

HANDS-ON: BUILDING
OWN SOLVERS &
LIBRARIES
Joris Degroote

DEPARTMENT OF FLOW, HEAT AND COMBUSTION MECHANICS
RESEARCH GROUP FLUID MECHANICS

OUTLINE
̶ Basics about compiling, executables and libraries
̶ Make your own solver, based on existing solver
̶ Make your own library and use it in existing solver

3

COMPILING,
EXECUTABLES AND
LIBRARIES

4

COMPILING, EXECUTABLES AND LIBRARIES
Compiling = source files(.C) → object files (.o)

human readable machine readable

Libraries = collections of object files which cannot be
executed directly
→ Can be used by multiple executables

5

COMPILING, EXECUTABLES AND LIBRARIES
Compiling = source files(.C) → object files (.o)

human readable machine readable

↓

Linking = combining object files (.o), static libraries
(.a) or shared libraries (.so) to create
executable (binary, no extension on Linux)

6

COMPILING, EXECUTABLES AND LIBRARIES
Static linking = include (part of) static library (.a) in

executable
→ Large executable

Dynamic linking = create link to shared library (.so) in
executable, so functions can be found

→ Small executable

7

COMPILING, EXECUTABLES AND LIBRARIES

8

COMPILING, EXECUTABLES AND LIBRARIES
Example

9

COMPILING, EXECUTABLES AND LIBRARIES
./src/Piece.h King.h Queen.h Tower.h … Chess.C

King.C Queen.C Tower.C

↓ Compile

King.o Queen.o Tower.o … Chess.o

↓ Link

./bin/chess

10

COMPILING, EXECUTABLES AND LIBRARIES
./src/Piece.h King.h … Chess.C ... Screen.C …

King.C
↓ Compile

King.o … Chess.o … Screen.o …
↓ Link

./bin/chess

./lib/libgraphics.so

11

COMPILING, EXECUTABLES AND LIBRARIES
OpenFOAM uses dynamic linking with shared libraries

wmake = compile all required source code
and link as executable (binary)
→ Typically depends on several libraries

wmake libso = compile all required source code
and package as shared library
→ Can depend on other libraries

12

MAKE YOUR OWN
SOLVER

13

MAKE YOUR OWN SOLVER
1. Interactive job
2. Copy existing solver
3. Change name
4. Change settings
5. Compile
6. Test run

14

MAKE YOUR OWN SOLVER
qsub -I -l walltime=00:59:59

module load OpenFOAM/4.1-intel-2017a

module list

source $FOAM_BASH

15

MAKE YOUR OWN SOLVER
echo $FOAM_APPBIN

→ Location of official binaries

echo $FOAM_USER_APPBIN

→ Location of own binaries

16

MAKE YOUR OWN SOLVER
OpenFOAM structure

cd $WM_PROJECT_DIR

src/ → source code of libraries
applications/solvers → source code of solvers
applications/utilities → source code of utilities
platforms/ → binaries and libraries

17

MAKE YOUR OWN SOLVER
Create same structure in own directory

mkdir -p $WM_PROJECT_USER_DIR
cd $WM_PROJECT_USER_DIR
(typically $VSC_HOME/OpenFOAM/username-version)

run/ → simulation cases and results
src/ → source code of own libraries
applications/solvers → source code of own solvers
applications/utilities → source code of own utilities
platforms/ → binaries and libraries

18

MAKE YOUR OWN SOLVER
cd $WM_PROJECT_DIR/applications/solvers

cd incompressible/

cp -r icoFoam $WM_PROJECT_USER_DIR/applications/solvers/myFoam

cd $WM_PROJECT_USER_DIR/applications/solvers/myFoam

19

MAKE YOUR OWN SOLVER
mv icoFoam.C myFoam.C

Edit “myFoam.C”

Info<< "Bye bye from myFoam\nEnd\n" << endl;

20

MAKE YOUR OWN SOLVER
cd Make

ls

files
options

21

MAKE YOUR OWN SOLVER
Edit “files”

myFoam.C

EXE = $(FOAM_USER_APPBIN)/myFoam

22

MAKE YOUR OWN SOLVER
Edit “options”

EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude

→ Headers to be included when compiling executable

EXE_LIBS = \
-lfiniteVolume \
-lmeshTools

→ Libraries to be included when linking executable

23

MAKE YOUR OWN SOLVER
cd ..

wmake

ls $FOAM_USER_APPBIN

24

MAKE YOUR OWN SOLVER
cd $FOAM_RUN

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity myCavity

cd myCavity

blockMesh

myFoam

25

MAKE YOUR OWN
LIBRARY

26

MAKE YOUR OWN LIBRARY
1. Interactive job
2. Copy part of existing library
3. Change name
4. Change settings
5. Compile
6. Test run

27

MAKE YOUR OWN LIBRARY
echo $FOAM_LIBBIN

→ Locations of official libraries

echo $FOAM_USER_LIBBIN

→ Locations of own libraries

28

MAKE YOUR OWN LIBRARY
cd $WM_PROJECT_DIR/src

cd functionObjects/utilities

cp -r writeDictionary $WM_PROJECT_USER_DIR/src/myWriteDictionary

cd $WM_PROJECT_USER_DIR/src/myWriteDictionary

29

MAKE YOUR OWN LIBRARY
mv writeDictionary.C myWriteDictionary.C

mv writeDictionary.H myWriteDictionary.H

Edit both files and replace “writeDictionary” by “myWriteDictionary”

Edit “myWriteDictionary.C”

Foam::functionObjects::myWriteDictionary::~myWriteDictionary()

{

Info<< "Bye bye from myWriteDictionary" << endl;

}

30

MAKE YOUR OWN LIBRARY
cp -r $WM_PROJECT_DIR/src/functionObjects/utilities/Make .

cd Make

ls

files
options

31

MAKE YOUR OWN LIBRARY
Edit “files”

myWriteDictionary.C

LIB = $(FOAM_USER_LIBBIN)/libmyWriteDictionary

32

MAKE YOUR OWN LIBRARY
Edit “options”

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude

LIB_LIBS = \

-lfiniteVolume

33

MAKE YOUR OWN LIBRARY
cd ..

wmake libso

ls $FOAM_USER_LIBBIN

34

MAKE YOUR OWN LIBRARY
cd $FOAM_RUN/myCavity

Edit “system/controlDict”

functions
{

writeDictionary1
{

type myWriteDictionary;

libs ("libmyWriteDictionary.so");

dictNames (controlDict);
}

}

35

MAKE YOUR OWN LIBRARY
myFoam

Check output

…

Bye bye from myFoam

End

Bye bye from myWriteDictionary

36

TIPS
Use variables for paths, do not hard code them

Use binaries and libraries only on cluster that has been
used for compiling

Use ldd to check dependency on shared libraries

Study C++ (Stroustrup, …)

37

REFERENCES
[1] H. Jasak, Introduction to OpenFOAM: Programming
in OpenFOAM. 2016.
https://www.youtube.com/playlist?list=PLqxhJj6bcnY9Ro
IgzeF6xDh5L9bbeK3BL

38

Joris Degroote
Associate professor

DEPARTMENT OF FLOW, HEAT AND
COMBUSTION MECHANICS

E joris.degroote@ugent.be
T +32 9 264 95 22

www.ugent.be

Ghent University
@ugent
Ghent University

