Numerical simulation of an array of Floating Point Absorber Wave Energy Converters using OpenFOAM

Brecht DEVOLDER1,2, Pieter RAUWOENS2, Peter TROCH1
1Ghent University, Department of Civil Engineering, Belgium
2KU Leuven, Department of Civil Engineering, Technology Cluster Construction, Belgium

OpenFOAM user meeting @ HPC-UGent
13th September 2017, Ghent, Belgium
Overview of the presentation

• **Introduction**
 - Problem statement
 - Main goal

• **Models**
 - Experimental (wave basin)
 - Numerical (CFD simulations)

• **Numerical results**
 - 2WEC-array
 - 5WEC-array
 - Outlook: 9WEC-array

• **OpenFOAM modelling at AWW**
 - Vincent GRUWEZ
 - Ine VANDEBEEK
 - Carlos ARBOLEDA CHAVEZ

• **Conclusions (part I)**

• **Conclusions (part II)**
Introduction

• Problem statement
 ▶ Wave Energy Converters (WECs) are arranged in arrays → array effects
 ▶ OpenFOAM: solve the 3D viscous flow field and the response of a WEC array in an incident wave field using IHFOAM
 ▶ Why CFD? → viscous forces, turbulent and nonlinear effects

• Main goal
 ▶ Validation of the numerical model by using experimental data
 ▶ Different tests and array configurations
Experimental modelling: WECwakes project

Project coordinated by Ghent University (Dept. of Civil Engineering)

DHI shallow water wave basin (Denmark)
Numerical modelling: Numerical Wave Flume / Numerical Wave Tank

- = box filled with water (red) and air (blue)

- p and U: Navier-Stokes equations
- volume fraction: Volume of Fluid (VoF) method
- interFoam / interDyMFoam solver (OpenFOAM-2.2.2 and OpenFOAM-3.0.1)

- Boundary conditions are needed to generate and absorb the waves
Numerical modelling: floating WECs

- Fluid solver
 - Navier-Stokes equations (only laminar solutions)
 - Turbulence? Article Coastal Eng.: Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM® (doi.org/10.1016/j.coastaleng.2017.04.004)

- Motion solver
 - force → position

- Multiple WECs in an array configuration
 - Arbitrary Mesh Interfaces (AMIs)

- Mesh motion
 - only heave motion
Numerical modelling: friction forces

Vertical supporting axis

$$F_{LD} = -cv(t)$$

PTO system

$$F_{PTO} = -\mu F_{spring} \text{sign}(v(t))$$

$$= -\mu 4dxk_{spring} \text{sign}(v(t))$$
REGULAR WAVES
2WEC-ARRAY

H = 0.074 m
T = 1.26 s
d = 0.70 m

out of the water

PTO activated

WEC 1
WEC 2
WEC 3
WEC 4
WEC 5
Results: regular wave test 2WEC-array

Surge force due to wave action \rightarrow 2nd Coulomb damper \rightarrow difference in heave amplitudes: 60 % \rightarrow 20 %
Results: regular wave test 2WEC-array

WEC4: F_s

WEC5: F_s
REGULAR WAVES
5WEC-ARRAY

H = 0.074 m
T = 1.26 s
d = 0.70 m

PTO activated
Results: regular wave test 5WEC-array

Z_{WEC}

![Experimental vs CFD comparison graphs]

Department of Civil Engineering – Faculty of Engineering & Architecture
Results: regular wave test 5WEC-array

![Wave height comparison](image)

- Experimental
- CFD

![Wave concentration](image)

- η

eta

Time: 50.00

Department of Civil Engineering – Faculty of Engineering & Architecture
OUTLOOK:
REGULAR WAVES
9WEC-ARRAY
Outlook: regular wave test 9WEC-array
Conclusions (part I)

- CFD modelling of WEC-arrays in a numerical wave tank (OpenFOAM)
- Numerical model is validated with experimental data (WECwakes)
 - 2WEC-array
 - 5WEC-array

- Further research
 - Validation of a larger number of WECs and different array configurations
 - Importance of viscous forces and non-linear effects
 - Including turbulent effects using our buoyancy-modified turbulence model
THERE IS MORE THAN WAVE ENERGY…
Wave run-up around a monopile

Wave breaking: turbulence modelling

…AND IT’S NOT ONLY ME…
Modelling of wave overtopping for a climate resilient coastal defence system with a very shallow foreshore

• Goal
 ‣ A prediction methodology for wave overtopping, wave impact forces on sea defences, and risk of casualties in buildings

• Methods
 ‣ Numerical modelling (OpenFOAM, SWASH, + coupling)
 ‣ Validation by using experimental data and field measurements

• Status
 ‣ Validation for regular wave transformation and wave forces
 ‣ Next step: coupling SWASH–OpenFOAM
Numerical modelling of beach profile dynamics for very shallow foreshores

• Goal:
 ‣ The influence of sediment transport and dynamic beach profiles on wave loading forces and overtopping volumes

• Methods:
 ‣ CFD modelling with OpenFOAM using the VoF method and a sediment transport module with dynamic beach profiles
 ‣ Validation by using experimental data

• Status:
 ‣ Sediment transport and morphology module included in foam-extend

source: ASBPA and U.S. Army Corps of Engineers
Scour protection around wind turbine monopile foundations in a combined wave and current condition

• Goal:
 ‣ CFD modelling of combined waves and current
 ‣ CFD modelling of the flow field inside porous media

• Methods
 ‣ CFD modelling with OpenFOAM using the VoF method
 ‣ Validation by using experimental data

• Status
 ‣ Wave propagation towards the monopile

source: Sumer & Fredsøe (2011)
PhD Carlos ARBOLEDA CHAVEZ (Ghent University, Department of Civil Engineering)
Conclusions (part II)

• CFD simulations in a numerical wave tank using OpenFOAM

• Offshore and coastal engineering processes:
 ‣ Wave energy converters (arrays)
 ‣ Wave propagation and wave run-up around a monopile
 ‣ Turbulence modelling for wave breaking over a sloped beach profile
 ‣ Wave overtopping at and impact forces on coastal structures
 ‣ Sediment transport in the nearshore zone
 ‣ Porous flow inside the scour protection around a monopile foundation
Numerical simulation of an array of Floating Point Absorber Wave Energy Converters using OpenFOAM

Brecht DEVOLDER¹,², Pieter RAUWOENS², Peter TROCH¹
¹Ghent University, Department of Civil Engineering, Belgium
²KU Leuven, Department of Civil Engineering, Technology Cluster Construction, Belgium

OpenFOAM user meeting @ HPC-UGent
13th September 2017, Ghent, Belgium