kaiserpfalz in Kaiserswerth, YouTube Video
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Parallel Computing

O
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Understanding HPC vs. HTC

= High Performance Computing (HPC) is based on computing resources that enable the efficient use
of parallel computing techniques through specific support with dedicated hardware such as high
performance cpu/core interconnections.

interconnection
important

focus in the next slides

= High Throughput Computing (HTC) is based on commonly available computing resources such as
commodity PCs and small clusters that enable the execution of ‘farming jobs’ without providing a
high performance interconnection between the cpu/cores.

n |m @ @ network . D I:l
= !VJ \MJ interconnection
= (I .
I IJJ @ @ HTC less lmportant! D D D
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Ugent Tier-2 Clusters

= Using Parallel Computing
= Compiled from open source
= Requires MPI library

" |ntended to be used
by High Performance
Computing system
(i.e. good interconnects)

" Jobruns
: = Use our ssh keys to get an
- US? of job access and useyresefvation
scripts = Put the private key into
= Depend on your ./ssh directory (UNIX)
scheduler = Use the private key with
your putty tool (Windows)

[14] UGent Tier-2 Clusters
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UGent Tier-2 Clusters — GOLETT in the Tutorial

#nodes CPU Mem/node  Diskspace/node Network

Raichu 64 2 x 8-core Intel E5-2670 32GB 400 GB GbE
{Sandy Bridge @ 2.6 GHz)

DEICatt}' 160 2 x 8-core Intel E5-2670 64 GB 400 GB FDR InfiniBand
{Sandy Bridge @ 2.6 GHz)

Phanpy 16 2 x 12-core Intel E5-2680v3 512 GB 3x 400 GB (55D, striped) FDR InfiniBand
(Haswell-EP @ 2.5 GHz)

Golett 200 2 x 12-core Intel E5-2680v3 64 GB 500 GB FDR-10 InfiniBand
(Haswell-EP @ 2.5 GHz)

Swalot 128 2 x 10-core Intel E5-2660v3 128 GB 1TB FDR InfiniBand

(Haswell-EP @ 2.6 GHz)

[14] UGent Tier-2 Clusters
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UGent Tier-2 Clusters — Login & Module Swap Cluster/golett

adminuser@linux-8djg:~= ssh vscd2544@login.hpc.ugent.be
Last login: Wed Nov 22 17:15:00 2017 from pool-216-7-zam&@6.vpn.kfa-juelich.de

STEVIN HPC-UGent infrastructure status on Wed, 22 Nov 2017 22:15:01

cluster - full - free -

delcatty
golett
phanpy
raichu
swalot

ance and ed downtime can be found on
centrum.be/en/user-portal tem-status

[vscd2544@gligar@l ~]% module swap cluster/golett

The following have been reloaded with a version change:
1) cluster/delcatty == cluster/golett

Vlaams Supercomputer Centrum

[14] UGent Tier-2 Clusters
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Exercises
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Review of Parallel DBSCAN Implementations

Technologv Platform Approach Analvsis
HPDBSCAN C: MPI; OpenMP Parallel, hybrid, DBSCAN
(authors implementation)
~ Apache Mahout JTava. Hadoop K-means variants, spectal,
no DBSCAN
Apache Spark/MLIlib Java; Spark Only k-means clustering,
No DBSCAN
scikit-learn Python No parallelization strategy
for NRS(CA
Northwestern University | C++; MPI; OpenMP Parallel DBSCAN
PDSDBSCAN-D

[9] M. Goetz, M. Riedel et al., ‘On Parallel and Scalable Classification and Clustering
Techniques for Earth Science Datasets’, 6" Workshop on Data Mining in Earth System
Science, International Conference of Computational Science (ICCS)
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HDBSCAN Algorithm Details

= Parallelization Strategy

= Smart ‘Big Data‘ Preprocessing
into Spatial Cells (‘indexed’)

= OpenMP standalone
= MPI (+ optional OpenMP hybrid)

= Preprocessing Step

= Spatial indexing and redistribution
according to the point localities

= Data density based chunking of
computations

= Computational Optimizations

0 1 6 7 8
P
I. 1
1 , 1 1
9 o .8. 159 6 7
[ ]
L ]

45 46

54 55 60 61 62

63 64 69 70

~
~

[10] M.Goetz, M. Riedel et al., ‘'HPDBSCAN - Highly
Parallel DBSCAN’, MLHPC Workshop at
Supercomputing 2015

= Caching of point neighborhood searches

= Cluster merging based on comparisons instead of zone reclustering
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HPDBSCAN — Smart Domain Decomposition Example

= Parallelization Strategy R 4@
= Chunk data space equally r.:zi._-, | E—

= Qverlay with hypergrid rocssor —

Q o]
= Apply cost heuristic 610"l 8 6 -
aso o200 54 O a3
. . . . e @
» Redistribute points (data locality) oo T g ot/
3 O | Oz 1 O 2
O &
= Execute DBSCAN locally E—— N
" Merge clusters at chunk edges O lg) )| e .
PR 1609\02 054 3
= Restore initial order o 709 I "9
3[‘:2 Oes 7 Oz: 1 O =
M H O &
= Data organization Te— e m—
» Use of HDF5 i?g, T I i sl
. A oo = g 128 | = MPIDS1 o
= Cluster Id / noise ID e g 4] e
. . — T 32
stored in HDF5 file . g 1
| distribute E 8
[10] M.Goetz, M. Riedel et al., . , | ;
‘HPDBSCAN - Highly Parallel DBSCAN’, K T ' F : 1
MLHPC Workshop at Supercomputing 2015 @——7¥—/¥/¥7/¥/7/7¥—/— ? %mmbe?if cor952 oo
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HPDBSCAN HDF5 — Parallel 1/0: Shared file

P1 P2 P3 P4 P5
= Each process performs 1/O to a single file

= The file access is ‘shared’ across all processors involved

= E.g. MPI/IO functions represent ‘collective operations’

= Scalability and Performance
= ‘Data layout’ within the shared file is crucial to the performance
= High number of processors can still create ‘contention’ for file systems

= Parallel I/0O: shared file means that processes can access their ‘own portion’ of a single file
= Parallel I/O with a shared file like MPI1/10 is a scalable and even standardized solution
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HPDBSCAN HDF5 — Parallel 1/O & File Systems

= Hierarchical Data Format (HDF) is designed to store & organize large amounts of numerical data
= Parallel Network Common Data Form (NETCDF) is designed to store & organize array-oriented data

[16] HDF Group [17] Parallel NETCDF

= Portable Operating System Interface for UNIX (POSIX) |/O
= Family of standards to maintain OS compatibility, including 1/O interfaces
= E.g.read(), write(), open(), close(), ...(very old interface, some say ‘too old’)

= ‘Higher level I/O libraries’ HDF5 & NETCDF
= |ntegrated into a parallel application
= Built on top of MPI 1/0 for portability

= Offers machine-independent
data access and data formats

Parallel application

L
4 §:

POSIX I/O

Parallel file system
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1/0 with Multiple Layers and Distinct Roles

= Parallel 1/0 is supported by multiple software layers with distinct roles
that are high-level 1/0 libraries, /O middleware, and parallel file systems

Application
Application High-level I/O Library

Parallel File System - I/O Middleware (MPI-IO) [18] R. Thakur, PRACE Training,
- Parallel 1/0 and MPI I/0
I/O Hardware Parallel File System

= High-Level I/O Library
= Maps application abstractions to a structured portable file format
= E.g. HDF-5, Parallel NetCDF

= |/O Middleware
= E.g. MPII/O
= Deals with organizing access by many processes

I/O Hardware

= Parallel Filesystem

= Maintains logical space and provides efficient access to data
= E.g. GPFS, Lustre, PVFS
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Hierarchical Data Format (HDF)

I =  HDF is a technology suite that enables the work with extremely large and complex data collections

[19] HDF@ I/O workshop
" Simple ‘compound type’ example:
= Array of data records with some

descriptive information (5x3 dimension) 'HDFS file is a container”
int(4); int(16); 2x3x2 array (float32)
T il T
AT T s
I T i s

“Groups”

EmT s s
T e o

Dimensionality: 5 x 3
B e [EE] |23 aray of floats2

W

“Datasets”
Record

Datatype:

Raster image

2-D array
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Cluster Golett — Why using a Scheduler in the Tutorial?

= Example: JUQUEEN concurrent usage shown in LLview

Eile Dptions

Last. Updatel 1/15/12 12:15:01 next. in |33 = Source | Wi | Help

I

53 305024/450752,
fress 73728, 9 nds (0 nshd)
Filal sl el sT el 716l altolihz lislialis e larlas s loolenToz Tesloalos e Tor s Tea oo Tat TazTos Tas Tos o T Iz Tanleo lea ez luslua lus ug a7 laglanlon Tot Tme Tms e Tosles {1727 75725 0.0 0 1
TFJs [ Ueerid | Class [bouks[nodes [vasks [node [torus waIT [ TErd

L. 32768 User#025 md0d 8 28 TS 7 1 06 60 47w [N
2. 32768 User#000  m004 B4 2048 32783 7 1 15.4  24:10  21:03
3. 16384 User#003 w002 32 1024 16384 7 1 0.5 7:10  18:54
4. 16304 Usernd? w02 3 1024 1634 2 1 03 10 138
5. 16384 User#d3 nd02 321024 1634 7 1 13 12:00 23:08
. 16384 User#053 w002 32 1024 16384 7 1 1.5 24:09 +10:55
7. 16384 User#016 w002 32 1024 16384 7 1 22,00 24:10  14:24
8. 16384 Users00d mi02 B 1024 1684 7 1 03 70 49:04
9. 16384 User#003 w002 32 1024 16384 7 1 0.4 7:10 19:03
10. 16384 User#007 w002 32 1024 16384 7 1 2.7 8:10  17:42
1. 16384 User#0l? woo2 3102 1634 7 1 92 24:0 «03:0
12. 16384 User#003 w002 32 1024 16384 7 1 3.9 7:10 15:33
13. 16384 User#017 w002 32 1024 16384 7 1 6.6 24:10 +05:50
4. 0192 Userw2) susnall 15 B2 81 2 1 10 20 13:28
15. 8192 Useri23 w00l 16 52 82 7 1 14 60 16:59
16. 8192 User#002 w001 16 512 819 7 1 5.9 6:10 12:30
17, 8192 User#006 w001 16 512 8192 7 1 22,4 24:10  14:02
48 8192 User#033 mool 46 B2 M@ 7 1 2.0 60 46:2
19, 8192 User#043 m00L 16 512 8192 7 1 3.8 12:10  20:36

JUDUEEN 200 8192 User#006  wOOL 16 512 819 7 1 21.9  24:10  14:30
20 8192 Userv0id wool 46 B2 #M@ 7 1 478 20 4:37
22, B192 User#042 sustem 16 512 8192 7 1 22.6  75:10 +16:50
23, 8192 User#029  wOOL 16 512 819 7 1 4.1 600 14:08
24, 4035 ser#000 008 8 % 0% 2 1 74 1m0 72t |/

t L
RS O T i 101 i et 1

#124 pdates, started at Thu Nov 15 10:10:53 2012

AE

/12 12:30100 —— large jobs

== unall joikd/15/38: 12215300

Usage:  date=11/12/12-23:00:00

ruiber of samples
start date of sanple!
end  date of sanple: 11/12/12-2331¢
runber of nodest (avg.) 458752

Inunber of nodes: (ave.) 458752
I1arge jobs
Isnall jobs < rack
11/12/12-23:00100 | fres nodes
5200|

1Pouer lisage

147456 32
134150 42
117145 25

i faug,)
2 (avg.)
+ (avg,)

8 21805.38900 Hil

Bl
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UGent Tier-2 Cluster Golett — HPDBSCAN Job Script

#!/bin/bash .

e L = Job submit using command:

#PBS -1 nodes=1:ppn=all gsub <jobscript>

module load HPDBSCAN/20171110-foss-2017b " Remember your <jobid> that is returned

module load vsc-mympirun from the qsub command
WORKDIR=$VSC_SCRATCH/$PBS JOBID = Show status of the job then with:
-p $WORKDIR qgstat

$WORKDIR

ER /apps/gent/tutorials/machine learning/clustering/Bremen/bremenSmall.h5.h5

# by default, mympirun will use all available cores
# yse - _hybrid to only ea 3 ceartain pumber of cores (per wolrkerrpode]
I mympirun --hybrid 6 dbscan -e 300 -m 100 -t 12 bremenSmall.h5.h5

Results available in $WORKDIR (parameters of DBSCAN and file to be clustered)

[vsc42544@gligar@l ~1% gsub HPDBSCAN_example.sh
1173910 .masterl9.golett.gent .vsc
[vsc42544@gligarfl ~]1$ gstat

Job ID Name User Time Use 5 Queus 0

Vlaams Supercomputer Centrum
1173518 .masterl9.golett.gent. ...AN example.sh vscd4Z544 G Q short

I = Add for the tutorial reservation in the top of the file please this — check email with reservation!
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UGent Tier-2 Cluster Golett — HPDBSCAN Check Outcome

[vsc42544@gligar@l ~]1$% more HPDBSCAN example.sh.oll73910

Calculating Cell Space...

Computing Dimensions... [0K]
Computing Cells... [OK]
Sorting Points... [OK]
Distributing Points... [OK]
DESCAN. ..
Local Scan... [OK]
Merging MNeighbors. .. [OK]
Adjust Labels ... [OK]
Fec. Init. Order ... [OK]
Writing File ... [OK]
Fesult...
B5 Clusters

2973821 Cluster Points

261759 Moise Points

2953129 Core Points
Took: 238.233050s

in
in
in
in

in
in
in
in
in

0.017713
0.150861
@.383150
0.605415

235.598392
0.080566
0.101197
1.048572
0.017491

The outcome of the
clustering process

is written directly into the
HDFS5 file using cluster IDs
and noise IDs

o g Y

Vlaams Supercomputer Centrum

Results available in /user/scratch/gent/vscd425/vscd42544/1173910.masterl9.golett.gent.vsc

[vscd2544@gligar®l ~]1%

[vsc42544@gligarfl ~]$ cd Juser/scratch/gent/vscd25/vscd42544/1173910.masterl9.golett.gent . .vsc

[vscd2544@gligar0l 1173910 .masterl9.golett.gent.vscl$ 1s -al

total 70400

drwxrwxr-x 2 vscdZbdd yscd2had
A o o o 123 werdPEA wer AR

4096 Nov 22 22:33 .
AGCE hoa 27 27.273

-rw-r--r-- 1 vscd2544 yscd2544 72002416 MNov 22 22:37 bremenSmall.h5.h5 I
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UGent Tier-2 Cluster Golett — Point Cloud Viewer Bremen

adminuser@linux-8djg:~= ssh -X vsc4Z2544@login.hpc.ugent . be
Last login: Wed Nov 22 16:16:28 2017 from 91.177.4.215

STEVIN HPC-UGent infrastructure status on Thu, 23 Nov 2017 02:15:01

delcatty
golett
phanpy
raichu
swalot

mainten e and unsc i C i Ffound on
entrum. S s

Jusr/bin/xauth:  file Juser/home/gent/vscd2b/vscd42544/  Kauthority does not exist

[vscd2544@gligar®3 Bremen]$ module load PCL/1.8.1-intel-2017b-Python-2.7.14
[vscd2544@gligar®3 Bremenl$ pwd

/apps/gent/tutorials/machine learning/clustering/Bremen

[vscd2544@gligar®3 Bremen]$ 1s -al

total 3431816

drwxr-xr-x 2 vscdBR03 vscd4lBi03 4396 Mow 22 22:39

drwxr-xr-x 5 vscd@EE3 vscdBRE3 4398 Mov 22 15:44 .

-rw-r--r-- 1 vscd4@003 vscdBOB3 382559971 MNov 22 22:39 bremenClustered.pcd
-rw-r--r-- 1 vscd4@ER3 vscdOBE3 13023826832 Nov 22 14:07 bremen.h5.h5
-rw-r--r-- 1 vsc4B0B03 vsc4B003 72002416 Jan 13 2017 bremensSmall.hS.h5
[vsc42544@gligar@3 Bremenl$ pcl viewer bremenClustered.pcdl
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UGent Tier-2 Cluster Golett — Point Cloud Viewer Bremen

PCD viewer (on gligar03.gligar.os)

Aieppenc lustered. ped

I =  Use Strg and Mouse Wheel to Zoom and use numbers of keyboard for different visualizations
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Exercises
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Review of Parallel SVM Implementations

Technology Platform Approach Analysis
Apache Mahout Java; Hadoop No parallelization strategy
for SVMs
Apache Spark/MLIib Java; Spark Parallel linear SVMs
(no multi-class)
Twister/ParallelSVM Java; Twister: Parallel SVMs, open source:
Hadoop 1.0 developer version 0.9 beta
scikit-learn Python No parallelization strategy
for SVMs
piSVM 1.2 & piSVM 1.3 C: MPI Parallel SVMs; stable;
not fully scalable
GPU LibSVM CUDA Parallel SVMSs: hard to
programs. early versions
pSVM C:; MPI Parallel SVMs; unstable;
beta version

[9] M. Goetz, M. Riedel et al., “On Parallel and Scalable Classification and Clustering Techniques for Earth Science
Datasets’, 6" Workshop on Data Mining in Earth System Science, International Conference of Computational Science

» Lecture 3-6 will cover Supervised Classification using Support Vector Machines with piSVM
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Parallel and Scalable Machine Learning — piSVM

= ‘Different kind’ of parallel algorithms
" Goalisto ‘learn from data’ instead of modelling/approximate the reality
= Parallel algorithms often useful to reduce ‘overall time for data analysis’
= E.g. Parallel Support Vector Machines (SVMs) Technique

= Data classification algorithm PiSVM using MPI to reduce ‘training time'
= Example: classification of land cover masses from satellite image data

\ Class Training Test

Buildings 18126 163129

b S L] - Blocks 10982 98834

° . . e | | | ‘ Roads . 16353 147176
2 a4 5 6 s o« b . 5 Light Train 1606 14454
- 14 - - Vegetation 6962 62655

Trees 9088 81792

7 Bare Soil 8127 73144

Soil 1506 13551

Tower 4792 43124

Total 77542 697859

. [11] G. Cavallaro & M. Riedel et al., ‘On Understanding Big Data Impacts
.ﬂ'SvM in Remotely Sensed Image Classification Using Support Vector Machine
Methods’, Journal of Applied Earth Observations and Remote Sensing

» Lecture 3-6 will cover Supervised Classification using Support Vector Machines with piSVM
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Parallel SVM with MPI Technique — piSVM Implementation

" QOriginal piSVM 1.2 version (2011)

= QOpen-source and based on libSVM library, C

= Message Passing Interface (MPI)

.YTSVM

[12] piSVM on SourceForge, 2008

= New version appeared 2014-10v. 1.3 (no major improvements)

= Lack of ‘big data‘ support (e.g. memory, layout)

" Tuned scalable parallel piSVM tool 1.2.1

= Highly scalable version maintained by Juelich

= Based on original piSVM 1.2 tool

= QOpen-source (repository to be created)
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[Video] Parallel 1/0 with I/O Nodes

[13] Simplifying HPC Architectures, YouTube Video
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