Parallel & Scalable Data Analysis

Introduction to Machine Learning Algorithms

\\
N
A Dr. — Ing. Morris Riedel
- \\ Adjunct Associated Professor
‘\ School of Engineering and Natural Sciences, University of Iceland

Research Group Leader, Juelich Supercomputing Centre, Germany

Supervised Classification & Applications

November 23t 2017
Ghent, Belgium

e\\‘g\lﬂu’,‘r P
; = % UNIVERSITY OF ICELAND U L I C H
2) 05 SCHOOL OF ENGINEERING AND NATURAL SCIENCES

FORSCHUNGSZENTRUM

)/QISaai\
FACULTY OF INDUSTRIAL ENGINEERING,

MECHANICAL ENGINEERING AND COMPUTER SCIENCE



Review of Lecture 2

= Unsupervised Clustering
= K-Means & K-Median
= DBSCAN very effective
= Applications in Context

= Point Cloud Datasets
= 3D/4D laser scans
= (Cities, Buildings, etc.
= Big Data: Whole Countries

= Parallel Computing IR anunk
* HPC and Cluster Environments - i‘ﬁ»{ s"
= Massively parallel HPDBSCAN : L{z‘,,% ‘
= Applied to Point Cloud Datasets
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Outline
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Outline of the Course

Machine Learning Fundamentals

Unsupervised Clustering and Applications

Supervised Classification and Applications

Classification Challenges and Solutions
Regularization and Support Vector Machines

Validation and Parallelization Benefits
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Outline

= Supervised Classification Approach

Formalization of Machine Learning
Mathematical Building Blocks
Feasibility of Learning

Statistical Learning Theory in Short
Theory of Generalization

Linear Perceptron Example in Context
Problem of Overfitting

= Remote Sensing Applications

Introduction to Application Domain
Rome Dataset

Indian Pines Dataset

Explore need for Parallelization

Lecture 3 — Supervised Classification and Applications




Supervised Classification Approach

O
O 0
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Learning Approaches — Supervised Learning Revisited

; = Example of a very
simple linear

/\ supervised
2.5 B learning model:

The Perceptron
SB[ Fe
. EE mEE =

petal width (in cm)
N
I
n¥m
[ |

1.5 @ Iris-setosa
M Iris-virginica
1 (X059 )5 os (X5 Uy )
(N =100 samples)
0.5
(decision boundary)
0 m . . . . . . . - petal length (in cm)
0 1 2 3 4 5 6 7 8

Lecture 3 — Supervised Classification and Applications



Learning Approaches — Supervised Learning — Formalization

* Each observation of the predictor measurement(s)
has an associated response measurement:

" lnput X=x,...,0

d Training Examples
u Output y.“Z — 1,..,?1 (X17y1)7""(XN7yN)
m Data (Xl , Uy ) ) oeees (XN : yN) (historical records, groundtruth data, examples)

" Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future
observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

= Supervised learning approaches fits a model that related the response to the predictors
= Supervised learning approaches are used in classification algorithms such as SVMs
= Supervised learning works with data = [input, correct output]

[1] An Introduction to Statistical Learning



Feasibility of Learning

Statistical Learning Theory deals with the problem of finding a predictive function based on data

4

[2] Wikipedia on ‘statistical learning theory

* Theoretical framework underlying practical learning algorithms

= E.g. Support Vector Machines (SVMs)
= Best understood for ‘Supervised Learning’

* Theoretical background used to solve ‘A learning problem’

= |nferring one ‘target function’ that maps

between input and output Unknown Target Function
f: X =Y

= |[earned function can be used to

predict output from future input (ideal function)

(fitting existing data is not enough)

Lecture 3 — Supervised Classification and Applications



Mathematical Building Blocks (1)

Unknown Target Function Elements we

f . X N Y not exactly

(need to) know

(ideal fl,énction)

<______..__-

Elements we
. . must and/or
Training Examples should have and
X e X that might raise
( 1,?}1), 7( N7yN) huge demands
(historical records, groundtruth data, examples) for storage

Lecture 3 — Supervised Classification and Applications
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Mathematical Building Blocks (1) — Our Linear Example

Unknown Target Function 1_ Some pattern eXiStS
f: X =Y
(deal fotion) 2. No exact mathematical

formula (i.e. target function)
3. Data exists

(______.._..-

Training Examples
(X17 y1)7 T (XNJ yN)

(historical records, groundtruth data, examples)

(if we would know the exact target function we dont need
machine learning, it would not make sense)

(decision boundaries depending on f) d

Iris-virginica if Z w;x; > threshold

=1 (w; and threshold are

still unknown to us)

d
Iris-setosa if Z w;x; < threshold
i—1

d (we search a
h(X) = sign ( ( Z “,371) _ th'r'eshold) heH function similiar

— like a target function)
1=
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Feasibility of Learning — Hypothesis Set & Final Hypothesis

* The ‘ideal function’ will Unkn«;;vn?;ee”u;;ﬂon
. . . X —
remain unknown in learning

" |Impossible to know and learn from data

= |f known a straightforward implementation would be better than learning
= E.g. hidden features/attributes of data not known or not part of data

= But ‘(function) approximation’ of the target function is possible
= Use training examples to learn and approximate it
= Hypothesis set 7{ consists of m different hypothesis (candidate functions)

H — {hla - hm}a ‘select one function’ qg: X =Y

that best approximates

Hypothesis Set Final Hypothesis
H={h}; geH g~ f

Lecture 2 — Supervised Classification



Mathematical Building Blocks (2)

Unknown Target Function Elements we

not exactly
f: X =Y

(need to) know

(ideal fqinction)

]
]
]
]
]
]
]
]
\:, Elements we
. . must and/or
Training Examples should have and
X vees | X that might raise
( L yl)’ i ( N yN) huge demands
(historical records, groundtruth data, examples) for storage

Final Hypothesis

g f

Hypothesis Set
H={h}; geH

Lecture 2 — Supervised Classification
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Mathematical Building Blocks (2) — Our Linear Example

(decision boundaries depending on f)

H — {hl, cees hm},

(we search a function similiar
like a target function)

d
h(x) = sign ( ( Z uxl) - th'r'eshold) ;h e H

1=1

Final Hypothesis

g=J

d
h(x) = sign ( ( Z ua:l) - th'r'eshold) ;h e H

=1

(activation
function)

input nodes t=04

Hypothesis Set

H = {h}, g c H (trained perceptron model

and our selected final hypothesis)

(Perceptron model — linear model)
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The Learning Model: Hypothesis Set & Learning Algorithm

" The solution tools — the learning model:

1. Hypothesis set H - a set of candidate formulas /models
2. Learning Algorithm A - “train a system‘ with known algorithms

Training Examples

(Xl’yl)ﬂ Tt (XN’yN)

Learning Algorithm (‘train a system‘) - Final Hypothesis
1 9=/
I = Qur Linear Example
Hypothesis Set 1. Perceptron Model
H={h}; geH P .
2. Perceptron Learning

Algorithm (PLA)

‘solution tools’

Lecture 3 — Supervised Classification and Applications



Mathematical Building Blocks (3)

Unknown Target Function Elements we

f X Y not exactly

(need to) know

(ideal fqinction)

]
]
]
]
]
]
]
]
\:/ Elements we
— must and/or
Training Examples should have and
X L (x that might raise
( 12 yl)’ ? ( N2 yN) huge demands
(historical records, gropndtruth data, examples) e

Learning Algorithm (‘train a system‘)

Final Hypothesis

g f

Hypothesis Set

H=1{h};, geH
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Mathematical Building Blocks (3) — Our Linear Example

Unknown Target Function

[ X =Y

(ideal fugnction)

<____..-..-..-

Training Examples

(X17 y1)7 T (XN7 yN)

(historical records, grolindtruth data, examples)

A4

Learning Algorithm (‘train a system?)

(Perceptron/tea rning Algorithm)

Hypothesis Set

H=1{h};, geH

(Perceptron model — linear model)

Lecture 3 — Supervised Classification and Applications

A x2 3 y
i 10 04 (Xlﬂyl)ﬂ'“ﬂ(xNﬂyN)
2 1011 (training data)
3 1101
4 1111
d
5 00 1-1
- I S'ign((’zl:u';.rf) Hu'r.s]mfrf)
i
7 0111
- e (training phase;
Find w; and threshold
(algorithm uses that fit the data)
training dataset)
output
X 0.3 node
Final Hypothesis
g f Y
(activation
function)

input nodes t=04

(trained perceptron model
and our selected final hypothesis)



Exercises
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Feasibility of Learning — Probability Distribution

" Predict output from future input ——
(fitting existing data is not enough) frX—=Y
= |n-sample 1000 points’ fit well

= Possible: Out-of-sample >= ‘1001 point’
doesn‘t fit very well

<______-_-_-—

= Learning ‘any target function’ Training Examples
. . . (X17y1)5""(XN?yN)
s not feasible (can be anything)
= Assumptions about ‘future input’ e
= Statement is possible to P on X
define about the data outside _
. (which exact
the In_sample data (X1ayl):---a(XN:yN) X = ($1,...7£Cd)b probability
= All samples (also future ones) are 's hot Important,
. , e . . but should not be
derived from same ‘unknown probability’ distribution P on X completely
random)

Statistical Learning Theory assumes an unknown probability distribution over the input space X

Lecture 3 — Supervised Classification and Applications




Feasibility of Learning — In Sample vs. Out of Sample

" Given ‘unknown’ probability P on X
= Given large sample N for (x,,y,). ... (X5, yy)
= There is a probability of ‘picking one point or another’
= ‘Error on in sample’is known quantity (using labelled data): Em(h)
= ‘Error on out of sample’is unknown quantity: F . (h)
= |n-sample frequency is likely close to out-of-sample frequency Ei tracks £,

depend on

which E (h)

hypothesis h Eout (h) w
out of M 00000
different ones " W ‘in sample’
o0 @ |Pon X i
v ict!
. ‘ use for predict! use E, (h) as a proxy thus the other
‘out of sample’ way around in learning

H = {%1; --whm}; Eout (h’) ~ Ezn(h’)

I = Statistical Learning Theory part that enables that learning is feasible in a probabilistic sense (P on X)

Lecture 3 — Supervised Classification and Applications



Feasibility of Learning — Union Bound & Factor M

The union bound means that (for any countable set of m ‘events’) the probability that at least one
of the events happens is not greater that the sum of the probabilities of the m individual ‘events’

" Assuming no overlaps in hypothesis set

= Apply mathematical rule ‘union bound’ Final Hypothesis

g~/
= (Note the usage of g instead of h, we need to visit all)
Think if E;, deviates from E_ , with more than tolerance € it is a ‘bad event’ in order to apply union bound
Pr [ ‘ Ein (g) - Eout(-g) ‘ > € } <= Pr [ | Ezu(h)l) - Eout(h’]-) ‘ > €
‘visiting M
or | E (hy) —E ,(hy)|>€ .. different
h hesis’
or | B, (h) = E,(har) | > ] TP

M
Pr[| E,(9) = E,.(9) | >¢] <= Y Pr[|E,(hn)—E,,(hn) | > €]

m=1

M 2N fixed quantity for each hypothesis
Pr[ | E. (9)—E,.(9) |>€e] <= 226 ‘ obtained from Hoeffdings Inequality
m=1

B V7 —2e2N problematic: if M is too big we loose the link
Pr [ ‘ Ei” ((}) a Eouf ((}) ‘ ~ € ] <= 2Me between the in-sample and out-of-sample

Lecture 3 — Supervised Classification and Applications



Feasibility of Learning — Modified Hoeffding’s Inequality

= Errorsin-sample E. (g) track errors out-of-sample E_.(g)
= Statement is made being ‘Probably Approximately Correct (PAC)’
= Given M as number of hypothesis of hypothesis set H (3] Valiant, A Theory
= ‘Tolerance parameter’in learning € of the Learnable’, 1984

= Mathematically established via ‘modified Hoeffdings Inequality”:
(original Hoeffdings Inequality doesn‘t apply to multiple hypothesis)
‘Approximately’ ‘Probably’

Pr [| E,(9) — E,.(9) | >¢] <= 2Me™¥

‘Probability that E,, deviates from E_ , by more than the tolerance € is a small quantity depending on M and N’

* Theoretical ‘Big Data’ Impact = more N = better learning
= The more samples N the more reliable will track £ (g) E .(g) well
= (But: the ‘quality of samples’ also matter, not only the number of samples)

Statistical Learning Theory part describing the Probably Approximately Correct (PAC) learning

Lecture 3 — Supervised Classification and Applications




Mathematical Building Blocks (4)

Unknown Target Function Probability Distribution Elements we
not exactly
f . X — Y P on X (need to) know
. " L.
(ideal function)
]
]
' . ‘constants’
] p— b
' X (Il 1 xd ) in learning
:
H Elements we
. . " - must and/or
Training Examples should have and
X o (x that might raise
( 1ay1)7 7( N7yN) huge demands

(historical records, grohndtruth data, examples) UCSICIEE

Learning Algorithm (‘train a system‘)

Final Hypothesis

g f

Hypothesis Set

H={h}; geH
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Mathematical Building Blocks (4) — Our Linear Example

(infinite M decision boundaries depending on f) Probability Distribution
Pon X
x=(x,,..,¢,)e—

l 2
> Is this point very likely from the same distribution or just noise?

T——
\ We assumme future points are taken from the

same probability distribution as those that
‘ we have in our training examples

Training Examples

(X17y1)7 t (XN7yN)

Is this point very likely from the same distribution or just noise?
(we help here with the assumption for the samples) (we do not solve the M problem here)
—2e2N
Pr [| E (9)—FE,, (9) | >¢] <= 2Me

(counter example would be for instance a random number generator, impossible to learn this!)

out

Lecture 3 — Supervised Classification and Applications 24 /54



Exercises
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Statistical Learning Theory — Error Measure & Noisy Targets

"= Question: How can we learn a function from (noisy) data?

= ‘Error measures’ to quantify our progress, the goalis: h ~ f
= Often user-defined, if not often ‘squared error”:

e(h(x), f(x) = (h(x) — f(x))? [

07

u { H _ H {
E'g' point-wise error measure (e.g. think movie rated now and in 10 years from now)

= ‘(Noisy) Target function”is not a (deterministic) function

= Getting with ‘same x in” the ‘same y out’ is not always given in practice
= Problem: ‘Noise’ in the data that hinders us from learning

= |dea: Use a ‘target distribution’

instead of ‘target function’ Unknown T‘jfEE‘D“”E““D” P(y|x)
target function f : X — Y bplusnoise

= E.g.credit approval (yes/no) -

(ideal function)

= Statistical Learning Theory refines the learning problem of learning an unknown target distribution

Lecture 3 — Supervised Classification and Applications



Mathematical Building Blocks (5)

Unknown Target Bistetianion J2 Probability Distribution Elements we
(y |X) not exactly
target function f : — plus noise P on X (need to) know
. N
(ideal function) l
]
]
' . ‘constants’
] pr— b
' X (I 17 ) xd) X in learning
]
]
\:/ ; Elements we
. . must and/or
Training Examples Error Measure should have and
(X17 yl)a ! (XN7 yN) ﬁB(X)@ that might raise

huge demands

(historical records, grohindtruth data, examples) for storage

Learning Algorithm (‘train a system‘) Final Hypothesis
A < g~ f

Hypothesis Set
H=1{h};, geH

Lecture 3 — Supervised Classification and Applications
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Mathematical Building Blocks (5) — Our Linear Example

= |terative Method using (labelled) training data (X,, ¥, ), -.-

(one point at a time is picked)
1. Pick one misclassified
training point where:

sign(w'x ) #y.

Error Measure

87

2. Update the weight vector:

W< W+ Uy X

(y, is either +1 or -1)

(a)

(a) adding a vector or

(b) subtracting a vector

= Terminates when there are [ tror measure

no misclassified points

07

(converges only with linearly seperable data)

Lecture 3 — Supervised Classification and Applications

<
I

+1

(X Uy

W + yX



Training and Testing — Influence on Learning

= Mathematical notations

* Testingfollows:  Pr [ | E, (9) — E,,(9) | >¢] <= 2 eV
(hypothesis clear)

* Trainingfollows:  pr [ | E (¢)—E, (g) | >¢] <= I N[~ 2" N

(hypothesis search) (e.g. student exam training on examples to get E, ,down’, then test via exam)
" Practice on ‘training examples’

= Create two disjoint datasets

Training Examples

= One used for training only (X, U, )y ooes (X s Uy

(aka trammg Set) (historical records, groundtruth data, examples)

= Another used for testing only
(aka test set)

" Training & Testing are different phases in the learning process

= Concrete number of samples in each set often influences learning

Lecture 3 — Supervised Classification and Applications



Exercises
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Theory of Generalization — Initial Generalization & Limits

= |Learning is feasible in a probabilistic sense
= Reported final hypothesis — using a ‘generalization window’ on F_ . (g)
= Expecting ‘out of sample performance’ tracks ‘in sample performance’
= Approach: /. (g)actsasa ‘proxy for E_,(g)

E,.(9)~E, (9)

This is not full learning — rather ‘good generalization’ since the quantity E_(g) is an unknown quantity

= Reasoning
Final Hypothesis
= Above condition is not the final hypothesis condition: q ; f

= More similiar like £ | (g) approximates O
(out of sample error is close to 0 if approximating f)

= I (g) measures how far away the value is from the ‘target function’
= Problematic because Eout (g) is an unknown guantity (cannot be used...)
= The learning process thus requires ‘two general core building blocks’

Lecture 3 — Supervised Classification and Applications



Theory of Generalization — Learning Process Reviewed

= ‘Learning Well’
= Two core building blocks that achieve £/ (g) approximates 0

" First core building block
= Theoretical result using Hoeffdings Inequality E, ., (9) ~ Em (9)
= Using Eout (g) directly is not possible — it is an unknown quantity

= Second core building block (try to get the ‘in-sample’ error lower)
= Practical result using tools & techniques to get . (g) =~ 0
= e.g. linear models with the Perceptron Learning Algorithm (PLA)
= Using £, (g) is possible —it is a known quantity — ‘so lets get it small’
= Lessons learned from practice: in many situations ‘close to 0 impossible

= E.g. remote sensing images use case of land cover classification

Full learning means that we can make sure that E_,(g) is close enough to E, (g) [from theory]
Full learning means that we can make sure that E, (g) is small enough [from practical techniques]

Lecture 3 — Supervised Classification and Applications




Complexity of the Hypothesis Set — Infinite Spaces Problem

Pr [ | E,(9) = E,.(9) | >¢] <= 2Me> "

theory helps to find a way to deal
with infinite M hypothesis spaces

" Tradeoff & Review
= Tradeoff between €, M, and the ‘complexity of the hypothesis space H’
= Contribution of detailed learning theory is to ‘understand factor M’

= M Elements of the hypothesis set H m elements in H here
= Ok if N gets big, but problematic if M gets big = bound gets meaningless
= E.g. classification models like perceptron, support vector machines, etc.
= Challenge: those classification models have continous parameters
= Consequence: those classification models have infinite hypothesis spaces
= Aproach: despite their size, the models still have limited expressive power

=  Many elements of the hypothesis set H have continous parameter with infinite M hypothesis spaces

Lecture 3 — Supervised Classification and Applications




Factor M from the Union Bound & Hypothesis Overlaps

[ ‘ Ezn( ) Eout(g) ‘ > € ] <= Pr [ ‘ Ein(h’l) - Eout(h"l) | > € dssumes no
overlaps, all
or | E. (he) —E, ,(hs) | >€ ... probabilities
happen
or | E, (hy)—E,, (har) | > € ] disjointly

r [ ‘ Em (g) — Eout(g) ‘ > € ] <= QJ\"fe_QEzN takes no overlaps of M hypothesis into account

" Union bound is a ‘poor bound’, ignores correlation between h

= Qverlaps are common: the interest is shifted to data points changing label

| B, (M) = E, () [ = | B, (ha) = E,.(h2) | G reaucem

out Unimportant’ ‘important’

»\»

change in areas change in data label

= Statistical Learning Theory provides a quantity able to characterize the overlaps for a better bound

Lecture 3 — Supervised Classification and Applications




Replacing M & Large Overlaps

(Hoeffding Inequality) (Union Bound) (towards Vapnik Chervonenkis Bound)

(valid for 1 hypothesis) (valid for M hypothesis, worst case) (valid for m (N) as growth function)

" Characterizing the overlaps is the idea of a ‘growth function’

* Number of dichotomies: my (N) = maxy x..x | H(X, Xy, Xy
Number of hypothesis but
on finite number N of points

= Much redundancy: Many hypothesis will reports the same dichotomies

I = The mathematical proofs that m,(N) can replace M is a key part of the theory of generalization

Lecture 3 — Supervised Classification and Applications



Complexity of the Hypothesis Set — VC Inequality
Pr[| E,(9) — E,.(9) | >€] <= 2Me™>¥
my,(N) = max XXy H(X,, Xy, ey X )|

= Vapnik-Chervonenkis (VC) Inequality
= Result of mathematical proof when replacing M with growth function m
= 2N of growth function to have another sample (2x £ (h), no £,,.(h))

(9) | > €] <= dmy(2N)e /5N

(characterization of generalization)

Pr [| E,(g)— E

n out

= |n Short —finally : We are able to learn and can generalize ‘ouf-of-sample’

=  The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
= The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)

Lecture 3 — Supervised Classification and Applications




Complexity of the Hypothesis Set — VC Dimension

= Vapnik-Chervonenkis (VC) Dimension over instance space X

= VCdimension gets a ‘generalization bound’ on all possible target functions

Issue: unknown to ‘compute’ — VC solved this using the growth function on different samples

(‘generalization error’) 5 (g)
A out
E
E.(h)  Euld)
- . L A ‘ L4
-~ model '. - “first sample’

complexity . 4
- W
- w - -

(‘training error’)

E,.(h)

‘out of sample’ . .

" [} E ( ) p -

/ ° ; g ‘ ‘
' o n second sample
1) °

L g
; VC dimension d,, idea: “first sample’ frequency
d VC close to ‘second sample’ frequency

= Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension d,
= Ignoring the model complexity d, . leads to situations where E; (g) gets down and E_,(g) gets up

Lecture 3 — Supervised Classification and Applications




Prevent Overfitting for better ‘ouf-of-sample’ generalization

OVeR errTiN G

[4] Stop Overfitting, YouTube

Lecture 3 — Supervised Classification and Applications



Exercises
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Remote Sensing Applications

O
O 0
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Introduction to Application Field

= Remote sensing is the acquisition of information about an object or
phenomenon without making physical contact with an object

= Cloud interactions sun V¢ [5] Wikipedia on ‘Remote Sensing’
Satellite = . Incident Y -
== Solar Radiation ”~

Reflected
Solar Radiation

”.-’

Spectral wavelength (z)

Wz

Forest  Water quies

*= The overall system is complex:

= Scattering or emission of energy from the earth’s surface

= Transmission through the atmosphere to instruments mounted on the
remote sensing platform

= Sending data back to the earth’s surface
= Processing into images products ready for application by the user

Lecture 3 — Supervised Classification and Applications




Supervised Learning Application — Labelled Data

a piwel yectar ¥, .
(high
T B oo
x”,.x xI:-a:'ru:ue's_ . r]bﬁ‘rq-._h d|menS|On)
i | :-»"-.,__'I_,_,JI-"’ "-.
\\ HH ;Inf\ \+ Pansharpened (UDWT) low-resolution
e 5| 7~ A1 (2.4m) multispectral images

- ."L. II. I

(QUICkblrd) Pr—— Class Training Test
(#Area, Threshoids) Buildings 18126 163129
s | e p—— Blocks 10982 08834
attelite Data : Raads 16353 147176
O O OC Q ] r.........,... T"““'"‘s'“ — “““IE'”" | Light Train 1606 14454
lassification Vegetation 6962 62655
Stud m Trees 9088 81792
Bare Soil 8127 73144

Land Cover ¥ : :
| | : Soil 1506 13551

Tﬂlﬂit SVM Classifier i
Types | rant phane T | | Tower 4792 43124
¥
Groundtruth Classiication Total 77542 697859
ACCUracy O

r @ Cavallaro & M. Riedel et al., 2014

Model-& H@lr@mﬁtlassiﬁcation «___Applications



Remote Sensing Application — The Dataset

= Example dataset: Geographical location: Image of Rome, Italy
= Remote sensor data obtained by Quickbird satellite

» High-resolution (0.6m) Pansharpen?d (UDWT) low-resolution
panchromatic image (2.4m) multispectral images
; = .
Je,=.a|'1|1|:|lne-s. li lrﬁlr-.i_l:l

I .al "--.___'_,_J/ \

] 2
Irn>\

nurdreds af I
harxls e

(high
dimension)

......
i
.....

(Reasoning for picking SVM: Good classification

ac.curaues on hlg!ﬁ dimensional c.ia.tasets, [7] Rome Image dataset (G50) BZSHARE
even with a small ,rare’ number of training samples) - TS S TR Research Doss
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Inspect and Understanding the Data — Rome, Italy

= Datais publicly available in EUDAT B2SHARE tool

[7] Rome Image dataset | (o) B2SHARE

Store and Share Research Data

Rome data set OK

22 May 2014

Abstract: Attribute area
't e
Export
Name Date Size Export as
22May 2014 127MB
22 May 2014 467MB
Metadata
22May 2014 1148MB
PID
22 May 2014 4200MB
Publication http:/ /b2share eudateu (perSIStent handle ||nk fOr

= publication into papers)
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Advanced Supervised Learning Application — Indian Pines

* Challenging (non-linearly separable) dataset

= 52 classes; less groundtruth samples; mixed pixels; high dimensions

Class Number of samples Class Number of samples
Number Name Training Test Number Name Training Test
1 Buildings 1720 15475 27 Pasture 1039 9347
2 Corn 1778 16 005 28 pond 10 92
3 Corn? 16 142 29 Soybeans 939 8452
1 Corn-EW 51 463 30 Soybeans? 89 805
5 Corn-NS 236 2120 31 Soybeans-NS 111 999
6 Corn-CleanTill 1240 11164 32 Soybeans-CleanTill 507 4567
7 Corn-CleanTill-EW 2649 23837 33 Soybeans-CleanTill? 273 2453
8 Corn-CleanTill-NS 3968 35710 34 Soybeans-CleanTill-EW 1180 10622
9 Corn-CleanTill-NS-Irrigated 80 720 35 Soybeans-CleanTill-NS 1039 9348
10 Corn-CleanTilled-NS? 173 1555 36 Soybeans-CleanTill-Drilled 224 2018
11 Corn-MinTill 105 944 37 Soybeans-CleanTill-Weedy 54 489
12 Corn-MinTill-EW 563 5066 38 Soybeans-Drilled 1512 13606
13 Corn-MinTill-NS 886 7976 39 Soybeans-MinTill 267 2400
14 Corn-NoTill 438 3943 40 Soybeans-MinTill-EW 183 1649
15 Corn-NoTill-EW 121 1085 41 Soybeans-MinTill-Drilled 810 7288
16 Corn-NoTill-NS 569 5116 42 Soybeans-MinTill-NS 495 4458
17 Fescue 11 103 43 Soybeans-NoTill 216 1941
18 Grass 115 1032 44 Soybeans-NoTill-EW 253 2280
19 Grass/Trees 233 2098 45 Soybeans-NoTill-NS 93 836
20 Hay 113 1015 46 Soybeans-NoTill-Drilled 873 7858
21 Hay? 219 1966 47 Swampy Area 58 525
22 Hay-Alfalfa 226 2032 48 River 311 2799
23 Lake 22 202 49 Trees? 58 522
24 NotCropped 194 1746 50 Wheat 498 4481
25 Oats 174 1568 51 Woods 6356 57206
26 Oats? 34 301 52 Woods? 14 130
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remote sensing cube & ground reference

[8] G. Cavallaro, M. Riedel,
J.A. Benediktsson et al.,
Journal of Selected Topics in
Applied Earth Observation and
Remote Sensing, 2015



Importance of Features Engineering & Process Overview

Datai[l i

(2)

= Application

= Usin g dataset raw (1) | kpca [ 2%%f espap | NWFE [2%.f cross validation [ TrainISVM - Model [ swlclfssiﬁer |-

m Using dataset processed (2) ]I Train set HGmundTruthH Test set |
s ——— Panl:hromatic-l - . - - - - - -
Data Set = 1 Attribute Filters _ :
H (Attribute, Thresholds) Training Set Ground Truth . Test Set I
Multispectral I I (Labeled pixels) ] {Unlabeled pixels)
ol |
1

SDAP: 1 + N Features E

]
| Training Phase | TestPhase

Train SVM SVM Model : SVM Classifier |— Classification accuracy

= Feature Enhancement & Selection
= Kernel Principle Component Analysis (KPCA)
= Extended Self-Dual Attribute Profile (ESDAP)

= Nonparametric weighted feature extraction (NWFE)

[8] G. Cavallaro, M. Riedel, J.A. Benediktsson et al.,
Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2015
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Publicly Available Datasets — Location

= /ndian Pines Dataset Raw and Processed

Abstract: 1) Indian raw: 1417x614x200 (training 10% and test)

2) Indian processed:1417x614x30 (training 10% and test)

Name

Date

05 Feb 2015

05 Feb 2015

05 Feb 2015

05 Feb 2015

Size

11.7 MB

7471 MB

83o0MB

105.6 MB

[9] Indian Pine Image dataset | (oon) B2SHARE

[morris@login-@-1 172-IndianPines]$ 1s -al

insgesamt 925280
drwxrwxr-x 2 morris

drwxrwxr-x 11 morris
-rw-rw-r-- 1 morris
-rw-rw-r-- 1 morris
-rw-rw-r-- 1 morris
-rw-rw-r-- 1 morris

morris
morris
morris 1
morris
morris 7
morris

4096
4096
05554346
11732509
47125557
830143511
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19.
19.
5.

5.
5.
5.

MNow
MNow
Feb
Feb
Feb
Feb

Store and Share Research Data

14:04 .

13:51
2015
2015
2015
2015

indian _processed test.el
indian_processed training.el
indian_raw test.el
indian_raw_training.el



Available Datasets — Training Data Example

* Indian Pines Dataset Processed — Training  (03%) B2SHARE

Store and Share Research Data

= |ndian_processed_training.el o
) [9] Indian Pine Image dataset
= LibSVM data format: class featurel:valuel feature2:value2

[morris@login-0-1 pisvmexamples]$ head /home/morris/BIGDATA/172-IndianPines/indian_processed training.el

48 1:0.69021 2:0.599122 3:0.864571 4:0.265246 5:0.566572 6:0.561181 7:0.665698 8:0.430511 9:0.717402 10:0.514414 11:0.335391 12:0.486979 13:
.583682 14:0.503849 15:0.420948 16:0.624377 17:0.43594 18:0.324333 19:0.614007 20:0.431993 21:0.600198 22:0.577696 23:0.528974 24:0.458141 2
5:0.543731 26:0.382421 27:0.33752 28:0.543062 29:0.5737 30:0.4567784

48 1:0.675361 2:0.585579 3:0.85587 4:0.249317 5:0.579717 6:0.5633 7:0.634459 8:0.434777 9:0.719665 10:0.510279 11:0.330765 12:0.478097 13:0.
559455 14:0.505097 15:0.396293 16:0.627475 17:0.425701 18:0.32044 19:0.637625 20:0.437285 21:0.620149 22:0.535474 23:0.525151 24:0.511439 25
10.504738 26:0.385925 27:0.303322 28:0.572963 29:0.570833 30:0.491508

51 1:0.554975 2:0.499039 3:0.578284 4:0.648481 5:0.867561 6:0.17041 7:0.841141 B:0.54466 9:0.746417 10:0.459481 11:0.356237 12:0.420116 13:0
L248721 14:0.541081 15:0.444207 16:0.286447 17:0.364712 18:0.522284 19:0.647555 20:0.538008 21:0.51632 22:0.437087 23:0.402312 24:0.574872 2
5:0.633603 26:0.426417 27:0.397177 28:0.400566 29:0.470729 30:0.51207

51 1:0.561296 2:0.495371 3:0.330829 4:0.513766 5:0.556074 6:0.387238 7:0.932418 B8:0.643317 9:0.735262 10:0.216349 11:0.284832 12:0.499805 13
10.272644 14:0.289776 15:0.699631 16:0.142032 17:0.161307 18:0.657442 19:0.72633 20:0.446231 21:0.542728 22:0.526951 23:0.433363 24:0.647875
25:0.679122 26:0.760654 27:0.302971 28:0.515992 29:0.602717 30:0.34428

46 1:0.870891 2:0.768472 3:0.783699 4:0.28838 5:0.632466 6:0.418282 7:0.508729 8:0.437482 9:0.610721 10:0.480019 11:0.291032 12:0.427472 13:
0.428984 14:0.447632 15:0.452797 16:0.527423 17:0.583162 18:0.42837 19:0.557041 20:0.290409 21:0.547233 22:0.642817 23:0.535524 24:0.4478 25
10.601117 26:0.405341 27:0.315288 28:0.488306 29:0.659466 30:0.469213

46 1:0.87119 2:0.779909 3:0.769342 4:0.2092747 5:0.643116 6:0.416394 7:0.530679 B:0.4283 9:0.61224 10:0.474311 11:0.325682 12:0.468692 13:0.4

2888 14:0.461495 15:0.471023 16:0.524454 17:0.527418 18:0.398571 19:0.555335 20:0.35517 21:0.557823 22:0.588179 23:0.564881 24:0.444141 25:0
.576903 26:0.495859 27:0.344496 28:0.541081 29:0.539253 30:0.494238

15 1:0.869845 2:0.781471 3:0.412471 4:0.318165 5:0.414446 6:0.32059]1 7:0.605434 B:0.726664 9:0.590541 10:0.457315 11:0.355967 12:0.429357 13
10.509808 14:0.421272 15:0.5406 16:0.532659 17:0.568507 18:0.404705 19:0.523209 20:0.52817 21:0.575417 22:0.570611 23:0.578825 24:0.452228 2

5:0.484941 26:0.542836 27:0.335545 28:0.491274 29:0.656853 30:0.546783

15 1:0.892436 2:0.790123 3:0.485313 4:0.318438 5:0.478488 6:0.329743 7:0.602466 8:0.581215 9:0.597853 10:0.442717 11:0.4009894 12:0.479275 13
10.51758 14:0.445422 15:0.483192 16:0.549861 17:0.49607 18:0.469129 19:0.475024 20:0.638295 21:0.578851 22:0.586814 23:0.5799509 24:0.463105

25:0.550809 26:0.490199 27:0.376347 28:0.468157 29:0.55987 30:0.42689

15 1:0.809988 2:0.508887 3:0.782026 4:0.284838 5:0.682891 6:0.361665 7:0.243857 8:0.330213 9:0.456187 10:0.385119 11:0.230994 12:0.403049 13
10.333648 14:0.473923 15:0.570014 16:0.45283 17:0.314596 18:0.574783 19:0.708582 20:0.292825 21:0.531681 22:0.616414 23:0.506682 24:0.493297
25:0.396451 26:0.599563 27:0.325084 28:0.541152 29:0.56897 30:0.466168

8 1:0.843723 2:0.734137 3:0.686274 4:0.335633 5:0.6219 6:0.250049 7:0.575193 B8:0.50452 9:0.623444 10:0.496143 11:0.263468 12:0.482361 13:0.5

46293 14:0.402207 15:0.730217 16:0.378631 17:0.433787 18:0.654169 19:0.513311 20:0.202298 21:0.530649 22:0.696446 23:0.631684 24:0.447328 25
10.425982 26:0.40432 27:0.568027 28:0.461795 29:0.4119063 30:0.428683
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Exercises
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[Video] Remote Sensing

What is
remote

- enSII‘Ig~ sensing?

[10] YouTube Video, ‘Remote Sensing’
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