
Introduction	to	the
Message	Passing	Interface	(MPI)

Jan	Fostier

May	3rd 2017

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Moore’s	Law

“Transistor	count	doubles
every	two	years”

Illustration	from	Wikipedia

Moore’s	Law

2000 2011

Illustration	from	Wikipedia

Evolution	of	top	500	supercomputers	over	time	

Im
ag
e	
ta
ke
n	
fr
om

	w
w
w
.to

p5
00

.o
rg

=	17.6	PFlops/s
(#	1	ranked)

=	76	TFlops/s
(#	500	ranked)

Exponential increase	of	supercomputer	
peak	performance	over	time

Application	area	– performance	share

Im
ag
e	
ta
ke
n	
fr
om

	w
w
w
.to

p5
00

.o
rg

“research”

“unknown”

Operating	system	family

“Linux”

“Unix”

“Mixed”

Motivation	for	parallel	computing

• Want	to	run	the	same	program	faster
§ Depends	on	the	application	what	is	considered	an	acceptable	

runtime
o SETI@Home,	Folding@Home,	GIMPS:	years	may	be	acceptable
o For	R&D applications:	days	or	even	weeks	are	acceptable

– CFD,	CEM,	Bioinformatics,	Cheminformatics,	and	many	more
o Prediction	of	tomorrow’s	weather	should	take	less	than	a	day	of	

computation	time.
o Some	applications	require	real-time	behavior

– Computer	games,	algorithmic	trading

• Want	to	run	bigger	datasets
• Want	to	reduce	financial	cost and/or	power	consumption

Distributed-memory	architecture

Interconnection	network	(e.g.	Gigabit	Ethernet,	Infiniband,	Myrinet,	…)

Machine

CPU

Memory

Machine

CPU

Memory

Machine

CPU

Memory

…

Machine

CPU

Memory

NI NI NI NI

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Message	Passing	Interface	(MPI)

• MPI	=	library	specification,	not	an	implementation
• Most	important	implementations

§ Open	MPI (http://www.open-mpi.org,	MPI-3	standard)
§ Intel	MPI	(proprietary,	MPI-3	standard)

• Specifies	routines	for	(among	others)
§ Point-to-point communication	(between	2	processes)
§ Collective communication	(>	2	processes)
§ Topology setup
§ Parallel	I/O

• Bindings	for	C/C++	and	Fortran

MPI	reference	works

• MPI	standards:	http://www.mpi-forum.org/docs/

• MPI:	The	Complete	Reference (M.	Snir,	S.	Otto,	S	
Huss-Lederman,	D.	Walker,	J.	Dongarra)
Available	from	http://switzernet.com/people/emin-
gabrielyan/060708-thesis-ref/papers/Snir96.pdf

• Using	MPI:	Portable	Parallel	Programming	with	the	
Message	Passing	Interface,	2nd ed.	(W.	Gropp,	E.	Lusk,	
A.	Skjellum).

MPI	standard

• Started	in	1992	(Workshop	on	Standards	for	Message-Passing	in	a	
Distributed	Memory	Environment)	with	support	from	vendors,	library	
writers	and	academia.

• MPI	version	1.0	(May	1994)
• Final	pre-draft	in	1993	(Supercomputing	‘93	conference)
• Final	version	June	1994

• MPI	version	2.0 (July	1997)
• Support	for	one-sided	communication
• Support	for	process	management
• Support	for	parallel	I/O

• MPI		version	3.0	(September	2012)
• Support	for	non-blocking	collective	communication
• Fortran	2008	bindings
• New	one-sided	communication	routines

Hello	world	example	in	MPI
#include <mpi.h>
#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char* argv[]) {
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

cout << “Hello World from process” << rank << “/” << size << endl;

MPI_Finalize();
return EXIT_SUCCESS;

}

john@doe ~]$ mpirun –np 4 ./helloWorld
Hello World from process 2/4
Hello World from process 3/4
Hello World from process 0/4
Hello World from process 1/4

Output	order is
random

Basic	MPI	routines

• int MPI_Init(int *argc, char ***argv)
§ Initialization:	all	processes	must	call	this	prior	to	any	other	MPI	routine.
§ Strips	of	(possible)	arguments	provided	by	“mpirun”.

• int MPI_Finalize(void)
§ Cleanup:	all	processes	must	call	this	routine	at	the	end	of	the	program.
§ All	pending	communication	should	have	finished	before	calling	this.

• int MPI_Comm_size(MPI_Comm comm, int *size);
§ Returns	the	size	of	the	“Communicator”	associated	with	“comm”
§ Communicator	=	user	defined	subset	of	processes
§ MPI_COMM_WORLD	=	communicator	that	involves	all	processes

• int MPI_Comm_rank(MPI_Comm comm, int *rank);
§ Return	the	rank	of	the	process	in	the	Communicator
§ Range:	[0	...	size	– 1]

Message	Passing	Interface	Mechanisms

Interconnection	network	(e.g.	Gigabit	Ethernet,	Infiniband,	Myrinet,	…)

Machine Machine Machine

…

Machine

Hello	World	
process

Hello	World
process

Hello	World
process

Hello	World
process

P	processes	(or	instances)	of	the	“Hello	World”	program

mpirun launches	P	independent processes across	the	different	machines
• Each	process	is	a	instance	of	the	same	program

Stack	variables:
rank	=	0
size	=	P

Stack	variables:
rank	=	1
size	=	P

Stack	variables:
rank	=	2
size	=	P

Stack	variables:
rank	=	P-1
size	=	P

“Hello	
World”

“Hello	
World”

“Hello	
World”

“Hello	
World”

Terminology

• Computer	program =	passive	collection	of	instructions.

• Process =	instance	of	a	computer	program	that	is	being	executed.

• Multitasking =	running	multiple	processes	on	a	CPU.

• Thread =	smallest	stream	of	instructions	that	can	be	managed	by	an	
OS	scheduler	(=	light-weight	process).

• Distributed-memory system	=	multi-processor	systems	where	each	
processor	has	direct	access	(fast)	to	its	own	private	memory	and	
relies	on	inter-processor	communication	to	access	another	
processor’s	memory	(typically	slower).

Multithreading	versus	multiprocessing

Multi-threading
Single process
Shared	memory	address	space
Protect	data against	
simultaneous	writing
Limited	to	a	single	machine
E.g.	Pthreads,	CILK,	OpenMP,	etc.

Message	passing
Multiple processes
Separate memory	address	spaces
Explicitly	communicate everything

Multiple machines	possible
E.g.	MPI,	Unified	Parallel	C,	PVM

Seq	I Seq	I Seq	I Seq	I

A B C D

Seq	II Seq	II Seq	II Seq	II

Seq	I

Seq	II

A B C D

Thread	spawning

Thread	joining

Message	Passing	Interface	(MPI)
• MPI	mechanisms (depends	on	implementation)

• Compiling	an	MPI	program	from	source
• mpicc -O3	main.cpp	-o	main

gcc -O3	main.cpp	-o	main	-L<IncludeDir>	-l<mpiLibs>

• Also	mpic++	(or	mpicxx),	mpif77,	mpif90,	etc.

• Running	MPI	applications	(manually)
• mpirun -np <number	of	program	instances>	<your	program>
• List	of	worker	nodes	specified	in	some	config file.

• Using	MPI	on	the	Ugent	HPC	cluster
• Load	appropriate	module	first,	e.g.

• module	load	intel/2017a

• Compiling	an	MPI	program	from	source
• mpigcc (uses	the	GNU	“gcc”	C	compiler)
• mpiicc (uses	the	Intel	“icc”	C	compiler)
• mpigxx (uses	the	GNU	“g++”	C++	compiler)
• mpiicpc (uses	the	Intel	“icpc”	C++	compiler)

• Submit	job	using	a	jobscript (see	further)

C

C++

mpicc / mpic++
defaults to gcc

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Basic	MPI	point-to-point	communication
...
int rank, size, count;
char b[40];
MPI_Status status;

... // init MPI and rank and size variables

if (rank != 0) {
char * str = “Hello World”;
MPI_Send(str, 12, MPI_CHAR, 0, 123, MPI_COMM_WORLD);

} else {
for (int i = 1; i < size; i++) {

MPI_Recv(b, 40, MPI_CHAR, i, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
MPI_Get_count(&status, MPI_CHAR, &count);
printf(“I received %s from process %d with size %d and tag %d\n”,

b, status.MPI_SOURCE, count, status.MPI_TAG);
}

}
...

john@doe ~]$ mpirun –np 4 ./ptpcomm
I received Hello World from process 1 with size 12 and tag 123
I received Hello World from process 2 with size 12 and tag 123
I received Hello World from process 3 with size 12 and tag 123

branching	on	rank

Message	Passing	Interface	Mechanisms

Interconnection	network	(e.g.	Gigabit	Ethernet,	Infiniband,	Myrinet,	…)

Machine Machine Machine

…

Machine

Hello	World	
process

Hello	World
process

Hello	World
process

Hello	World
process

P	processes	(or	instances)	of	the	“Hello	World”	program

mpirun launches	P	independent processes across	the	different	machines
• Each	process	is	a	instance	of	the	same	program

rank	=	0
Recv 3x

rank	=	1
Send

rank	=	2
Send

rank	=	P-1
Send

“Hello	World”“Hello	World”“Hello	World”

“Hello	
World”“Hello	
World”“Hello	
World”

Blocking	send	and	receive

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

• buf:	pointer	to	the	message	to	send
• count:	number	of	items	to	send
• datatype:	datatype	of	each	item

– number	of	bytes	sent:	count	*	sizeof(datatype)
• dest:	rank	of	destination	process
• tag:	value	to	identify	the	message	[0	...	at	least	(32	767)]
• comm:	communicator	specification	(e.g.	MPI_COMM_WORLD)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status)

• buf:	pointer	to	the	buffer	to	store	received	data
• count:	upper	bound	(!)	of	the	number	of	items	to	receive
• datatype:	datatype	of	each	item
• source:	rank	of	source	process	(or	MPI_ANY_SOURCE)
• tag:	value	to	identify	the	message	(or	MPI_ANY_TAG)
• comm:	communicator	specification	(e.g.	MPI_COMM_WORLD)
• status:	structure	that	contains	{	MPI_SOURCE, MPI_TAG, MPI_ERROR }

Sending	and	receiving
Two-sided communication:

• Both	the	sender	and	receiver	are	involved	in	data	transfer
As	opposed	to	one-sided	communication

• Posted	send	must	match	receive
When	do	MPI_Send	and	MPI_recv match ?

• 1.	Rank	of	receiver process
• 2.	Rank	of	sending process
• 3.	Tag

- custom	value	to	distinguish	messages	from	same	sender
• 4.	Communicator

Rationale	for	Communicators
• Used	to	create	subsets	of	processes
• Transparent	use	of	tags

- modules	can	be	written	in	isolation
- communication	within	module	through	own	Communicator
- communication	between	modules	through	shared	Communicator

MPI	Datatypes

MPI_Datatype C	datatype

MPI_CHAR signed	char

MPI_SHORT signed	short	int

MPI_INT signed	int

MPI_LONG signed	long	in

MPI_UNSIGNED_CHAR unsigned	char

MPI_UNSIGNED_SHORT unsigned	short	int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned	long	int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long	double

MPI_BYTE no	conversion,	bitpattern
transferred	as	is

MPI_PACKED grouped	messages

Querying	for	information

• MPI_Status

• Stores	information	about	the	MPI_Recv operation
typedef struct MPI_Status {

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

}
• Does	not	contain	the	size	of	the	received	message

• int MPI_Get_count (MPI_Status *status, MPI_Datatype

datatype, int *count)

• returns	the	number	of	data	items	received	in	the	count	variable
• not	directly	accessible	from	status	variable

Blocking	send	and	receive

time
a) sender	comes	first,	

idling	at	sender	(no	
buffering	of	message)

send

data

req	to	send

ok	to	send
recv

b) sending/receiving	at	
about	the	same	time,	
idling	minimized

data

req	to	send
ok	to	send recvsend

c) receiver	comes	first,	
idling	at	receiver

data

recv

send
req	to	send
ok	to	send

Slide	reproduced	from	slides	by	John	Mellor	- Crummey

Deadlocks

int a[10], b[10], myRank;
MPI_Status s1, s2;
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

if (myRank == 0) {
MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}
else if (myRank == 1) {

MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD, &s1);
MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD, &s2);

}

Slide credit: John Mellor - Crummey

If	MPI_Send	is	blocking	(handshake	protocol),	this	program	will	deadlock
• If	'eager'	protocol	is	used,	it	may	run
• Depends	on	message	size

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Network	cost	modeling

• Various	choices	of	interconnection	network
§ Gigabit	Ethernet:	cheap,	but	far	too	slow	for	HPC	applications
§ Infiniband /Myrinet:	high	speed	interconnect

• Simple	performance	model for	point-to-point	communication
Tcomm =	a +	b*n

§ a =	latency
§ B	=	1/b =	saturation	(asymptotic)	bandwidth	(bytes/s)
§ n =	number	of	bytes	to	transmit
§ Effective	bandwidth	Beff:

Beff =	
n

a	+	b∗n =	 n
a	+	nB

The	case	of	Gengar (UGent	cluster)
Bandwidth	and	latency

core	3	&
L1	cache

6	MByte of	L2	cache

core	4	&
L1	cache

core	2	&
L1	cache

core	1	&
L1	cache

16	GByte	of	RAM

Non-blocking	Infiniband	(switched	fabric)

6	Mbyte	of	L2	cache

core	3	&
L1	cache

6	Mbyte	of	L2	cache

core	4	&
L1	cache

core	2	&
L1	cache

core	1	&
L1	cache

6	Mbyte	of	L2	cache

Bandwidth Latency

2ns

50ns~100	Gbit/s

~20	Gbit/s ~1μs
to	the	193	other	machines

CPU	1 CPU	2

Measure	effective	bandwidth:	ringtest

Idea:	send	a	single	message of size N in	a	circle

• Increase	the	message	N	size	exponentially
• 1	byte,	2	bytes,	4	bytes,	...	1024	bytes,	2048	bytes,	4096	bytes

• Benchmark	the	results	(measure	wall	clock	time	T),	…
• Bandwidth	=	N	*	P	/	T

0

1 2

3

P-1 ...

Hands-on:	ringtest in	MPI

void sendRing(char *buffer, int length) {
/* send message in a ring here */

}

int main(int argc, char * argv[])
{

...
char *buffer = (char*) calloc (1048576, sizeof(char));
int msgLen = 8;
for (int i = 0; i < 18; i++, msgLen *= 2) {

double startTime = MPI_Wtime();
sendRing(buffer, msgLen);
double stopTime = MPI_Wtime();
double elapsedSec = stopTime - startTime;
if (rank == 0)

printf("Bandwidth for size %d is : %f\", ...);
}
...

}

Jobscript example

#!/bin/sh
#
#PBS -o output.file
#PBS -e error.file
#PBS -l nodes=2:ppn=all
#PBS -l walltime=00:02:00
#PBS -m n

cd $VSC_SCRATCH/<yourdirectory>
module load intel/2017a
module load scripts
mympirun ./<program name> <program arguments>

qsub mpijob.sh
qstat /	qdel /	etc remains	the	same

mpijob.sh		job	script	example:	

Hands-on:	ringtest in	MPI	(solution)

void sendRing(char *buffer, int msgLen)
{

int myRank, numProc;
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
MPI_Comm_size(MPI_COMM_WORLD, &numProc);
MPI_Status status;

int prevR = (myRank - 1 + numProc) % numProc;
int nextR = (myRank + 1) % numProc;

if (myRank == 0) { // send first, then receive
MPI_Send(buffer, msgLen, MPI_CHAR, nextR, 0, MPI_COMM_WORLD);
MPI_Recv(buffer, msgLen, MPI_CHAR, prevR, 0, MPI_COMM_WORLD,

&status);
} else { // receive first, then send

MPI_Recv(buffer, msgLen, MPI_CHAR, prevR, 0, MPI_COMM_WORLD,
&status);

MPI_Send(buffer, msgLen, MPI_CHAR, nextR, 0, MPI_COMM_WORLD);
}

}

Basic	MPI	routines

Timing	routines	in	MPI

• double MPI_Wtime(void)
• returns	the	time	in	seconds	relative	to	“some	time”	in	the	past
• “some	time”	in	the	past	is	fixed	during	process

• double MPI_Wtick(void)
• Returns	the	resolution	of	MPI_Wtime()	in	seconds
• e.g.	10-3 =	millisecond	resolution

Bandwidth	on	Gengar	(Ugent	cluster)

Effective	BW	increases for	larger messages

Message	size	(byte)

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08
0

200

400

600

800

1000

1200

Gigabit
Ethernet

Infiniband

Ef
fe
ct
iv
e	
Ba

nd
w
id
th
	B

ef
f
(M

by
te
/s
)

Benchmark	results
Comparison	of	CPU	load

Infiniband

Gigabit
Ethernet

Exchanging	messages	in	MPI
int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype

sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)
• sendbuf:	pointer	to	the	message	to	send
• sendcount:	number	of	elements	to	transmit
• sendtype:	datatype	of	the	items	to	send
• dest:	rank	of	destination	process
• sendtag:	identifier	for	the	message
• recvbuf:	pointer	to	the	buffer	to	store	the	message	(disjoint with	sendbuf)
• recvcount:	upper	bound	(!)	to	the	number	of	elements	to	receive
• recvtype:	datatype	of	the	items	to	receive
• source:	rank	of	the	source	process	(or	MPI_ANY_SOURCE)
• recvtag:	value	to	identify	the	message	(or	MPI_ANY_TAG)
• comm:	communicator	specification	(e.g.	MPI_COMM_WORLD)
• status:	structure	that	contains	{	MPI_SOURCE, MPI_TAG, MPI_ERROR }
• sendbuf:	pointer	to	the	buffer	to	send

int MPI_Sendrecv_replace(...)
• Buffer	is	replace	by	received	data

Basic	MPI	routines
Sendrecv example

const int len = 10000;
int a[len], b[len];
if (myRank == 0) {

MPI_Send(a, len, MPI_INT, 1, 0, MPI_COMM_WORLD);
MPI_Recv(b, len, MPI_INT, 2, 2, MPI_COMM_WORLD, &status
);

} else if (myRank == 1) {
MPI_Sendrecv(a, len, MPI_INT, 2, 1, b, len, MPI_INT, 0,

0, MPI_COMM_WORLD, &status);
} else if (myRank == 2) {

MPI_Sendrecv(a, len, MPI_INT, 0, 2, b, len, MPI_INT, 1,
1, MPI_COMM_WORLD, &status);

}

• Compatibility	between	Sendrecv and	'normal'	send	and	recv
• Sendrecv can	help	to	prevent	deadlocks

2

0 1

safe to exchange !

0

12

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Non-blocking	communication

Idea:
• Do	something	useful	while	waiting	for	communications	to	finish
• Try	to	overlap	communications	and	computations

How?
• Replace	blocking	communication	by	non-blocking	variants

MPI_Send(...) MPI_Isend(..., MPI_Request *request)
MPI_Recv(...) MPI_Irecv(..., status, MPI_Request *request)

• I	=	intermediate functions
• MPI_Isend and MPI_Irecv routines	return	immediately
• Need	polling routines	to	verify	progress

• request handle	is	used	to	identify	communications
• status field	moved	to	polling	routines	(see	further)

Non-blocking	communications

Asynchronous	progress
• =	ability	to	progress	communications	while	performing	calculations
• Depends	on	hardware

• Gigabit	Ethernet	=	very	limited
• Infiniband	=	much	more	possibilities

• Depends	on	MPI	implementation
• Multithreaded	implementations	of	MPI	(e.g.	Open	MPI)
• Daemon	for	asynchronous	progress	(e.g.	LAM	MPI)

• Depends	on	protocol
• Eager	protocol
• Handshake	protocol

• Still	the	subject	of	ongoing	research

Non-blocking	sending	and	receiving

time
a) network	interface	supports	

overlapping	computations	
and	communications

b) network	interface	has	
no	such	support

Isend

data

req	to	send

ok	to	send
Irecv

Slide	reproduced	from	slides	by	John	Mellor	- Crummey

Isend

data

req	to	send

ok	to	send
Irecv

Non-blocking	communications
Polling	/	waiting	routines

int MPI_Wait(MPI_Request *request, MPI_Status *status)

request: handle to identify communication
status: status information (cfr. 'normal' MPI_Recv)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

Returns immediately. Sets flag = true if communication has completed

int MPI_Waitany(int count, MPI_Request *array_of_requests,
int *index, MPI_Status *status)

Waits for exactly one communication to complete
If more than one communication has completed, it picks a random one
index returns the index of completed communication

int MPI_Testany(int count, MPI_Request *array_of_requests,
int *index, int *flag, MPI_Status *status)

Returns immediately. Sets flag = true if at least one communication completed
If more than one communication has completed, it picks a random one
index returns the index of completed communication
If flag = false, index returns MPI_UNDEFINED

Example:	client-server	code
if (rank != 0) { // client code

while (true) { // generate requests and send to the server
generate_request(data, &size);
MPI_Send(data, size, MPI_CHAR, 0, tag, MPI_COMM_WORLD);

}
} else { // server code (rank == 0)

MPI_Request *reqList = new MPI_Request[nProc];
for (int i = 0; i < nProc - 1; i++)

MPI_Irecv(buffer[i].data, MAX_LEN, MPI_CHAR, i+1, tag,
MPI_COMM_WORLD, &reqList[i]);

while (true) { // main consumer loop
MPI_Status status;
int reqIndex, recvSize;

MPI_Waitany(nProc–1, reqList, &reqIndex, &status);
MPI_Get_count (&status, MPI_CHAR, &recvSize);
do_service(buffer[reqIndex].data, recvSize);
MPI_Irecv(buffer[reqIndex].data, MAX_LEN, MPI_CHAR,

status.MPI_SOURCE, tag, MPI_COMM_WORLD,
&reqList[reqIndex]);

}
}

Non-blocking	communications
Polling / waiting routines (cont'd)

int MPI_Waitall(int count, MPI_Request *array_of_requests,
MPI_Status *array_of_statuses)

Waits for all communications to complete
int MPI_Testall (int count, MPI_Request *array_of_requests,

int *flag, MPI_Status *array_of_statuses)
Returns immediately. Sets flag = true if all communications have completed

int MPI_Waitsome (int incount, MPI_Request * array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

Waits for at least one communications to complete
outcount contains the number of communications that have completed
Completed requests are set to MPI_REQUEST_NULL

int MPI_Testsome (int incount, MPI_Request * array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

Same as Waitsome, but returns immediately.
flag field no longer needed, returns outcount = 0 if no completed communications

Example:	improved	client-server	code
if (rank != 0) { // same client code

...
} else { // server code (rank == 0)

MPI_Request *reqList = new MPI_Request[nProc-1];
MPI_Status *status = new MPI_Status[nProc-1];
int *reqIndex = new MPI_Request[nProc];

for (int i = 0; i < nProc - 1; i++)
MPI_Irecv(buffer[i].data, MAX_LEN, MPI_CHAR, i+1, tag,

MPI_COMM_WORLD, &reqList[i]);
while (true) { // main consumer loop

int numMsg;
MPI_Waitsome(nProc–1, reqList, &numMsg, reqIndex, status);
for (int i = 0; i < numMsg; i++) {

MPI_Get_count (&status[i], MPI_CHAR, &recvSize);
do_service(buffer[reqIndex[i]].data, recvSize);
MPI_Irecv(buffer[reqIndex[i]].data, MAX_SIZE, MPI_CHAR,

status[i].MPI_SOURCE, tag, MPI_COMM_WORLD,
&reqList[reqIndex[i]]);

}
}

}

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Barrier	synchronization

Barrier	Synchronization

time

Waiting	time	
(process	dependent)

Call	to	MPI_Barrier

process	rank Computations

Idle	time

MPI_Barrier(MPI_Comm comm)
This	function	does	not	return	until	all	processes	in	comm	have	called	it.

Broadcast
MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)
MPI_Bcast	broadcasts	count elements	of	type	datatype stored	in	buffer at	the
root process	to	all	other	processes	in	comm where	this	data	is stored	in	buffer.

data

process	rank

buffer	at	non-root process	(contents	will	be	overwritten)

count	elements

data

data

data

data

data

buffer	at	root process	(contains	useful	data)

MPI_Bcast

process	rank

buffer	at	all	processes
now	contain	same	data

count	elements

p1

p0

p2

p4

p3

Broadcast	example
...
int rank, size;

... // init MPI and rank and size variables

int root = 0;
char buffer[12];

if (rank == root)
sprintf(buffer, “Hello world”);

MPI_Bcast(buffer, 12, MPI_CHAR, root, MPI_COMM_WORLD);

printf(“Process %d has %s stored in the buffer.\n”, buffer, rank);

...

john@doe ~]$ mpirun –np 4 ./broadcast
Process 1 has Hello World stored in the buffer.
Process 0 has Hello World stored in the buffer.
Process 3 has Hello World stored in the buffer.
Process 2 has Hello World stored in the buffer.

fill	the	buffer	at	the	root	process	only

all	processes	must	call	MPI_Bcast

Broadcast	algorithm

data	(n	bytes)

p1

p0

p2

p4

p3

p5

p6

p7

process	rank

• Linear	algorithm,	subsequent	sending	of	n	bytes	from	root	process	to	P-1	other	
processes	takes	(a +	bn)	(P- 1)	time.

• Binary	tree	algorithm takes	only	(a +	bn)	élog2Pù time.

Scatter
MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype sendType,

void *recvbuf, int recvcount, MPI_Datatype recvType,
int root, MPI_Comm comm)

MPI_Scatter partitions	a	sendbuf at	the	root process	into	P	equal	parts	of	size	
sendcount and	sends	each	process	in	comm (including	root)	a	portion	in	rank	order.

d0

process	rank

send	buffer	(only	matters	at	root process)

sendcount	elements

receive	buffer

MPI_Scatter

process	rank

recvcount	elements

p1

p0

p2

p4

p3

d1 d2 d3 d4

d2

d1 d0

d3

d4

d1 d2 d3 d4

d0

root	=	p1

Scatter	example
int root = 0;
char recvBuf[7];

if (rank == root) {
char sendBuf[25];
sprintf(sendBuf, “This is the source data.”);

MPI_Scatter(sendBuf, 6, MPI_CHAR, recvBuf, 6, MPI_CHAR,
root, MPI_COMM_WORLD);

} else {
MPI_Scatter(NULL, 0, MPI_CHAR, recvBuf, 6, MPI_CHAR,

root, MPI_COMM_WORLD);
}

recvBuf[6] = ’\0’;
printf(“Process %d has %s in receive buffer\n”, rank, recvBuf);

...
john@doe ~]$ mpirun –np 4 ./scatter
Process 1 has s the stored in the buffer.
Process 0 has This i stored in the buffer.
Process 3 has data. stored in the buffer.
Process 2 has source stored in the buffer.

fill	the	send	buffer	at	the	root	process	only

first	three	parameters	are	ignored	on	non-root	processes

Scatter	algorithm

p1

p0

p2

p4

p3

p5

p6

p7

process	rank

• Linear	algorithm,	subsequent	sending	of	n	bytes	from	root	process	to	P-1	other	
processes	takes	(a +	bn)	(P- 1)	time.

• Binary	algorithm takes	only	a élog2Pù +	bn(P-1)	time	(reduced	number	of	
communication	rounds!)

one	block	=	n	bytes

Scatter	(vector	variant)
MPI_Scatterv(void *sendbuf, int *sendcnts, int *displs,

MPI_Datatype sendType, void *recvbuf, int recvcnt,
MPI_Datatype recvType, int root, MPI_Comm comm)

Partitions	of	sendbuf don’t	need	to	be	of	equal	size	and	are	specified	per	receiving	process:	
the	first	index	by	the	displs array,	their	size	by	the	sendcnts array.

process	rank

send	buffer	(only	matters	at	root process)

sendcnts[i]
elements

receive	buffer

MPI_Scatterv

process	rank

recvcount	elements

p1

p0

p2

p4

p3

root	=	p1

displs[i]

Gather
MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendType,

void *recvbuf, int recvcount, MPI_Datatype recvType,
int root, MPI_Comm comm)

MPI_Gather	gathers	equal	partitions	of	size	recvcount from	each	of	the	P	processes	in	
comm (including	root)	and	stores	them	in	recvbuf at	the	root process	in	rank	order.

process	rank

sendcount	elements

d2

d1

d3

d4

d0

d0

process	rank

receive	buffer	(only	matters	at	root process)

recvcount	elements

send	buffer

p1

p0

p2

p4

p3

d1 d2 d3 d4

root	=	p1

d2

d1

d3

d4

d0

MPI_Gather

Gather	is	the	
opposite	of	Scatter

A	vector	variant,	MPI_Gatherv,	exists,	a	similar	generalization	as	MPI_Scatterv

Gather	example
int root = 0;
int sendBuf = rank;

if (rank == root) {
int *recvBuf = new int[size];

MPI_Gather(&sendBuf, 1, MPI_INT, recvBuf, 1, MPI_INT,
root, MPI_COMM_WORLD);

cout << “Receive buffer at root process: ” << endl;
for (size_t i = 0; i < size; i++)

cout << recvBuf[i] << “ ”;
cout << endl;

delete [] recvBuf;
} else {

MPI_Gather(&sendBuf, 1, MPI_INT, NULL, 1, MPI_INT,
root, MPI_COMM_WORLD);

}

john@doe ~]$ mpirun –np 4 ./gather
Receive buffer at root process:
0 1 2 3

receive	buffer	exists	at	the	root	process	only

receive	parameters	are	ignored	on	non-root	processes

Gather	algorithm

p1

p0

p2

p4

p3

p5

p6

p7

process	rank

• Linear	algorithm,	subsequent	sending	of	n	bytes	from	P-1	processes	to	root	takes	
(a +	bn)	(P- 1)	time.

• Binary	algorithm takes	only	a élog2Pù +	bn(P-1)	time	(reduced	number	of	
communication	rounds!)

one	block	=	n	bytes

AllGather
MPI_Allgather(void *sendbuf, int sendcnt, MPI_Datatype sendType,

void *recvbuf, int recvcnt, MPI_Datatype recvType,
MPI_Comm comm)

MPI_Allgather is	a	generalization	of	MPI_Gather,	in	that	sense	that	the	data	is	gathered	by	all	
processed,	instead	of	just	the	root	process.

process	rank

sendcount	
elements

process	rank recvcount	elements
send	buffer

p1

p0

p2

p4

p3

receive	buffer

MPI_Allgather

receive	buffer

Allgather algorithm

p1

p0

p2

p4

p3

p5

p6

p7

process	rank

• P	calls	to	gather takes	P[a élog2Pù +	bn(P-1)]	time	(using	the	best	gather	algorithm)
• Gather	followed	by	broadcast	takes	2a élog2Pù +	bn(Pélog2Pù +	P-1) time.
• “Butterfly”	algorithm takes	only	a log2P +	bn(P-1)	time	(in	case	P	is	a	power	of	two)

n	bytes 2n	bytes
4n	bytes

one	block	=	n	bytes

All	to	all	communication
MPI_Alltoall(void *sendbuf, int sendcnt, MPI_Datatype sendType,

void *recvbuf, int recvcnt, MPI_Datatype recvType,
int root, MPI_Comm comm)

Using	MPI_Alltoall,	every	process	sends	a	distinct	message	to	every	other	process.

process	rank sendcount	elements

a0

process	rank

p1

p0

p2

p4

p3

MPI_Alltoall

a1 a2 a3 a4

b0 b1 b2 b3 b4

e0 e1 e2 e3 e4

d0 d1 d2 d3 d4

c0 c1 c2 c3 c4

send	buffer

recvcount	elements

a0 b0 c0 d0 e0

a1 b1 c1 d1 e1

a4 b4 c4 d4 e4

a3 b3 c3 d3 e3

a2 b2 c2 d2 e2

receive	buffer

A	vector	variant,	MPI_Alltoallv,	exists,	allowing	for	different	sizes	for	each	process

Reduce
MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype

dataType, MPI_Op op, int root, MPI_Comm comm)
The	reduce	operation	aggregates	(“reduces”)	scattered	data	at	the	root	process

process	rank

send	buffer

count	elements

MPI_Reduce

process	rank

p1

p0

p2

p4

p3
root	=	p0

d2

d1

d3

d4

d0 d0◊ d1 ◊ d2 ◊ d3 ◊ d4

receive	buffer

◊ =	operation,	like	sum,	product,	maximum,	etc.

count	elements

Reduce	operations

MPI_MAX maximum

MPI_MIN minimum

MPI_SUM sum

MPI_PROD product

MPI_LAND logical AND

MPI_BAND bitwise AND

MPI_LOR logical	OR

MPI_BOR bitwise	OR

MPI_LXOR logical	exclusive	OR

MPI_BXOR bitwise exclusive	OR

MPI_MAXLOC maximum	and	its	location

MPI_MINLOC maximum	and	its	location

Available	reduce	operations	(associative	and	commutative)
User	defined	operations	are	also	possible

Allreduce	operation
MPI_Allreduce(void *sendbuf, void *recvbuf, int count,

MPI_Datatype dataType, MPI_Op op, MPI_Comm comm)
Similar	to	the	reduce	operation,	but	the	result	is	available	on	every	process.

process	rank

send	buffer

count	elements

MPI_Allreduce

process	rank

p1

p0

p2

p4

p3

d2

d1

d3

d4

d0 d0◊ d1 ◊ d2 ◊ d3 ◊ d4

receive	buffer

d0◊ d1 ◊ d2 ◊ d3 ◊ d4

d0◊ d1 ◊ d2 ◊ d3 ◊ d4

d0◊ d1 ◊ d2 ◊ d3 ◊ d4

d0◊ d1 ◊ d2 ◊ d3 ◊ d4

Scan	operation
MPI_Scan(void *sendbuf, void *recvbuf, int count,

MPI_Datatype dataType, MPI_Op op, MPI_Comm comm)
A	scan	performs	a	partial	reduction	of	data,	every	process	has	a	distinct	result

process	rank

send	buffer

count	elements

MPI_Scan

process	rank

p1

p0

p2

p4

p3

d2

d1

d3

d4

d0 d0

receive	buffer

d0	◊ d1 ◊ d2

d0	◊ d1

d0	◊ d1 ◊ d2 ◊ d3

d0	◊ d1 ◊ d2 ◊ d3 ◊ d4

Hands-on
Matrix-vector	multiplication

Master :	Coordinates	the	work	of	others
Slave :	does	a	bit	of	work

Task	:	compute	A	.	b
A	:	double	precision	(m	x	n)	matrix
b	:	double	precision	(n	x	1)	column	matrix

Master algorithm Slave algorithm
1. Broadcast b to each slave 1. Broadcast b (in fact receive b)
2. Send 1 row of A to each slave 2. do {
3. while (not all m results received) { Receive message m

Receive result from any slave s if(m != termination)
if (not all m rows sent) compute result

Send new row to slave s send result to master
else } while(m != termination)

Send termination message to s 3. slave terminates
}

4. continue

Matrix-vector	multiplication
int main(int argc, char** argv) {

int rows = 100, cols = 100; // dimensions of a
double **a;
double *b, *c;
int master = 0; // rank of master
int myid; // rank of this process
int numprocs; // number of processes
// allocate memory for a, b and c
a = (double**)malloc(rows * sizeof(double*));
for(int i = 0; i < rows; i++)

a[i]=(double*)malloc(cols * sizeof(double));
b = (double*)malloc(cols * sizeof(double));
c = (double*)malloc(rows * sizeof(double));
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
if(myid == master)

// execute master code
else

// execute slave code
MPI_Finalize();

}

Matrix	vector	multiplication
// initialize a and b
for(int j=0;j<cols;j++) {b[j]=1.0; for(int i=0;i<rows;i++) a[i][j]=i;}
// broadcast b to each slave
MPI_Bcast(b, cols, MPI_DOUBLE_PRECISION, master, MPI_COMM_WORLD);
// send row of a to each slave, tag = row number
int numsent = 0;
for(int i = 0; (i < numprocs-1) && (i < rows); i++) {

MPI_Send(a[i], cols, MPI_DOUBLE_PRECISION, i+1,i,MPI_COMM_WORLD);
numsent++;

}
for(int i = 0; i < rows; i++) {

MPI_Status status; double ans; int sender;
MPI_Recv(&ans, 1, MPI_DOUBLE_PRECISION, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
c[status.MPI_TAG] = ans;
sender = status.MPI_SOURCE;
if (numsent < rows) { // send more work if any

MPI_Send(a[numsent], cols, MPI_DOUBLE_PRECISION,
sender, numsent, MPI_COMM_WORLD);

numsent++;
} else // send termination message

MPI_Send(MPI_BOTTOM, 0, MPI_DOUBLE_PRECISION, sender,
rows, MPI_COMM_WORLD);

}

Matrix-vector	multiplication
// broadcast b to each slave (receive here)
MPI_Bcast(b,cols,MPI_DOUBLE_PRECISION,master,MPI_COMM_WORLD);
// send row of a to each slave, tag = row number
if(myid <= rows) {

double* buffer=(double*)malloc(cols*sizeof(double));
while (true) {

MPI_Status status;
MPI_Recv(buffer, cols, MPI_DOUBLE_PRECISION, master,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if(status.MPI_TAG != rows) { // not a termination message

double ans = 0.0;
for(int i=0; i < cols; i++)

ans += buffer[i]*b[i];
MPI_Send(&ans, 1, MPI_DOUBLE_PRECISION, master,

status.MPI_TAG, MPI_COMM_WORLD);
} else

break;
}

} // more processes than rows => no work for some nodes

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Network	cost	modeling

• Simple	performance	model for	multiple communications
– Bisection	bandwidth:	sum	of	the	bandwidths	of	the	(average	number	

of)	links	to	cut	to	partition	the	network	in	two	halves.
– Diameter:	maximum	number	of	hops	to	connect	any	two	devices

Network
(first	half)

Network
(second	half)

bisection

Bus	topology

Bus =	communication	channel	that	is	shared by	all	connected	devices
• No	more	than	two	devices can	communicate	at	any	given	time
• Hardware	controls	which	devices	have	access
• High	risk	of	contention when	multiple	devices	try	to	access	the	bus	

simultaneously.		Bus	is	a	“blocking”	interconnect.

bisection

bus

Bus	network	properties
• Bisection	bandwidth	=	point-to-point	bandwidth	(independent	of	#	devices)
• Diameter	=	1		(single	hop)

Crossbar	switch

i4i3i2i1

o4

o3

o1

input	devices

ou
tp
ut
	d
ev
ic
es

switch

Crossbar	switch	can	connect
any	combination of	
input/output	pairs	at	full	
bandwidth	=	fully	non-blocking

Static	routing	in	crossbar	switch

i4i3i2i1

o4

o3

o2

o1

input	devices

ou
tp
ut
	d
ev
ic
es state	A

Switches	at	crossing	of	input/output	
should	be	in	state	B.	Other	switches	
should	be	in	state	A.
Path	selection	is	fixed	=	static	routing

Input Output

i1 o2
i2 o4
i3 o1
i4 o3

state	B

Input	– output	pairings

Crossbar	switch	for	distributed	memory	systems

• Crossbar	implementation	of	a	switch	with	P	=	4	machines.
• Fully	non-blocking
• Expensive:	P2 switches	and	O(P2)	wires

M4

M3

M1

M4

M3

M1

4	port
non-blocking

switch

Usually	implemented
in	a	switch

Clos	switching	networks

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

n	inputs n	outputs

input	stage middle	stage output	stage

• Built	in	three	stages,	using	
crossbar	switches	as	components.

• Every	output	of	an	input	stage	
switch	is	connected	a	different	
middle	stage	switch.

• Every	input can	be	connected	to	
every	output,	using	any	one	of	
the	middle	stage	switches.

• All	input	/	output	pairs	can	
communicate	simultaneously	
(non-blocking)

• Requires	far	less	wiring	than	
conventional	CB	switches.

Clos	switching	networks

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

n	inputs n	outputs

input	stage middle	stage output	stage

• Built	in	three	stages,	using	
crossbar	switches	as	components.

• Every	output	of	an	input	stage	
switch	is	connected	a	different	
middle	stage	switch.

• Every	input can	be	connected	to	
every	output,	using	any	one	of	
the	middle	stage	switches.

• All	input	/	output	pairs	can	
communicate	simultaneously	
(non-blocking)

• Requires	far	less	wiring	than	
conventional	CB	switches.

Clos	switching	networks

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

n	inputs n	outputs

input	stage middle	stage output	stage

• Built	in	three	stages,	using	
crossbar	switches	as	components.

• Every	output	of	an	input	stage	
switch	is	connected	a	different	
middle	stage	switch.

• Every	input can	be	connected	to	
every	output,	using	any	one	of	
the	middle	stage	switches.

• All	input	/	output	pairs	can	
communicate	simultaneously	
(non-blocking)

• Requires	far	less	wiring	than	
conventional	CB	switches.

Clos	switching	networks

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

input	stage middle	stage output	stage

• Built	in	three	stages,	using	
crossbar	switches	as	components.

• Every	output	of	an	input	stage	
switch	is	connected	a	different	
middle	stage	switch.

• Every	input can	be	connected	to	
every	output,	using	any	one	of	
the	middle	stage	switches.

• All	input	/	output	pairs	can	
communicate	simultaneously	
(non-blocking)

• Requires	far	less	wiring	than	
conventional	CB	switches.

• Adaptive	routingmay	be	
necessary:	can	not	find	a	
connection	for	E	!

A
B

A
B

C
D

D
C

E

E

Clos	switching	networks

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

input	stage middle	stage output	stage

• Built	in	three	stages,	using	
crossbar	switches	as	components.

• Every	output	of	an	input	stage	
switch	is	connected	a	different	
middle	stage	switch.

• Every	input can	be	connected	to	
every	output,	using	any	one	of	
the	middle	stage	switches.

• All	input	/	output	pairs	can	
communicate	simultaneously	
(non-blocking)

• Requires	far	less	wiring	than	
conventional	CB	switches.

• Adaptive	routingmay	be	
necessary:	reroute	an	existing	
path

A
B

A
B

C
D

D
C

E

E

Clos	switching	networks

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

4x4	CB
4x4	CB

input	stage middle	stage output	stage

• Built	in	three	stages,	using	
crossbar	switches	as	components.

• Every	output	of	an	input	stage	
switch	is	connected	a	different	
middle	stage	switch.

• Every	input can	be	connected	to	
every	output,	using	any	one	of	
the	middle	stage	switches.

• All	input	/	output	pairs	can	
communicate	simultaneously	
(non-blocking)

• Requires	far	less	wiring	than	
conventional	CB	switches.

• Adaptive	routingmay	be	
necessary:	E	can	now	be	
connected

A
B

A
B

C
D

D
C

E

E

Switch	examples

non-blocking	switchesInfiniband	switch	(24	ports) Gigabit	Ethernet	switch	(24	ports)

Mesh	networks

bisection

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Basic	performance	terminology

• Runtime (“How	long	does	it	take	to	run	my	program”)
§ In	practice,	only	wall	clock	time matters
§ Depends	on	the	number	of	parallel	processes	P
§ TP =	runtime	using	P	processes

• Speedup (“How	much	faster	does	my	program	run	in	parallel”)
§ SP =	T1 /	TP
§ In	the	ideal	case,	SP =	P
§ Super	linear	speedup are	usually	due	to	cache	effects

• Parallel	efficiency (“How	well	is	the	parallel	infrastructure	used”)
§ hP =	SP /	P (0	£ hP £ 1)	
§ In	the	ideal	case,	hP =	1	=	100%
§ Depends	on	the	application	what	is	considered	acceptable	efficiency

Strong	scaling:	Amdahl’s	law
• Strong	Scaling	=	increasing	the	number	of	parallel	processes	for	a	

fixed-size problem
• Simple	model:	partition	sequential	runtime	T1 in	a	parallelizable	

fraction	(1-s) and	inherently	sequential	fraction	(s).
§ T1 =	sT1 +	(1-s)T1 (0	£ s £ 1)	

§ Therefore, TP =	sT1 +	
𝟏"𝐬 𝐓𝟏
𝐏

sequential parallelizableT1	=

sequentialT2	= parallel

sequentialT3	= parallel

sequentialT4	= parallel

…
sequentialT¥ =

sT1 (1-s)T1

Strong	scaling:	Amdahl’s	law

• Consequently,	SP =	
&'
&(

=	
&'

)&'*
+,- .+
/

= 	 '
)*	+,-/

(Amdahl’s	law)

• Speedup	is	bounded S¥ =	
'
)

§ e.g.	s	=	1%,	S¥ = 100
§ e.g.	s	=	5%,	S¥ = 20

• Sources	of	sequential	fraction	sT1	
§ Process	startup overhead
§ Inherently	sequential portions	of	the	code
§ Dependencies	between	subtasks
§ Communication overhead
§ Function	calling overhead
§ Load	misbalance

Amdahl’s	law

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pa
ra
lle
l	s
pe

ed
up

Number	of	parallel	processes	P

s	=	5%

s	=	2%

s	=	1%

s	=	0%

For	small	P,	close	to	linear	speedup

linear	speedup

Amdahl’s	law

0

20

40

60

80

100

120

140

1 4 16 64 256 1024 4096 16384 65536

Pa
ra
lle
l	s
pe

ed
up

Number	of	parallel	processes	P

s	=	5%

s	=	2%

s	=	1%

s	=	0%

S¥ =	
'
)

Same	graph	as	on	previous	slide,	but	logarithmic	x-as

Amdahl’s	law

0

0.2

0.4

0.6

0.8

1

1 4 16 64 256 1024 4096 16384 65536

Pa
ra
lle
l	e
ff
ic
ie
nc
y

Number	of	parallel	processes	P

s	=	5%

s	=	2%

s	=	1%

s	=	0%

Same	graph	as	on	previous	slide,	but	expressed	as	parallel	efficiency

Weak	scaling:	Gustafson’s	law

• Weak	scaling:	increasing	both	the	number	of	parallel	processes	P	
and	the	problem	size	N.

• Simple	model:	assume	that	the	sequential	part	is	constant,	and	that	
the	parallelizable	part	is	proportional	to	N.
§ T1(N)	=	T1(1)[s	+	(1-s)N] (0	£ s £ 1)	

sequential parallelizableT1(1)	=

sT1(1) (1-s)T1(1)

sequential parallelizableT1(2)	=

sequential parallelizableT1(3)	=

sequential parallelizableT1(4)	=

parallelizable

parallelizable

parallelizable

parallelizable

parallelizableparallelizable

Gustafson’s	law

Therefore,	TP(N)	=	T1(1)[s	+	
'") 1
(

]	and	hence TP(P)	=	T1(1)
Speedup	SP(P)	=	s	+	(1-s)P	=	P	- s(P-1)				(Gustafson’s	law)

• Solve	increasingly	larger	problems	using	a	proportionally	higher	
number	of	processes	(N	=	P).

sequential parallelizableT1(1)	=

sT1(1) (1-s)T1(1)

sequential parallelizableT2(2)	=

sequential parallelizableT3(3)	=

sequential parallelizableT4(4)	=

Gustafson’s	law

0

50

100

150

200

250

0 50 100 150 200 250

Pa
ra
lle
l	s
pe

ed
up

Number of	parallel	processes P,	problem size N

s	=	5%

s	=	2%

s	=	1%

s	=	0%

Gustafson’s	law

0.94

0.95

0.96

0.97

0.98

0.99

1

1 4 16 64 256 1024 4096 16384 65536

Pa
ra
lle
l	e
ff
ic
ie
nc
y

Number of	parallel	processes P,	problem size N

s	=	5%

s	=	2%

s	=	1%

s	=	0%

Same	graph	as	on	previous	slide,	but	expressed	as	parallel	efficiency	and	log	scale

h¥ =	1-s

Outline

• Distributed-memory	architecture:	general	considerations
• Programming	model:	Message	Passing	Interface	(MPI)

§ Point-to-point	communication
o Blocking	communication
o Point	to	point	network	performance
o Non-blocking	communication

§ Collective	communication
o Collective	communication	algorithms
o Global	network	performance

• Parallel	program	performance	evaluation
§ Amdahl’s	law
§ Gustafson’s	law

• Parallel	program	development:	case	studies

Case	Study	1:	Parallel	matrix-matrix	product

Case	study:	parallel	matrix	multiplication

• Matrix-matrix	multiplication:	C	=	a*A*B	+	b*C	(BLAS	xgemm)
§ Assume	C	=	m	x	n;	A	=	m	x	k;	B	=	k	x	n	matrix.
§ a, b =	scalars;	assume	a = b =	1 in	what	follows,	i.e.	C	=	C	+	A*B

• Initially,	matrix	elements	are	distributed among	P	processes
§ Assume	same	scheme	for	each	matrix	A,	B	and	C

• Each	process	computes	values	for	C	that	are	local	to	that	process
§ Required	data	from	A	and	B	that	is	not	local	needs	to	be	

communicated
§ Performance	modeling	assuming	the	a, b, gmodel

o a =	latency
o b =	per	element	transfer	time
o g =	time	for	single	floating	point	computation

Ca
se
	st
ud

y	
re
pr
od

uc
ed

	fr
om

	J.
	D
em

m
el

Case	study:	parallel	matrix-matrix	product

• Two	dimensional	partitioning
§ Partition	matrices	in	2D	in	an	r	x	c	mesh	(P	=	r*c)
§ X(I,	J)	refers	to	block	(I,	J)	of	matrix	X	(X	=	{A,	B,	C})
§ Process	pn is	also	denoted	by	pi,j (n	=	i*c	+	j)	and	holds	X(I,J)

p0,0 p0,1 p0,2 … p0,c-1

p1,0 …

pi,j

pr-1,0 pr-1,c-1

Ca
se
	st
ud

y	
re
pr
od

uc
ed

	fr
om

	J.
	D
em

m
el

k

n

B(I,	J)e.g.	matrix	B

r	processes

c	processes

Case	study:	parallel	matrix-matrix	product

• Second	approach:	two	dimensional	partitioning	(SUMMA)
§ Process	pi,j needs	to	compute	C(I,	J):

C I, J = C I, J +8A I, i ∗ B(i, J)
?"'

@AB

∀	I = 0… r
∀	J = 0… c

C(I,J) A(I,J)

B(I,J)

+=
*

C A

B

data	local	in	pi,j
data	that	needs	to	be	
communicated	to	pi,j

data	not
needed	by	pi,j

do	this	in	parallel

Ca
se
	st
ud

y	
re
pr
od

uc
ed

	fr
om

	J.
	D
em

m
el

k	elements

index	i refers	to	a	single	column	of	A	or	single	row	of	B

A(I,i)
B(i,J)

Case	study:	parallel	matrix-matrix	product

• Second	approach:	two	dimensional	partitioning
§ SUMMA	algorithm	(all	I	and	J	in	parallel)

§ Cost	for	inner	loop	(executed	k	times):
o log2c	(a +	b(m/r))	+	log2r	(a +	b(n/c))	+	2mng/P

§ Total	TP =	2kmng/P	+	ka(log2c	+	log2r)	+		kb((m/r)log2c)	+	(n/c)log2r)

§ For	n	=	m	=	k	and	r	=	c	=	sqrt(P)	we	find:		
Parallel	efficiency	hP = 1	/	(1	+	(a/g)(Plog2P)/(2n2)	+	(b/g)√P	logP/n)
Isoefficiency when	n	grows	as	√P	(constant	memory	per	node!)

Ca
se
	st
ud

y	
re
pr
od

uc
ed

	fr
om

	J.
	D
em

m
el

for i = 0 to k–1
broadcast A(I, i) within process row
broadcast B(i, J) within process column
C(I,J) += A(I, i) * B(i, J)

endfor

Case	study:	parallel	matrix-matrix	product

• Even	more	efficient:		use	“blocking”	algorithm

• SUMMA	algorithm	is	implemented	in	PBLAS	=	Parallel	BLAS
• Algorithm	can	be	extended	to	block-cyclic	layout	(see	further)

for i = 0 to k–1 step b
end = min(i+b-1, k-1)
broadcast A(I, i:end) within process row
broadcast B(i:end, J) within process column
C(I,J) += A(I, i:end) * B(i:end, J)

endfor

Perform	this	product	using	Level-3	BLAS

Case	study:	parallel	Gaussian	Elimination

Im
ag
e	
ta
ke
	fr
om

	J.
	D
em

m
el

Case	Study	2:	Parallel	Sorting

Case	study:	parallel	sorting	algorithm

• Sequential sorting	of	n	keys	(1st Bachelor)
§ Bubblesort:	O(n2)
§ Mergesort:	O(n	log	n),	even	in	worst-case
§ Quicksort:	O(n	log	n) expected,	O(n2)	worst-case,	fast	in	practice

• Parallel sorting	of	n	keys,	using	P	processes
§ Initially,	each	process	holds	n/p	keys	(unsorted)
§ Eventually,	each	process	holds	n/p	keys	(sorted)

o Keys	per	process	are	sorted
o If	q	<	r,	each	key	assigned	to	process	q	is	less	than	or	equal	to	

every	key	assigned	to	process	r	(sort	keys	in	rank	order)

Case	study:	parallel	sorting	algorithm

void Bubble_sort(int *a, int n) {
for (int listLen = n; listLen >= 2; listLen--)

for (int i = 0; i < listLen-1; i++)
if (a[i] > a[i+1]) {

temp = a[i];
a[i] = a[i+1]
a[i+1] = temp;

}

}

Bubblesort algorithm:	O(n2)

Example: 5	2	4	8	1		® 2	4	5	1 8
® 2	4	1 5	8
® 2	1 4	5	8
® 1 2	4	5	8

“Compare-swap”	operation

Algorithm	reproduced	from	P.	Pacheco

after	iteration	1
after	iteration	2
after	iteration	3
after	iteration	4

Case	study:	parallel	sorting	algorithm

• Bubblesort
§ Result	of	current	step	(a[i]	>	a[i+1])	depends	on	previous	step

o Value	of	a[i]	is	determined	by	previous	step
o Algorithm	is	“inherently	serial”
o Not	much	point	in	trying	to	parallelize	this	algorithm

• Odd-even	transposition	sort
§ Decouple	algorithm	in	two	phases:	even	and	odd

o Even	phase:	compare-swap	on	following	elements:
(a[0],	a[1]),	(a[2],	a[3]),	(a[4],	a[5]),	…

o Odd	phase:	compare-swap	operations	on	following	elements:
(a[1],	a[2]),	(a[3],	a[4]),	(a[5],	a[6]),	…

Case	study:	parallel	sorting	algorithm

void Even_odd_sort(int *a, int n) {
for (int phase = 0; phase < n; phase++)

if (phase % 2 == 0) { // even phase
for (int i = 0; i < n-1; i += 2)

if (a[i] > a[i+1]) {
temp = a[i];
a[i] = a[i+1]
a[i+1] = temp;

}
} else { // odd phase

for (int i = 1; i < n-1; i += 2)
if (a[i] > a[i+1]) {

temp = a[i];
a[i] = a[i+1]
a[i+1] = temp;

}
}

}

Even-odd	transposition	sort	algorithm:	O(n2)

“Compare-swap”	operation

“Compare-swap”	operation

Algorithm	reproduced	from	P.	Pacheco

Case	study:	parallel	sorting	algorithm

Example: 5	2	4	8	1		® 2	5	4	8	1
® 2	4	5	1	8
® 2	4	1	5	8
® 2	1	4	5	8
® 1	2	4	5	8

even	phase
odd	phase
even	phase
odd	phase
even	phase

Even-odd	transposition	sort	algorithm:	O(n2)

Parallelism within	each	even	or	odd	phase	is	now	obvious:
Compare-swap	between	(a[i],	a[i+1])	independent	from	(a[i+2],	a[i+3])

Case	study:	parallel	sorting	algorithm

Parallel	algorithm
• First,	assume	P	==	n	(one	element	per	process)

a[i-1] a[i] a[i+1]

Image	reproduced	from	P.	Pacheco

a[i-1] a[i] a[i+1]

phase	j

phase	j+1

Communicate	value	with	neighbor
• Right	process	(highest	rank)	keeps	largest	value
• Left	process	(lowest	rank)	keeps	smallest	value

a[i-2]

a[i-2]

execute	in	parallel	during	phase	j+1

execute	in	parallel	during	phase	j

Case	study:	parallel	sorting	algorithm

Parallel	algorithm
• Now,	assume	n/P	>>	1 (as	is	typically	the	case)
• Example:	P	=	4;	n	=	16

Algorithm	reproduced	from	P.	Pacheco

initial	values 15,11,9,16 3,14,8,7 4,6,12,10 5,2,13,1

local	sorting 9,11,15,16 3,7,8,14 4,6,10,12 1,2,5,13

phase	0	(even) 3,7,8,9 11,14,15,16 1,2,4,5 6,10,12,13

phase	1	(odd) 3,7,8,9 1,2,4,5 11,14,15,16 6,10,12,13

phase	2	(even) 1,2,3,4 5,7,8,9 6,10,11,12 13,14,15,16

phase	3	(odd) 1,2,3,4 5,6,7,8 9,10,11,12 13,14,15,16

process	0 process	1 process	2 process	3

Case	study:	parallel	sorting	algorithm

sort local keys
for (int phase = 0; phase < P; phase++) {

neighbor = computeNeighbor(phase, myRank);
if (I’m not idle) { // first and/or last process may be idle

send all my keys to neighbor
receive all keys from neighbor
if (myRank < neighbor)

keep smaller keys
else

keep larger keys
}

}

Parallel	even-odd	transposition	sort	pseudocode

Algorithm	reproduced	from	P.	Pacheco

Theorem: Parallel	odd-even	transposition	sort	algorithm	will	sort	the	input
list	after	P	(=	number	of	processes)	phases.

Case	study:	parallel	sorting	algorithm

int computeNeighbor(int phase, int myRank) {
int neighbor;
if (phase % 2 == 0) {

if (myRank % 2 == 0)
neighbor = myRank + 1;

else
neighbor = myRank - 1;

} else {
if (myRank % 2 == 0)

neighbor = myRank – 1;
else

neighbor = myRank + 1;
}
if (neighbor == -1 || neighbor == P-1)

neighbor = MPI_PROC_NULL;
return neigbor;

}

Implementation	of	computeNeighbor (MPI)

Algorithm	reproduced	from	P.	Pacheco

When	used	as	destination	or	source	rank	in	MPI_Send
or	MPI_Recv,	no	communication	takes	place

Case	study:	parallel	sorting	algorithm

if (myRank % 2 == 0) {
MPI_Send(...)
MPI_Recv(...)

} else {
MPI_Recv(...)
MPI_Send(...)

}

Implementation	of	data	exchange	in	MPI
• Be	careful	of	deadlocks
• In	both	even	and	odd	phases,	communication	always	takes	place	

between	a	process	with	even,	and	a	process	with	odd	rank

Algorithm	reproduced	from	P.	Pacheco

Exchange	order	to	prevent	deadlocks	!

MPI_Sendrecv(...)

OR

Case	study:	parallel	sorting	algorithm

Parallel	odd-even	transposition	sort	algorithm	analysis
• Initial	sorting:	O(n/P	log(n/P))	time

• Use	an	efficient	sequential	sorting	algorithm,	e.g.	
quicksort	or	mergesort

• Per	phase:	2(a +	n/P	b)	+	gn/P
• Total	runtime	TP(n)	=	O(n/P	log(n/P)	+	2(aP +	nb)	+	gn

=	1/P	O(n	log	n)	+	O(n)
• Linear	speedup	when	P	is	small	and	n	is	large
• However,	bad	asymptotic	behaviour

• When	n	and	P	increase	proportionally,	runtime	per	
process	is	O(n)

• What	we	really	want:	O(log	n)
• Difficult!		(but	possible!)

Algorithm	reproduced	from	P.	Pacheco

Case	study:	parallel	sorting	algorithm

• Sorting	networks (=	graphical	depiction	of	sorting	algorithms)
§ Number	of	horizontal	“wires”	(=	elements	to	sort)
§ Connected	by	vertical	“comparators”	(=	compare	and	swap)	

el
em

en
ts
	to

	so
rt
	(n

)

time

Example	(4	elements	to	sort)

x

y

min(x,	y)

max(x,	y)

Case	study:	parallel	sorting	algorithm

Bubblesort algorithm	(sequential) Same	bubblesort	algorithm	(parallel)

Sequential	runtime	
=	number	of	comparators	

=	“size of	the	sorting	network”
=	n	*	(n	– 1)	/	2

Parallel	runtime
(assume	P	==	n	processes)

=	“depth of	sorting	network”
=	2n	– 3

Case	study:	parallel	sorting	algorithm
Definition:	depth	of	a	sorting	network (=	parallel	runtime)

• Zero	at	the	inputs	or	each	wire
• For	a	comparator	with	inputs	with	depth	d1 and	d2,	the	depth	of	

its	outputs	is	1	+	max(d1,	d2)
• Depth	of	the	sorting	network	=	maximum	depth	of	each	output

0

0

0

0

0

0

1

1

2 3 4 5 6 7 8 9

3 5 7 9

2 4 6 8

3 5 7

4 6

5

3 5 7

4 6

5

Case	study:	parallel	sorting	algorithm

• Sorting	network	of	odd-even	transposition	sort

• Parallel	runtime	=	“depth of	sorting	network”	=	n
• …	or	P	(we	assume	n	==	P)

Case	study:	parallel	sorting	algorithm

• Can	we	do	better?
• Sequential	sorting	algorithms	are	O(n	log	n)
• Ideally,	P	and	n	can	scale	proportionally:	P	=	O(n)
• That	means	that	we	want	to	sort	n	numbers	in	O(log	n)	time

• This	is	possible	(!),	however,	big	constant	pre-factor
• We	will	describe	an	algorithm	that	can	sort	n	numbers	in	O(log2 n)

parallel	time	(using	P	=	O(n)	processes)
• This	algorithm	has	best	performance	in	practice
• …	unless	n	becomes	huge	(n	>	22000)
• Nobody	wants	to	sort	that	many	numbers

Case	study:	parallel	sorting	algorithm

• Theorem:	If	a	sorting	network	with	n	inputs	sorts	all	2n binary	
strings	of	length	n	correctly,	then	it	sorts	all	sequences	
correctly	(proof:	see	references).

1

1

1

0

0

0

0

1

1

1

0

0

We	will	design	an	algorithm	that	can	sort	binary	sequences	in	O(log22n) time

Example

Case	study:	parallel	sorting	algorithm

• Step	1: create	a	sorting	network	that	sorts	bitonic sequences
• Definition:	A	bitonic sequence	is	a	sequence	which	is	first	

increasing	and	then	decreasing,	or	can	be	circularly	shifted	to	
become	so.
§ (1,	2,	3,	3.14,	5,	4,	3,	2,	1)	is	bitonic
§ (4,	5,	4,	3,	2,	1,	1,	2,	3)	is	bitonic
§ (1,	2,	1,	2)	is	not	bitonic

• Over	zeros	and	ones,	a	bitonic sequence	is	of	the	form
§ 0i1j0k or	1i0j1k						(with	e.g.	0i		=	0000…0	=	i consecutive	zeros)
§ i,	j	or	k	can	be	zero

Case	study:	parallel	sorting	algorithm

• Now,	let’s	create	a	sorting	network	that	sorts	a	bitonic sequence
• A	half-cleaner network	connects	line	i with	line	i +	n/2

• If	the	input	is	a	binary	bitonic sequence	then	for	the	output
§ Elements	in	the	top	half	are	smaller than	the	corresponding	

elements	in	the	bottom	half,	i.e.	halves	are	relatively	sorted.
§ One	of	the	halves	of	the	output	consists	of	only	zeros	or	ones	(i.e.	

is	“clean”),	the	other	half	is	bitonic.

Half-cleaner
example	(n=8)

Case	study:	parallel	sorting	algorithm

• Example	of	a	half-cleaner	network

0

1

0

1

1

0

0

0

0

0

0
1

0

0

1

1

lower	half
is	bitonic

upper	half
is	“clean”

input	=	
bitonic
sequence

upper	half
is	smaller	than
lower	half

Case	study:	parallel	sorting	algorithm

• Therefore,	a	bitonic sorter[n] (i.e.	network	that	sorts	a	bitonic
sequence	of	length	n)	is	obtained	as

Half-
cleaner[n]

Bitonic-
sorter[n/2]

Bitonic-
sorter[n/2]

A	bitonic sorter	sorts	a	bitonic sequence	of	length	n	=	2k using	
• size	=	nk/2	=	n/2	log2n	comparators	(=	sequential	time)
• depth	=	k	=	log2n		(=	parallel	time)

Case	study:	parallel	sorting	algorithm
• Step	2:	Build	a	network	merger[n] that	merges	two	sorted	

sequences	of	length	n/2	so	that	the	output	is	sorted
§ Flip	second	sequence	and	concatenate	first	and	flipped	second
§ Concatenated	sequence	is	bitonic,	sort	using	step	1

0

1

1

0

1

0

1

1

0

0

1
1

1

0

1

1

to	bitonic-
sorter[n/2]

sorted
sequence	1

sorted
sequence	2

to	bitonic-
sorter[n/2]

Case	study:	parallel	sorting	algorithm

• Step	3:	Build	a	sorter[n] network	that	sorts	arbitrary	sequences	
§ Do	this	recursively	from	merger[n]	building	blocks
§ Depth:	D(1)	=	0	and	D(n)	=	D(n/2)	+	log2n	=	O(log22n)

merger[n]
(from	Step	2)

sorter[n/2]

sorter[n/2]

Case	study:	parallel	sorting	algorithm

Example:	sorter[16]

merger[16]

merger[8]

merger[4]
merger[2]

flip-cleaner[16]

half-cleaner[8]

Case	study:	parallel	sorting	algorithm

• Further	reading of	bitonic networks:
§ http://valis.cs.uiuc.edu/~sariel/teach/2004/b/

webpage/lec/14_sortnet_notes.pdf
• In	case	n	is	not	a	power	of	two:	

§ http://www.iti.fh-flensburg.de/lang/algorithmen/	
sortieren/bitonic/oddn.htm

