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Review of Lecture 5

 Non-linear Transformations
 Use of a mapping function 
 Hyperplane in higher 

dimensional space possible
 Mapping back corresponds

to non-linear decision boundary
in initial input or x space

 Full Support Vector Machine
 Full = use of non-linear kernel
 Take advantage of mapping

into a higher-level/infinite space
 Apply ‘kernel trick‘
 Kernels quantify similiarity
 Different trusted kernels available

(RBF, polynomial, etc.)
Lecture 6 – Applications and Parallel Computing Benefits

(trusted Kernel
avoids to know Phi)

(dual since primal wi  and b removed)
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Outline
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Outline of the Course

1. Machine Learning Fundamentals

2. Supervised Classification

3. Support Vector Machines

4. Applications and Serial Computing Limits

5. Kernel Methods

6. Applications and Parallel Computing Benefits
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Outline

 Validation
 Validation Set & Validation Error
 Validation for Model Selection
 N-Fold Cross-Validation Technique
 Applying Validation of SVMs to Datasets
 Experiencing Linear & Serial Limits

 Parallelization Benefits
 Regularization Parameter Revisited
 Possibility to work with large datasets
 Parallelization Impact in Cross-Validation
 Parallelization Summary & Acknowledgements
 Complex Applications & Data Contamination
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Mathematical Building Blocks – Revisited 

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Initial Terminologies – Reviewed w.r.t. Model Decisions 

 Target Function                      Target Distribution
 Ideal ‘function‘ that ‘explains‘ the data we want to learn

 Labelled Dataset (samples)
 ‘in-sample‘ data given to us: 

 Dataset Part One: Training set
 Used for training a machine learning algorithms
 Result after using a training set: a trained system

 Dataset Part Two: Test set
 Used for testing whether the trained system might work well 
 Result after using a test set: accuracy of the trained model 

 Learning vs. Memorizing
 The goal is to create a system that works well ‘out of sample‘ (future data)

(testing set has not been used to make any decisions for model…)

(training set is used to make some decisions for model…)

(Another set of data is needed not used in training but that is used for model selection & ‘validate decisions‘)

plus noise
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Training and Testing – Reviewed w.r.t. Model Decisions

 Mathematical notations
 Testing follows: 

(hypothesis clear)
 Training follows:

(hypothesis search) 

 Practice on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)

 Training & Testing
 Different phases in the learning process

(e.g. student exam training on examples to get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)

(Another phase in the creation of the whole model is needed where we take ‘validated decisions about the model‘)

(cf. Lecture 1)
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 A good model must have low training error (Ein) and low generalization error (Eout)
 Model overfitting is if a model fits the data too well (Ein) with a poorer generalization error (Eout)

than another model with a higher training error (Ein) 

[1] Introduction to Data Mining

Problem of Overfitting – Clarifying Terms

 Overfitting & Errors
 goes down
 goes up

 ‘Bad generalization area‘ ends
 Good to reduce 

 ‘Overfitting area‘ starts
 Reducing                does not help
 Reason ‘fitting the noise‘

Error

Training time

(‘generalization error‘)

(‘training error‘)

 The two general approaches to prevent overfitting are (1) regularization and (2) validation

 overfitting occursbad generalization

(Decisions about the model are related to the problem of overfitting – need another method to ‘select model well‘)
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Problem of Overfitting – Impacts on Learning Revisited

 Understanding deterministic noise & target complexity
 Increasing target complexity increases deterministic noise (at some level)
 Increasing the number of data N decreases the deterministic noise

 Finite N case:       tries to fit the noise
 Fitting the noise straightforward (e.g. with linear regression)
 Stochastic (in data) and deterministic (simple model) noise will be part of it

 Two ‘solution methods‘ for avoiding overfitting
 Regularization:  ‘Putting the brakes in learning‘, e.g. early stopping

(more theoretical, hence ‘theory of regularization‘)
 Validation: ‘Checking the bottom line‘, e.g. other hints for out-of-sample

(more practical, methods on data that provides ‘hints‘)

 The higher the degree of the polynomial (cf. model complexity), the more degrees of 
freedom are existing and thus the more capacity exists to overfit the training data 

(Decisions about the model are related to the model complexity – need another method to ‘select model well‘)
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Validation & Model Selection – Terminology 

 ‘Training error‘ 
 Calculated when learning from data (i.e. dedicated training set)

 ‘Test error’
 Average error resulting from using the model with ‘new/unseen data‘
 ‘new/unseen data‘ was not used in training (i.e. dedicated test set)
 In many practical situations, a dedicated test set is not really available

 ‘Validation Set‘
 Split data into training & validation set

 ‘Variance‘ & ‘Variability‘
 Result in different random splits (right)

 The ‘Validation technique‘ should be used in all machine learning or data mining approaches
 Model assessment is the process of evaluating a models performance
 Model selection is the process of selecting the proper level of flexibility for a model

modified from [2] ‘An Introduction to Statistical Learning’

(1 split) (n splits)

(split creates a two subsets of comparable size)

12 / 41



Lecture 6 – Applications and Parallel Computing Benefits

Validation Technique – Formalization & Goal

 Regularization & Validation
 Approach: introduce a ‘overfit penalty‘ that relates to model complexity
 Problem: Not accurate values: ‘better smooth functions‘

 Validation 
 Goal ‘estimate the out-of-sample error‘ 
 Distinct activity from training and testing

 Validation is a very important technique to estimate the out-of-sample performance of a model
 Main utility of regularization &  validation is to control or avoid overfitting via model selection

(regularization estimates 
this quantity)

(regularization uses a term that captures the overfit penalty)

(minimize both to be better proxy for Eout)

(validation estimates 
this quantity)

(establish a quantity known as validation error)

(testing also tries to estimate the Eout)

(measuring Eout is not possible as this is an unknown quantity, 
another quantity is needed that is measurable that at least estimates it)
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Validation Technique – Pick one point & Estimate Eout

 Understanding ‘estimate‘ Eout
 On one  out-of-sample point              the error is 
 E.g. use squared error:

 Use this quantity as estimate for Eout

 Term ‘expected value‘ to formalize (probability theory)

Training Examples

‘test set’‘training set’

(poor estimate)

(Taking into account the theory of Lecture 1 with probability distribution on X etc.)
Probability Distribution

(activity below is what we do for testing,
but call it differently for another purpose)

(one point as unbiased estimate of Eout that can have a high variance leads to bad generalization)

(aka ‘random variable‘)
(aka the long-run average value of repetitions of the experiment)

K

(involved in validation)
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 Solution for high variance in expected values
 Take a ‘whole set‘ instead of just one point             for validation

 Idea: K data points for validation

 Expected value to ‘measure‘
the out-of-sample error

 ‘Reliable estimate‘ if K is large

Validation Technique – Validation Set
 Validation set consists of data that has been not used in training to estimate true out-of-sample
 Rule of thumb from practice is to take 20% (1/5) for validation of the learning model 

(validation set)

Training Examples

(validation error)

(we do the same approach with the 
testing set, but here different purpose)(involved in training+test) (involved in validation)

(we need points not used in training
to estimate the out-of-sample performance)

(expected values averaged over set)

(this gives a much better (lower) variance than on a single point given K is large)(on rarely used validation set,
otherwise data gets contaminated)

K
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Validation Technique – Model Selection Process

 M models
(cf. Lecture 1)
 Use validation error to 

perform select decisions 

 Careful consideration:
 ‘Picked means decided‘

hypothesis has already
bias ( contamination)

 Using            M times

 Model selection is choosing (a) different types of models or (b) parameter values inside models
 Model selection takes advantage of the validation error in order to decide  ‘pick the best‘

(set of candidate formulas across models)

Hypothesis Set

(pick ‘best‘  bias)

(final real training
to get even better
out-of-sample)

(training)

(validate)

(final training on full set, use
the validation samples too)

(out-of-sample
w.r.t. DTrain)

(training not on
full data set)

(decides model selection)

Final Hypothesis (test this on unseen data
good, but depends on 
availability in practice)

(unbiased
estimates)
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Validation Technique – Cross-Validation – Trick

 Goal
 Target issue ‘choosing K‘ out of N
 Issue: K needs to be small & large
 (cf. Lecture 1 feasibility of learning)

 Apply trick: repeat the number of trainings on different subsets
 Train multiple times using e.g. leave-one-out or leave-more-out

 Cross-validation the technique of choice in practical situations to perform model selection
 Different techniques exist for cross-validation such as leave-one-out, leave-more-out

Training Examples

(involved in training) (involved in validation)

(every time a data point is used for validation it is taken away from training)

(chain of reasoning so far)

K

(practice)

(conflicting requirements on K)
(idea: is 
there a 
solution

over time?)
(small K for large N – K training delivering 

good out-of-sample performance)
(large K for validation delivering 

a good estimate for out-of-sample performance)

 Cross-validation ‘trick‘ achieves to use N points for training and N points for validation (big gain!)

(validation data not given on top of training data)
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Validation Technique – Cross-Validation – Leave-one-out

 Simplest form of cross-validation
 Use N – 1 data points for training 
 Potential issue: only 1 data point for validation
 Creates a very ‘small validation‘ set, but very ‘large training‘ set

 Final hypothesis to be ‘selected‘ after training with          is 

 Apply ‘resampling‘ trick: 
Repeat for different n with 

(bad estimate for Eout)

(reduced dataset, but as training set
very close to N missing just one) (one data point left out for validation) (not trained on 

full set & 
depends on 

point left out)
(check error on the point ‘left out‘  out-of-sample)

(the hypothesis was trained not involving this point)

(validate hypothesis on that data point taken out)
(one point in validation set brings bad estimate for Eout)

(obtains different hypothesis g1-, g2-,…., but all have in 
common to be obtained by being trained on N – 1 points)

(cross-validation error on validation set with N points)

(works well with
increasing N)

(split data NOT 
just in two subsets 
of comparable size)

Source: [30]
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Validation Technique – Cross-Validation Error Example 

 Example: Create a linear model 
 Assuming there is noise in the target function
 Cross-validation: evaluate out-of-sample error to choose a model (later)

(the full dataset = 3 points)

(red points are validation sets in each run) (black points are training sets in each run)

(n = left point out) (n  = middle point out)

y

x

y

x
e1

y

x

e2
e3

y

x

(n  = right point out)

(simply compute average of all errors, e.g. using squared distance)

(cross-validation error as indication of how well 
‘the linear model‘ fits the data  out-of-sample)

(impact on N = small (3)
is enormous, but if N = large

average works very well)

 Cross-validation is a ‘resampling method‘ that obtains more information than ‘fitting model once‘
 Compute cross-validation error is possible (via ‘in-sample‘) & a systematic way for model selection
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Validation Technique – Cross-Validation & Model Selection

 Model selection: Perform a ‘decision‘
 Cross-validation: evaluate out-of-sample 

error to choose a model
 Example: Decide whether Linear Model or Constant Model is better

y

x

y

x
e1

y

x

e2
e3

y

x

(set of candidate formulas)

Hypothesis Set

(LINEAR MODEL)

(CONSTANT MODEL)

(decision support
required, 

think N huge)

y

x

y

x

e1

y

x

e2
e3

y

x

 Main utility of cross-validation is model selection supporting a decision to choose a model

(use the obtained cross-validation error for both models as a ‘grade for each model‘)
(use this ‘grade‘ and compare it for model selection, e.g. constant model wins, less squared error)

(avoiding e.g. heuristics)
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Validation Technique – Cross-Validation – K-Fold Approach

Leave-One-Out Cross-Validation (LOOCV) Example

[2] ‘An Introduction to Statistical Learning’

5-fold Cross-Validation Example

pick one point for validation
resulting in possible large

sets when number of points are high

A set of data points is randomly split into
k non-overlapping groups (‘k-folds‘)

of approximately equal size

Recommendation in Practice

(split creates a two subsets of comparable size)

(random strategy, works not particularly well)

(picking strategy, works well but possible  long computing) (picking strategy, works well and reduces computing)
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Validation Technique – Cross-Validation – Leave-more-out 

 Leave-one-out
 N training sessions on 

N – 1 points each time

 Leave-more-out
 Break data into number of folds 
 N/K training sessions on 

N – K points each time
 Example: ‘10-fold cross-valdation‘ with K = N/10 multiple times (N/K)

 10-fold cross validation is mostly applied in practical problems by setting K = N/10 for real data
 Having N/K training sessions on N – K points each leads to long runtimes ( use parallelization)

(generalization to leave k points out at each run)

(dataset)

Training Examples

Training Examples

(leave 1 point out at each run many runs)

1

K-fold

(use 1/10 for validation, use 9/10 for training, then another 1/10 … N/K times)

(fewer training sessions than above)

(involved in training now)(involved in training now)
(now is the current example run)

(practice to avoid bias &
contamination: some rest for test

as ‘unseen data‘)

Training Examples
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Validation Technique – 10 fold Cross-Validation Example 

 10 times resampling
 Validation set with

10 x 2 comparable sizes
 ‘Random splits‘
 High variability/variance

 10-fold cross validation
 Validation set with

10-fold x 2 strategy
 No ‘random splits‘
 Lower variability/variance

modified from [2] ‘An Introduction to Statistical Learning’
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Model Performance – Validation Enables Early Stopping (1)

 Problem of overfitting
 Issue is that                  is unknown to perform ‘early stopping‘
 Apply validation = ‘perform decision to make a choice‘ based on

 Use validation error
to perform early stopping

 Validation decision brings bias
 When the estimate 

of                 affects the 
learning process decision

 Optimistic bias impact
brings accuracy higher
than in reality (cf. Associated
use case with testset)

Error

Training time

(‘generalization error‘ remains unknown)

(‘training error‘)

 overfitting occursbad generalization

apply early stopping T

(out-of-sample
w.r.t. DTrain)

(‘testing error‘ could be plotted, 
but do not for decisions)

(‘validation error‘
known & used for decisions)

(bias)
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Model Performance – Validation Enables Early Stopping (2)

 ‘Bias‘ reviewed as ‘data contamination‘
 Training set is biased and contaminated (i.e. ‘used for train model change‘)
 Test set is unbiased and clean (i.e. ‘waiting to be used in the final end‘)
 Validation set has an optimistic bias (i.s. ‘use in model selection decisions‘)

 Optimistic bias means that there is ‘a belief‘ that the error is smaller as it is actually going to be
 Optimistic bias is minor and thus accepted in learning, but perform reporting with unbiased testset
 Important in validation is that the validation set stays only ‘slightly contaminated‘ (few choices)
 In practice several validation sets can be used for n parameter choices to keep reliable estimate

(pick ‘best‘  bias) (decides model selection)

(reasoning of bias relates to the probability and
estimated value of validation errors 

since ‘one is picked‘ as the minimum of all)

(aka the long-run average value of repetitions of the experiment)

(e is a min function of Eval1, Eval2, etc.)

(cf. picking the ‘best time‘ in early stopping, also brings optimistic bias since minimum on model creation)

(‘slightly contaminated since only few choices‘)
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piSVM / LibSVM – svm-train Parameters Revisited

 Important parameters

Lecture 6 – Applications and Parallel Computing Benefits

[3] LibSVM Webpage

(creates not a model, but gives
an estimate for unseen data)
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[Video] Training Process of Support Vector Machines
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Exercises
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Parallelization Benefits
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Regularization Revisited & Rules of Thumb for C

 C = 0 (too rectrictive, potentially bad for Eout)
 No budget/costs for violations: comparable to maximal margin classifier 
 Further constraint: only works in linearly seperable cases (less in practice)

 C > 0 (flexible option, better for Eout)
 No more than C data points can 

be on the wrong side of the hyperplane
(‘how much misclassifications allowed‘)

 Reasoning: if an observation is 
on the wrong side then

 regularization parameter C (budget of errors) increase margins will be 
wide and more tolerant of violations to the margin (classifier fits data less)

 regularization parameter C (budget of errors) descreases margins will be 
narraw and less tolerant of violations to the margin (classifier highly fit data)

(rule of 
thumb)

(differently
handled in R library)

 Determine the right C parameter for a model can be obtained using parallelization on a HPC system
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Parallelization Benefit: Lower-Time-To-Solution

 Major speed-ups; ~interactive (<1 min); same accuracy;

Lecture 6 – Applications and Parallel Computing Benefits

(1) Scenario 
‘unprocessed data‘
training time (in min)

(1) Scenario 
‘unprocessed data‘
testing time (in min)

‘big data‘ is not always better data

manual & serial activities (in min)

(2) Scenario 
‘pre-processed data‘
training time (in min)

(2) Scenario 
‘pre-processed data‘
testing time (in min)

[4] G. Cavallaro, M. Riedel, J.A. Benediktsson 
et al., Journal of Selected Topics in Applied 
Earth Observation and Remote Sensing, 2015

(cf. Importance of feature engineering above)
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Parallelization Benefit: Parallel 10-Fold Cross-Validation 

 Example: 2 Parameters, 10-fold cross-validation 
 2 x benefits of parallelization possible in a so-called ‘gridsearch‘
 (1) Compute parallel; (2) Do all cross-validation runs in parallel (all cells)
 Evaluation between Matlab (aka ‘serial laptop‘) & parallel (80 cores)

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

(1) First Result: best parameter set from 14.41 min to 1.02 min

(2) Second Result: all parameter sets from ~9 hours to ~35 min

‘(1) each cell inherent parallel’ ‘(2) all cells 
in parallel’

[4] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., 
Journal of Selected Topics in Applied Earth Observation 
and Remote Sensing, 2015

 10-fold cross-validation achieves parallelization benefits (1) in each grid cell and (2) across all cells
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Parallelization Summary

 Parallelization benefits are enormous for complex problems
 Enables feasibility to tackle extremely large datasets & high dimensions
 Provides functionality for a high number of classes (e.g. #k SVMs)
 Achieves a massive reduction in time  lower time-to-solution

Lecture 6 – Applications and Parallel Computing Benefits

(1) Scenario ‘unprocessed data‘, 10xCV serial: accuracy (min)

(1) Scenario ‘unprocessed data‘’10xCV parallel: accuracy (min)

First Result: best parameter set from 118.28 min to 4.09 min
Second Result: all parameter sets from ~3 days to ~2 hours

(2) Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

(2) Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

[4] G. Cavallaro, M. Riedel, J.A. Benediktsson et al., Journal of Selected Topics 
in Applied Earth Observation and Remote Sensing, 2015
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Complex Application Example in Industry – Netflix 

 ~2009 - Netflix Prize Challenge 2009 
 Data: Netflix company provided data to learn from previous movie rentals 
 Challenge: Improve Netflix in-house movie recommender system
 Prize: 1.000.000 US $ for team with 10% improvements
 Approaches: Machine learning algorithms and collaborative filterings
 Winner: Prize received by working with Artificial Neural Network (ANNs)

[5] A. Töscher and M. Jahrer,
‘The BigChaos Solution to the 
Netflix Grand Prize’, 2009
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Complex Application Example in Industry – Windpower

 Slide courtesy of Dr. S. Fischer, Global Head of Applied Research – SAP AG, Germany SDIL

 Predictive & Instant Maintenance Workforce Management
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Complex Application Examples in Science & Engineering

 Classification of Abnormalities in Brain MRI Images
 Using Support Vector Machines (SVMs)
 ‘Classify images between normal and abnormal 

along with type of disease depending upon features.‘

 Classification of buildings from multi-spectrial satellite data
 Using Support Vector Machines (SVMs)
 Classify land cover using image data & data preprocessing methods

?
input data class 

normal brain
class

Infected by clot
class

Infected by tumor
class

Infected by bleed

[6] D. Singh et al., 2012

[7] G. Cavallaro & M. Riedel et al., 2014

? different
types

of land cover
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Exercises

Lecture 6 – Applications and Parallel Computing Benefits 37 / 41



Lecture 6 – Applications and Parallel Computing Benefits

[Video] Contamination of Data: Training, Testing, Validation

[8] YouTube Video, ‘Machine Learning : Model Selection & Cross Validation’

(relative high-level but captures the essence of unseen data and differences between testing & validation)
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