

GHENT UNIVERSITY

LARGE EDDY SIMULATION OF ANNULAR FLOWS, TUBE **BUNDLES AND SLOT JETS WITH OPENFOAM**

Joris Degroote

<u>OUTLINE</u>

- Introduction
- Slot jet
- Tube bundle
- Annular flow
- Domain decomposition
- Comparison CFD packages
- Conclusion

3

- **Turbulence** in flow
- Direct numerical simulation (DNS)
- Large eddy simulation (LES)
- Reynolds-averaged Navier-Stokes (RANS) simulation
- Hybrid methods such as (delayed) detached eddy simulation (D)DES

RANS

Source: https://www.evl.uic.edu/entry.php?id=2202

Direct numerical simulation (DNS)

- 3D unsteady calculation of all scales
- Number operations is proportional to Re^3
- Extreme computational cost, only $Re \sim \mathcal{O}(10^3)$

Re^3 ~ $\mathcal{O}(10^3)$

- Large eddy simulation (LES)
- 3D unsteady calculation of scales above limit
- Model assuming isotropic turbulence below limit
- High computational cost, limited to $Re \sim O(10^{4-5})$

ove limit below limit $e \sim O(10^{4-5})$

Reynolds-averaged Navier-Stokes (RANS) simulation

- 2D or 3D and steady or unsteady calculation
- Averaged flow equations
- Moderate computational cost, even for $Re > O(10^6)$

Wave number log(k)

Cooling of gas turbine blades with impingement → Better cooling means higher gas temperatures and thus higher efficiency

Impingement cooling \rightarrow Jet impinging on plate

LES with dynamic Smagorinsky model in OpenFOAM [3] Central differencing with filtering of high-frequency ripples in space

Second-order implicit in time

Case	L/B	H/B	W/B	N_x	N_y	N_z	$N_{\rm tot}$ (M)
$H/B = 9.2, \mathrm{Re} = 20000$	80	9.2	π	320	320	70	7.2
H/B = 4, Re = 18000	80	4	π	320	180	70	4.0
H/B = 2, Re = 10000 (fine)	80	2	π	540	200	140	15.1

\rightarrow Impossible without HPC (up to 1024 cores of gulpin)

<u>SLOT JET</u>

Time-averaged velocity magnitude, Q-criterion

Scaling on nodes with 4x8=32 cores of

GHENT UNIVERSITY

f gulpin					
s cores	omposition				
32	hical zy	'x (8 4 ⁻	1)		
64	hierarchical zyx (8 4 2				
128	hierarchical zyx (16 4 2)				
256	hierarch	nical zyz	x (16 8	2)	
512	hierarch	nical zyz	x (16 8	4)	
1024	hierarch	nical zyz	x (32 8	4)	
Case	N_x	N_y	N_z		
$3 = 2, \mathrm{Re} = 10000$	540	200	140		
IM cells	préssure	outlet	pressure outle	et	
IM cells confinement jet exit pressure outlet	pressure t plate B y L mpingement plate	outlet	pressure outle	et	

pressure outlet

16

Fatigue and fretting wear in tube bundles

- \rightarrow Tube rupture or leak
- \rightarrow Cost and/or danger

Investigate contribution due to turbulence-induced vibration

Vortices in gaps between cylinders in tube bundles

LES with dynamic Smagorinsky model in OpenFOAM [2]

Infinite array

periodic boundary conditions

LES with dynamic Smagorinsky model in OpenFOAM [2]

Velocity magnitude

Strouhal number for varying pitch/diameter

U Magnitud 194.3212

LES with dynamic Smagorinsky model in OpenFOAM [1]

Annular geometry

Flow field from LES \rightarrow Pressure on wall \rightarrow Vibration

- LES simulation corresponding to experiments by Chen
- Average velocity = 10 m/s
- Water density = 1000 kg/m³
- Water viscosity = 10^{-3} kg/ms
- Hydraulic diameter = 0.0127 m
- Length = 10 hydraulic diameters
- Reynolds number = 127000

Discretization parameters

Case	Nr	Δr+	Νθ	Nz	Cells	L/Dh	Integration time
Case A	80	3	200	500	8M	20	0.5 s
Case B	140	1	300	1000	42M	20	0.3 s
Case C	200	2	480	800	77M	10	0.7 s
Case D	200	2	800	1100	176M	10	0.25 s

\rightarrow Impossible without HPC (up to 2048 cores of muk)

Equivalent computing time for 0.1s on single core

63 days

600 days (2 years)

2200 days (6 years)

10000 days (28 years)

Instantaneous velocity

Averaged velocity profiles

Power spectral density of force/meter

Cavity case with icoFoam in OpenFOAM/4.1-intel-2016a on BrENIAC

- Scaling tests
- Strong scaling: problem size stays fixed
- Weak scaling: problem size assigned to each processing element stays fixed

 \rightarrow Here strong scaling on 51M and 206M cells because goal is to solve given problem as fast as possible

Procedure

- Generate coarse mesh (blockMesh)
- Domain decomposition (decomposePar)
- Repeat
 - Select all cells (topoSet)
 - Refine selected cells (refineMesh)
- Solve on refined mesh (icoFoam)

Two Xeon E5-2680v4 processors per node of BrENIAC

 \rightarrow 28 cores split in 4 groups of 7 cores per node


```
numberOfSubdomains 3584;
                                                                 numberOfSubdomains 7168;
method
                multiLevel;
                                                                 method
multiLevelCoeffs
                                                                 multiLevelCoeffs
 {
    level0
                                                                     level0
        numberOfSubdomains 128;
                                                                         numberOfSubdomains 256;
        method simple;
                                                                         method simple;
        simpleCoeffs
                                                                         simpleCoeffs
         {
                        (16 8 1);
            n
                                                                             n
            delta
                         0.000001;
                                                                             delta
        }
     }
                                                                      }
     level1
                                                                     level1
        numberOfSubdomains 28;
                                                                         numberOfSubdomains 28;
        method simple;
                                                                         method simple;
        simpleCoeffs
                                                                         simpleCoeffs
                        (4 7 1);
            n
                                                                             n
            delta
                         0.000001;
                                                                             delta
        }
                                                                         }
GHENT
UNIVERSITY
```

multiLevel; (16 16 1); 0.00001; (4 7 1); 0.000001;

Strong scaling on 206M cells (448x448 refined 5 times), with 448=28x16 (reference 2 nodes, too large for 1 node)

						Actual	Efficiency	
# nodes	# cores	# x-dom	# y-dom	# x-cells	# y-cells	Speedup	%	# cells/core
2	56	8	7	56	64	1.00	100.00	3670016
4	112	8	14	56	32	2.04	102.08	1835008
8	224	16	14	28	32	4.04	100.89	917504
16	448	16	28	28	16	8.26	103.31	458752
32	896	32	28	14	16	17.43	108.91	229376
64	1792	32	56	14	8	32.64	101.99	114688
128	3584	64	56	7	8	69.69	108.89	57344

GHENT UNIVERSITY

Strong scaling on 206M cells (448x448 refined 5 times), with 448=28x16

UNIVERSITY

Strong scaling on 51M cells (448x448 refined 4 times), with 448=28x16 and insufficient #cells/core

						Actual	Efficiency	
# nodes	# cores	# x-dom	# y-dom	# x-cells	# y-cells	Speedup	%	# cells/core
1	28	4	7	112	64	1.00	100.00	1835008
2	56	8	7	56	64	1.96	97.90	917504
4	112	8	14	56	32	4.09	102.20	458752
8	224	16	14	28	32	9.07	113.38	229376
16	448	16	28	28	16	23.66	147.86	114688
32	896	32	28	14	16	55.83	174.46	57344
64	1792	32	56	14	8	110.04	171.94	28672
128	3584	64	56	7	8	137.20	107.19	14336
256	7168	64	112	7	4	177.90	69.49	7168
\sim								

Strong scaling on 51M cells (448x448 refined 4 times), with 448=28x16 and insufficient #cells/core

UNIVERSITY

COMPARISON CFD PACKAGES

COMPARISON CFD PACKAGES

OpenFOAM compared with Fluent (personal **opinion/feeling**, not facts!) + Access to source code (but not always needed...) + No licenses, so good for HPC (but cost small compared to salary...)

- + Facilitates local and international collaboration
- + Accepted in scientific community
- + Fun!
- Less systematic validation (but always good to test it yourself...)
- Less documentation (but you can look in code...)
- Fewer features (but catching up and possibility to add your own...)
- Different branches (.com/.org/-extend) and incompatible versions
- Longer learning curve (developing requires C++ skills, no GUI...)

CONCLUSIONS

LES simulation in OpenFOAM

- Results in agreement with other data
- Think about domain decomposition

CFD course

 Exercises in OpenFOAM next year Project can already be done in OpenFOAM this year

<u>REFERENCES</u>

[1] J. De Ridder, J. Degroote, K. Van Tichelen, P. Schuurmans, and J. Vierendeels. Predicting turbulenceinduced vibration in axial annular flow by means of large-eddy simulations. *Journal of Fluids and Structures*, 61:115–131, 2016. DOI: <u>10.1016/j.jfluidstructs.2015.10.011</u>.

[2] L. De Moerloose, P. Aerts, J. De Ridder, J. Degroote, and J. Vierendeels. Numerical investigation of large-scale vortices in an array of cylinders in axial flow. Submitted to *Journal of Fluids and Structures*.
[3] S. Kubacki, J. Rokicki, E. Dick, J. Degroote, and J. Vierendeels. Hybrid RANS/LES of plane jets impinging on a flat plate at small nozzle-plate distances. *Archives of Mechanics*, 65(2):143–166, 2013.

Joris Degroote Associate professor

DEPARTMENT OF FLOW, HEAT AND **COMBUSTION MECHANICS**

- Е joris.degroote@ugent.be
- +32 9 264 95 22 Т

www.ugent.be

Ghent University f y @ugent in **Ghent University**

