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Review of Lecture 5

= Non-linear Transformations

= Full Support Vector Machine

Use of a mapping function (I) 9 5 G v Y
0 VL T
Hyperplane in higher put RIS
dimensional space possible o T —— :
0.2 '#r.._:::‘i::u;‘n‘

Mapping back corresponds
to non-linear decision boundary
in initial input or x space

Full = use of non-linear kernel

into a higher-level/infinite space
Apply ‘kernel trick’
Kernels quantify similiarity

Different trusted kernels available
(RBF, polynomial, etc.)
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| (dual since primal wi and b removed)

Take advantage of mapping ~ p — o — 5 Z Z GO Yy |Xi X
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(trusted Kernel @(xi) . (P(Xj)

avoids to know Phi)

K (xi,x;)|= ®(xi) - ©(x;)




Outline
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Outline of the Course

Machine Learning Fundamentals
Supervised Classification

Support Vector Machines

Applications and Serial Computing Limits

Kernel Methods

Applications and Parallel Computing Benefits
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Outline

= Validation
= \alidation Set & Validation Error
Validation for Model Selection

N-Fold Cross-Validation Technique

Applying Validation of SVMs to Datasets

Experiencing Linear & Serial Limits

= Parallelization Benefits
= Regularization Parameter Revisited
= Possibility to work with large datasets
= Parallelization Impact in Cross-Validation
= Parallelization Summary & Acknowledgements
= Complex Applications & Data Contamination
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Validation
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Mathematical Building Blocks — Revisited

Unknown Target Distribution P (y |X) Probability Distribution Elements MI/e
not exactly
target function f . X — Y plus noise P on X (need to) know
(ideal fLEnction) l
X = ( T T )<_ X ‘constants’
1 7 d

in learning

<____.._.._—-

| Elements we
— must and/or

Training Examples Error Measure should have and

X L (x > o(x ) €<— that might raise
( 1 Y )’ ? ( ~o Un ) ( ) huge demands

(historical records, gropndtruth data, examples)

Learning Algorithm (‘train a system’) Final Hypothesis
A < g~ f

for storage

Hypothesis Set
H=1{h};, geH
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Initial Terminologies — Reviewed w.r.t. Model Decisions

» Target Function f:X —Y = Target Distribution f: X =Y
= |deal ‘function’ that ‘explains’ the data we want to learn """ Plylx)

= Labelled Dataset (samples)
= ‘in-sample’ data giventous (x,,4,), ..., (X, Yy )

= Dataset Part One: Training set (training set is used to make some decisions for model...)

= Used for training a machine learning algorithms
= Result after using a training set: a trained system

m Dataset Part Two: Test set (testing set has not been used to make any decisions for model...)

= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model

= |earning vs. Memorizing
= The goal is to create a system that works well ‘out of sample” (future data)

(Another set of data is needed not used in training but that is used for model selection & ‘validate decisions’)
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Training and Testing — Reviewed w.r.t. Model Decisions

(cf. Lecture 1)

= Mathematical notations

= Testingfollows: Pr [ | E _(9)—FE,,(9) |>¢] <= 2 o~ 262N
(hypothesis clear)

. . . ) _ 2
+ Taining follows: Py [| £, (g) ~ B, (g) | >¢] <= 2Me >N
(hypothesis search) (e.g. student exam training on examples to get E,_,down’, then test via exam)

" Practice on ‘training examples’ Training Examples
(XIJ yl)J T (XN? yN)

= Create two disjoint datasets

o (historical records, groundtruth data, examples)
= One used for training only

(aka training set)

= Another used for testing only
(aka test set)

" Training & Testing
= Different phases in the learning process

(Another phase in the creation of the whole model is needed where we take ‘validated decisions about the model‘)
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Problem of Overfitting — Clarifying Terms

= A good model must have low training error (E;,) and low generalization error (E,,)

= Model overfitting is if a model fits the data too well (E,,) with a poorer generalization error (E,,)
than another model with a higher training error (E,)

[1] Introduction to Data Mining

= Qverfitting & Errors
= . (g) goes down Error
= F (g)goesup

= ‘Bad generalization area‘ ends
= Good to reduce F. (¢g)

A (‘generalization error’) Eout (g)

(“training error’)

E,.(9)

>

= ‘Overfitting area’ starts
= Reducing . (g) does not help

(frya: s o Training time
= Reason "fitting the noise’ g4 generalization€ ¢-> overfitting oCCUrs

= The two general approaches to prevent overfitting are (1) regularization and (2) validation

(Decisions about the model are related to the problem of overfitting — need another method to ‘select model well)
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Problem of Overfitting — Impacts on Learning Revisited

= The higher the degree of the polynomial (cf. model complexity), the more degrees of
freedom are existing and thus the more capacity exists to overfit the training data

" Understanding deterministic noise & target complexity
" |ncreasing target complexity increases deterministic noise (at some level)
" |ncreasing the number of data N decreases the deterministic noise

= Finite N case: H tries to fit the noise
= Fitting the noise straightforward (e.g. with linear regression)
= Stochastic (in data) and deterministic (simple model) noise will be part of it

= Two ‘solution methods’ for avoiding overfitting

= Regularization: ‘Putting the brakes in learning’, e.g. early stopping
(more theoretical, hence ‘theory of regularization’)

= Validation: ‘Checking the bottom line‘, e.g. other hints for out-of-sample
(more practical, methods on data that provides ‘hints‘)

(Decisions about the model are related to the model complexity — need another method to ‘select model well’)
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Validation & Model Selection — Terminology

= The ‘Validation technique’ should be used in all machine learning or data mining approaches
= Model assessment is the process of evaluating a models performance
= Model selection is the process of selecting the proper level of flexibility for a model

modified from [2] ‘An Introduction to Statistical Learning’
*" ‘Training error’
= Calculated when learning from data (i.e. dedicated training set)
= ‘Test error’
= Average error resulting from using the model with ‘new/unseen data’

= ‘new/unseen data‘ was not used in training (i.e. dedicated test set)

" |n many practical situations, a dedicated test set is not really available
m lVa | idation Setl (split creates a two subsets of comparable size)

[122 |

= Split data into training & validation set
= ‘Variance’ & ‘Variability’ pr (Lselit
= Result in different random splits (right)

Mean Squared Ei
18 20 22
Squared

........
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Validation Technique — Formalization & Goal

= Validation is a very important technique to estimate the out-of-sample performance of a model
=  Main utility of regularization & validation is to control or avoid overfitting via model selection

" Regularization & Validation
= Approach: introduce a ‘overfit penalty’ that relates to model complexity
= Problem: Not accurate values: ‘better smooth functions’

(regularization uses a term that captures the overfit penalty)

Eout (h) — E (h) -+ Overﬁt penalty (minimize both to be better proxy for E_,)

mn

? ?

(validation estimates (regularization estimates
this quantity) this quantity)

- V |d . (measuring E_ , is not possible as this is an unknown quantity,
alidation another quantity is needed that is measurable that at least estimates it)

m Goal ‘estimate the Out—of—samp|e error’ (establish a quantity known as validation error)

= Distinct activity from training and testing  (testing also tries to estimate the E, )
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Validation Technique — Pick one point & Estimate E_,

TraininglExamples

(X17 yl)J ':" (XNJ yN)

G

‘training set’ ‘test set

(activity below is what we do for testing,
but call it differently for another purpose)

~

* Understanding ‘estimate’ E_, (involved in validation)
= Onone out-of-sample point (x,y) the erroris e(h(x),y)

» E.g.usesquared error: e(h(x), f(x)) = (h(x) — f(x))

e(h(x),y) = (h(x) — y)”

= Use this quantity as estimate for E_, (poor estimate)

= Term ‘expected value’ to formalize (probability theory)

Probability Distribution
(Taking into account the theory of Lecture 1 with probability distribution on X etc.) Pon X

(aka ‘random variable‘) X = (:131, ey :Cd)<
K [e(h(x) : y)] — Eout (h) (aka the long-run average value of repetitions of the experiment)

(one point as unbiased estimate of E_ . that can have a high variance leads to bad generalization)

out
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Validation Technique — Validation Set

= Validation set consists of data that has been not used in training to estimate true out-of-sample
=  Rule of thumb from practice is to take 20% (1/5) for validation of the learning model

(involved in training+test) K (involved in validation)

= Solution for high variance in expected values Ele(h(x),y)] = Eyu(h)

= Take a ‘whole set’ instead of just one point (x, ) for validation

TraininglExamples (we need points not used in training
(Xla yl)a s (XNa yN) to estimate the out-of-sample performance)

(we do the same approach with the
testing set, but here different purpose)

= |dea: K data points for validation

(Xla yl)a e (XKa yK) (validation set) — F7 ( E e(h(X)g, yg) (validation error)

= Expected value to ‘measure’ (expected values averaged over set)
the out-of-sample error
E[Eval Z E k?) ykf)] Eout

(this gives a much better (lower) variance than on a single point given K is large)

= ‘Reliable estimate’ if Kis large
(on rarely used validation set,
otherwise data gets contaminated)
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Validation Technique — Model Selection Process

= Model selection is choosing (a) different types of models or (b) parameter values inside models
=  Model selection takes advantage of the validation error in order to decide = ‘pick the best’

Hypothesis Set

H = {h}, g€ H (training not on

full data set)

(set of candidate formulas across models)
= M models DT?"ain l l l
- (training)
1

cf. Lecture 1
( ) qg.,
m Use validation error to

w.r.t. Dq.,ip)
perform select decisions D
= Careful consideration: Val (validate) gy (UnPiased
1 estlmates)

(out-of-sample

» ‘Picked means decided’ | Byl Eoyal, oty |
hypothesis has already (pick ‘best’ = bias) Y(decides model selection)
bias (= contamination) Y E
= Using Dy, M times mx valm,
- ) (test this on unseen data D (final real training
inal Hypothesis final .. full
- f good, but depends on (final training on full set, use to get even better
m* ™ availability in practice) the validation samples too) gm* out-of-sample)
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Validation Technique — Cross-Validation — Trick

= Cross-validation the technique of choice in practical situations to perform model selection ‘
= Different techniques exist for cross-validation such as leave-one-out, leave-more-out

(every time a data point is used for validation it is taken away from training)
]

u Goal (validation data not given on top of training data) Training/Examples
(X1’ y1)7 :7 (XN7 yN)

= Target issue ‘choosing K out of N

= |ssue: K needs to be small & large
(involved in training) K (involved in validation)

= (cf. Lecture 1 feasibility of learning)

(conflicting requirements on K)

(idea: is
th
(chain of reasoning so far) ere. °
solution
: over time?)
(small K for large N — K training delivering (large K for validation delivering
good out-of-sample performance) a good estimate for out-of-sample performance)

= Apply trick: repeat the number of trainings on different subsets

" Train multiple times using e.g. leave-one-out or leave-more-out (practice)

I = Cross-validation ‘trick’ achieves to use N points for training and N points for validation (big gain!) I
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Validation Technique — Cross-Validation — Leave-one-out

li2s

, . lit data NOT !
= Simplest form of cross-validation e ets i

= Use N - 1 data points for training of comparable size)

= Potential issue: only 1 data point for validation (bad estimate for E,,) ~ Source: [30]

123

123

= Creates a very ‘small validation” set, but very ‘large training” set

D, = (X17y1)? (Xn—17yn—l)?

(reduced dataset, but as training set
very close to N missing just one)

(Xn+17yn+l)? Y (XN7yN)

(one data point left out for validation) (not trained on
full set &

= Final hypothesis to be ‘selected” after training with D, is g; depends on
point left out)

(check error on the point ‘left out’ 2 out-of-sample)
(the hypothesis was trained not involving this point)

Cn = Eva.! (gn ) — e(g‘n, (X’n) ) yn) (validate hypothesis on that data point taken out)

(one point in validation set brings bad estimate for E_,)

N
( H ( H 1 .
u . _ (works well with
Apply resamplmg trlck.. E, = ~ E :en orke well it
Repeat for different n with D, 1

(obtains different hypothesis g;-, g,-,...., but all have in
common to be obtained by being trained on N — 1 points)

Lecture 6 — Applications and Parallel Computing Benefits
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Validation Technique — Cross-Validation Error Example

= Example: Create a linear model
= Assuming there is noise in the target function
= Cross-validation: evaluate out-of-sample error to choose a model (later)

(red points are validation sets in each run) (black points are training sets in each run)

A A A
V' Q- Y Vi e o
’a' ” 3.
. ”" . eZ _‘X
gn gn
X X X
> > >

(the full dataset = 3 points) (n =left point out)  (n =middle pointout) (n =right point out)

ov = o €n (simply compute average of all errors, e.g. using squared distance)

1 (impact on N = small (3)

(cross-validation error as indication of how well : .
= — . ] ) is enormous, but if N = large
ECV 3(81 T2t 63) ‘the linear model’ fits the data = out-of-sample) .
average works very well)

=  Cross-validation is a ‘resampling method’ that obtains more information than ‘fitting model once’
= Compute cross-validation error is possible (via ‘in-sample’) & a systematic way for model selection
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Validation Technique — Cross-Validation & Model Selection

= Model selection: Perform a ‘decision’ Hvothesis set
H=1{h}, geH

(set of candidate formulas)

= Cross-validation: evaluate out-of-sample
error to choose a model (avoiding e.g. heuristics)

= Example: Decide whether Linear Model or Constant Model is better

y/\ y/\ PY

— - e.?
(LINEAR MODEL) — —
gTL gTL

X X

(decision support
required, (use the obtained cross-validation error for both models as a ‘grade for each model‘)
think N huge) (use this ‘grade’ and compare it for model selection, e.g. constant model wins, less squared error)

AN N
y o V! ° y ° y
H=1h}; gEH  |oceeeceaea , o
{ } g ® o ‘e o ® e, = ) e
(CONSTANT MODEL) 1 _ B
g?'b g?'b

gn X X X

V><

I =  Main utility of cross-validation is model selection supporting a decision to choose a model
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Validation Technique — Cross-Validation — K-Fold Approach

123 n |

l, (split creates a two subsets of comparable size)

72213 91

(random strategy, works not particularly well)

Leave-One-Out Cross-Validation (LOOCV) Example

5-fold Cross-Validation Example

123 n| 123 n
| |

123 N 11765 47

123 " 11765 47

o 3 " 11765 47

11765 47

123 N 11765 47

(picking strategy, works well but possible long computing)

pick one point for validation
resulting in possible large
sets when number of points are high

[2] ‘An Introduction to Statistical Learning’

Lecture 6 — Applications and Parallel Computing Benefits

(picking strategy, works well and reduces computing)

A set of data points is randomly split into
k non-overlapping groups (‘k-folds’)
of approximately equal size

Recommendation in Practice



Validation Technique — Cross-Validation — Leave-more-out

= 10-fold cross validation is mostly applied in practical problems by setting K = N/10 for real data
= __Having N/K training sessions on N — K points each leads to long runtimes (> use parallelization

(leave 1 point out at each run = many runs)

Training Examples D
(X105 %1 )5 e (X5 Yy)

" | eave-one-out

= N training sessions on
N — 1 points each time

(generalization to leave k points out at each run)
Training Examples

(X13y1)7"'7(XN7yN) D
= N/K training sessions on (practice to avoid bias &

. . o . contamination: some rest for test

N — K points each time (fewer training sessions than above) as ‘unseen data’)

= Example: ‘10-fold cross-valdation’ with K = N/10 multiple times (N/K)

(use 1/10 for validation, use 9/10 for training, then another 1/10 ... N/K times)

" | eave-more-out

= Break data into number of folds

D

(dataset)

(involved in training now) (involved in training now)

(now is the current example run)
Lecture 6 — Applications and Parallel Computing Benefits



Validation Technique — 10 fold Cross-Validation Example

= 10 times resampling -
= Validation set with é .
10 x 2 comparable sizes 3 *1

= ‘Random splits’ I

= High variability/variance — .

Degree of Polynomial

= 10-fold cross validation

= Validation set with
10-fold x 2 strategy

= No ‘random splits’

— 0 L
° * —e ° . ® e

Mean Squared Error
16 18 20 22 24 26 28
!

= |ower variability/variance

Degree of Polynomial

modified from [2] ‘An Introduction to Statistical Learning’
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Mean Squared Errar

Mean Squared Error

16 18 20 22 24 26 28

16 18 20 22 24 26 28

Degree of Polynomial

Degree of Polynomial




Model Performance — Validation Enables Early Stopping (1)

" Problem of overfitting

= [ssue is that Eout (g) is unknown to perform ‘early stopping’
= Apply validation = ‘perform decision to make a choice’ based on Dy

D (out-of-sample
Val

w.r.t. D;.i)

Error
= Use validation error E,q;,

to perform early stopping
= Validation decision brings bias

* When the estimate £/, .
of £ (g)affectsthe
learning process decision

= Optimistic bias impact
brings accuracy higher
than in reality (cf. Associated
use case with testset)

Lecture 6 — Applications and Parallel Computing Benefits

(‘generalization error’ remains unknown)

E,.(9)

Evalm*

(“training error’)

E,(9)

>
Training time

bad generalization& « =2 overfitting occurs

(“testing error‘ could be plotted,
but do not for decisions)

apply early stopping T



Model Performance — Validation Enables Early Stopping (2)

= ‘Bias’ reviewed as ‘data contamination’
" Training set is biased and contaminated (i.e. ‘used for train model change’)
= Test set is unbiased and clean (i.e. ‘waiting to be used in the final end’)

= Validation set has an optimistic bias (i.s. ‘use in model selection decisions‘)
(‘slightly contaminated since only few choices’)

\ Efuall Efvalg EvalM } (reasonir?g of bias relates to'the. probability and
estimated value of validation errors
(pick ‘best’ = bias) Y(decides model selection) since ‘one is picked’ as the minimum of all)
H E , (e is @a min function of E;, E, ., etc.)
TN * VAl *
— Ele(h(x),y)] = Eou(h)
ElE,.(h)] = 7= > Ele(h(x)k,yx)] = Bor  (aka the long-run average value of repetitions of the experiment)

k=1
(cf. picking the ‘best time’ in early stopping, also brings optimistic bias since minimum on model creation)

=  Optimistic bias means that there is ‘a belief’ that the error is smaller as it is actually going to be
=  Optimistic bias is minor and thus accepted in learning, but perform reporting with unbiased testset
= Important in validation is that the validation set stays only ‘slightly contaminated‘ (few choices)
= In practice several validation sets can be used for n parameter choices to keep reliable estimate
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piSVM / LibSVM — svm-train Parameters Revisited

= |mportant parameters

-bash-4.2% ./svm-train
Usage: svm-train [options] training set file [model file]

options:
-s svm_type : set type of SVM (default Q)
@ -- C-5SVC (multi-class classification)
1 -- nu-5vC (multi-class classification)
2 -- one-class SWM
3 -- epsilon-SVR ( regression)
4 -- nu-SVR (regression)
-t kernel_type : set type of kernel function (default 2)
B -- linear: u'*y
1 -- polynomial: (gamma*u'*v + coefl)“degree
2 -- radial basis function: exp(-gamma®|u-v|"2)
3 -- sigmoid: tanh{gamma*u'*v + coefd)
4 -- precomputed kernel (kernel values in training set file)

-d degree : set degree in kernel function (default 3)

-g gamma : set gamma in kernel function (default 1/num_ features)

-r coef@ : set coefl® in kernel function (default @)

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-n nu @ set the parameter nu of nu-SYC, one-class SYM, and nu-SVYR (default 0.5)
-p epsilon @ set the epsilon in loss function of epsilon-SYR (default ©.1)

-m cachesize : set cache memory size in ME (default 1060)

-2 epsilon : set tolerance of termination criterion (default @.001)

-h shrinking : whether to use the shrinking heuristics, @ or 1 (default 1)

-b probability estimates : whether to train a SVC or SVR model for probability estimates, @ or 1 (default O)
-wl weight @ seft the parameter C of class 1 to weight*C, for C-SVC (default 1)

-v n: n-fold cross validation mode ] (creates not a model, but gives
-9 * qulet mode (no outputs) an estimate for unseen data)

[3] LibSVM Webpage
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[Video] Training Process of Support Vector Machines

12

« original positive data 018 P T
« original negative data
10H ) subset posilive data

subset negative data
gH (O positive support vector
% negalive support vector
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Exercises
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Parallelization Benefits

O
O 0
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Regularization Revisited & Rules of Thumb for C

= C=0 (too rectrictive, potentially badforE ;) e =...=¢,=0
= No budget/costs for violations: comparable to maximal margin classifier

= Further constraint: only works in linearly seperable cases (less in practice)
= C>0 (flexible option, better for E_,) .

= No more than C data points can Ml_‘m_\._\l,
be on the wrong side of the hyperplane Pt

(‘how much misclassifications allowed?)

Margin= 2 / vww

Reasoning: if an observation is S e <C W gt e ®
on the wrong side then ¢; > 1 1= — :
(rule of = regularization parameter C (budget of errors) increase - margins will be
thumb) wide and more tolerant of violations to the margin (classifier fits data less)
(differently = regularization parameter C (budget of errors) descreases = margins will be
handled in R library) narraw and less tolerant of violations to the margin (classifier highly fit data)

I = Determine the right C parameter for a model can be obtained using parallelization on a HPC system
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Processing time (min)

Processing time (min)

Parallelization Benefit: Lower-Time-To-Solution

= Major speed-ups; ~interactive (<1 min); same accuracy;

15
(1.14.06) ‘ —e— (cores, minutes)
(1) Scenario
10|eei00  ‘unprocessed data’
training time (in min)
5
(64103 (80,0.55)
(32,1.36) i
% 20 40 60 80
Number of cores
(a)
250
(1,228.46) | —e— (cores, minutes)
200 (1) Scenario
‘unprocessed data’
L testing time (in min)
(2,115.05)
100
50
(32,8.41)
o (16,1651 (64,4.46)  (80.4.09)
0 20 40 60 80
Number of cores
(b)

Processing time (min)

Processing time (min)

{ —eo— (cores, minutes)

manual & serial activities (in min)

(13.38) .
(2) Scenario

‘pre-processed data’

2239 training time (in min)

(4.2.04)

kpca esdap nwfe 10x CSV Training  Test Total
(1) Scenario 0 0 0  4.47x10° 1045 71.08 4.55 x 10°
(2) Scenario 5 1538 1 529.55 1.37  23.25 575.55

1
(64,0.31)  (80,0.31)
0 (32,032)
0 20 40 60 80
Number of cores
(a)
50
(1,47.16) ‘ —e— (cores, minutes)

40

30

20

10

(2) Scenario
‘pre-processed data’
testing time (in min)

(2,24.26)

32,2.05
(16807~ ) (64,134)  (80,1.05)
0 20 40 60 80
Number of cores
(b)

Lecture 6 — Applications and Parallel Computing Benefits

‘big data‘ is not always better data

(1) Scenario (2) Scenario

Number of features

200 30

Overall Accuracy (%)

40.68 77.96

(cf. Importance of feature engineering above)

[4] G. Cavallaro, M. Riedel, J.A. Benediktsson
et al., Journal of Selected Topics in Applied
Earth Observation and Remote Sensing, 2015

B2SHARE

Store and Share Research Data

 (e9)



Parallelization Benefit: Parallel 10-Fold Cross-Validation

» Example: 2 Parameters, 10-fold cross-validation
= 2 x benefits of parallelization possible in a so-called ‘gridsearch’
= (1) Compute parallel; (2) Do all cross-validation runs in parallel (all cells)
= Evaluation between Matlab (aka ‘serial laptop‘) & parallel (80 cores)

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min) (1) First Result: best parameter set from 14.41 min to 1.02 min

y/C 1 10 100 1000 10000 (2) Second Result: all parameter sets from ~9 hours to ~35 min
2 4890 (18.81) 65.01 (19.57) 73.21 (20.11) 75.55 (22.53) 74.42 (21.21)

4 57.53 (16.82) 70.74 (13.94) 75.94 (13.53) 76.04 (14.04) 74.06 (15.55) : :
8 64.18 (18.30) 74.45 (15.04) 77.00 (14.41) 75.78 (14.65) 74.58 (14.92) [4] G. Cava”aro’ M. R'edel’ J.A. Benediktsson et al"

16 6837 (23.21) 7620 (21.88) 7651 (20.69) 7532 (19.60) 74.72 (19.66)  Journal of Selected Topics in Applied Earth Observation
32 7017 (3445) 7548 (34.76) 74.88 (34.05) 74.08 (34.03) 73.84 (38.78) .
and Remote Sensing, 2015

(2) Scenario ‘pre-processed data‘’, 10xCV parallel: accuracy (min)

GG 1 10 100 1000 10000

2 75.26 (1.02) 65.12 (1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
4 57.60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
8 64.17 (1.02) 7452 (1.03 ) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)

16 68.57 (1.33) 76.07 (1.33) 76.40 (1.34) 75.26 (1.05) 74.53 (1.34)
32 70.21 (1.33) 75.38 (1.34) 74.69 (1.34) 7391 (1.47) 73.73 (1.33)

(1) each cell inherent parallel” (2] Ol Col  p—
in parallel’

I = 10-fold cross-validation achieves parallelization benefits (1) in each grid cell and (2) across all cells
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Parallelization Summary

= Parallelization benefits are enormous for complex problems
= Enables feasibility to tackle extremely large datasets & high dimensions
= Provides functionality for a high number of classes (e.g. #k SVIMs)

(1) Scenario ‘unprocessed data’, 10xCV serial: accuracy (min)

Achieves a massive reduction in time = lower time-to-solution

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

~/C 1 10 100 1000 10 000 ~IC 1 10 100 1000 10 000

2 27.30 (109.78) 34.59 (124.46) 39.05 (107.85) 37.38 (116.29) 37.20 (121.51) 2 4890 (18.81) 65.01 (19.57) 73.21 (20.11) 75.55 (22.53) 74.42 (21.21)
4 2924 (98.18) 37.75 (85.31) 3891 (113.87) 38.36(119.12) 38.36 (118.98) 4 5753 (16.82) 70.74 (13.94) 75.94 (13.53) 76.04 (14.04) 74.06 (15.55)
8 31.31(109.95) 39.68 (118.28) 39.06 (112.99) 39.06 (190.72) 39.06 (872.27) 8  64.18 (18.30) 74.45 (15.04) 77.00 (14.41) 75.78 (14.65) 74.58 (14.92)
16 33.37 (126.14) 39.46 (171.11) 39.19 (206.66) 39.19 (181.82) 39.19 (146.98) 16 6837 (23.21) 7620 (21.88) 76.51 (20.69) 75.32 (19.60) 74.72 (19.66)
32 34,61 (179.04) 38.37 (202.30) 38.37 (231.10) 38.37 (240.36) 38.37 (278.02) 32 70.17 (34.45) 75.48 (34.76) 74.88 (34.05) 74.08 (34.03) 73.84 (38.78)

(1) Scenario ‘unprocessed data”10xCV parallel: accuracy (min)

(2) Scenario ‘pre-processed data‘’, 10xCV parallel: accuracy (min)

v/C 1 10 100 1000 10000 ~v/C 1 10 100 1000 10000
2 27.26 (3.38) 34.49 (3.35) 39.16 (5.35) 37.56 (11.46) 37.57 (13.02) 2 7526(1.02) 65.12(1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
4 29.12 (3.34) 37.58 (3.38) 38.91 (6.02) 38.43 (7.47) 38.43 (7.47) 4 57.60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
8 31.24 (3.38) 39.77 (4.09) 39.14 (545) 39.14 (5.42) 39.14 (5.43) 8 64.17 (1.02) 7452 (1.03 ) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
16 33.36 (4.09) 39.61 (4.56) 39.25(5.06) 39.25 (5.27) 39.25 (5.10) 16 68.57(1.33) 76.07 (1.33) 76.40 (1.34) 75.26 (1.05) 74.53 (1.34)
32 34.61 (5.13) 38.37 (5.30) 38.36 (5.43) 38.36 (5.49) 38.36 (5.28) 32 7021(1.33) 75.38 (1.34) 74.69 (1.34) 7391 (1.47) 73.73 (1.33)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[4] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected Topics
in Applied Earth Observation and Remote Sensing, 2015
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Complex Application Example in Industry — Netflix

= ~2009 - Netflix Prize Challenge 2009

= Data: Netflix company provided data to learn from previous movie rentals

Challenge: Improve Netflix in-house movie recommender system
Prize: 1.000.000 US S for team with 10% improvements
Approaches: Machine learning algorithms and collaborative filterings

Winner: Prize received by working with Artificial Neural Network (ANNSs)

NETFLIX X, X, X3 X, X5

Congratulations!

T

558

Z ‘.’ “. [5] A. Téscher and M. Jahrer,
‘The BigChaos Solution to the
Netflix Grand Prize’, 2009
@
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Complex Application Example in Industry — Windpower

" Predictive & Instant Maintenance Workforce Management

Wind

Business Value Driver Big Data Impact

* Increase average time between “ + Ad-hoc analysis on large data
inspections volumes to predict, monitor and

- Decrease lost power generation optimize performance and
factor component breakdown

. Decrease cost of spare parts - Enable “Process-to-device”

Value Chain

E

Generation
Process

Turbine Maintenance

Value
\\\\\uu/{/’
- 59
Feasibility
Phase -
1 Jz. J3. J
Lead User(s)

I » Slide courtesy of Dr. S. Fischer, Global Head of Applied Research — SAP AG, Germany SDIL
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Complex Application Examples in Science & Engineering

= (Classification of Abnormalities in Brain MRI Images

= Using Support Vector Machines (SVMs)
[6] D. Singh et al., 2012

= ‘Classify images between normal and abnormal
along with type of disease depending upon features.’

input data class class class class
Infected by clot normal brain Infected by tumor Infected by bleed

= (Classification of buildings from multi-spectrial satellite data
= Using Support Vector Machines (SVMs) [7] G. Cavallaro & M. Riedel et al., 2014

= Classify land cover using image data & data preprocessing methods

2 163129
98834 .

5 14 different
606 14454

" 962 62655 p

Trees 9088 81792 types

Bare Soil 8127 73144 L]

Sal 1506 13551 of land cover

Ve
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Exercises
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[Video] Contamination of Data: Training, Testing, Validation

(relative high-level but captures the essence of unseen data and differences between testing & validation)

[8] YouTube Video, ‘Machine Learning : Model Selection & Cross Validation’
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