
1

Schedule and Exercises for OpenMP

Schedule for talks and exercises

Day 1 Day 2

9:00-9:45 Introduction to OpenMP 9:00-10:00 Synchronization constructs and
program correctness

9:45-10:30 First exercise session 10:00-11:00 Fifth exercise session

10:30-11:15 Simple Work Sharing, Data
Scoping and Synchronization

11:00-12:00 Tasking

11:15-12:15 Second exercise session 12:00-12:45 Lunch Break

12:15-13:00 Lunch Break 12:45-13:45 Sixth exercise session

13:00-14:15 Reductions; More on work
sharing; Thread-private variables

13:45-15:15 Architectural Performance
issues: Affinity, False Sharing

14:15-15:30 Third exercise session 15:15-16:15 Seventh exercise session

15:30-16:15 Vectorization (SIMD) 16:15-17:00 Architectural Performance
issues: Exploiting bandwidth

16:15-17:00 Fourth exercise session

First exercise session

Preparing the working environment (15 minutes)

1. Please log in to the front end machine with the command

ssh vsc40000@login.hpc.ugent.be

Note: replace vsc40000 with your own VSC user ID, see https://account.vscentrum.be

2. Please follow the instructions for setting up and connecting to a VNC session that are available at

http://hpc.ugent.be/userwiki/index.php/User:VNC (requires login).

Once you have the VNC session running, you can do any of the following:

• Open a terminal

• Use the nano, vi or emacs editors to edit program text

• Load a compiler module:

module load intel/2017a # Intel compilers

module load GCC/6.3.0-2.27 # GCC compilers

(with the command module avail GCC, you can produce a list of available versions, and

specifically load the one you wish to use)

• Load a tools module:

module load Inspector/2017_update2 # Intel inspector

module load Vtune/2017_update2 # Intel amplifier

module load ImageMagick/7.0.5-4-intel-2017a # “display” tool

module load likwid/4.2.0-GCCcore-6.3.0 # LIKWID tool

https://account.vscentrum.be/
http://hpc.ugent.be/userwiki/index.php/User:VNC

2

• Execute a batch job on a dedicated node (for reliable performance):

qsub -I -l nodes=1:ppn=16 -l walltime=2:0:0 \
 –W x=FLAGS:ADVRES:openmp.302

once the shell prompt returns, all commands are run on a worker node, until the session is exited.

It is a good idea to use a separate terminal from that used for compiling programs. The above

command will work on the first day only. On the second day, please replace openmp.302 in the

above submission command line by openmp.303.

The exercises folder for this course is

export EXERCISES=/apps/gent/tutorials/openmp_exercises/2017

Please copy the exercise templates to your HOME directory with

cp -a $EXERCISES/skeletons/* $HOME

The solutions will be made available after each exercise in the directory

$EXERCISES/solutions.

Getting acquainted with the compilers (30 minutes)

The folder HELLO contains serial code (Fortran and C) that corresponds to the slide example.

1. Add the OpenMP directives that are needed to execute f() in parallel; also modify f()

to print out which thread is working on an instance of f().

2. Find the name of the OpenMP switch for your compiler and build an executable; the

supplied Makefile may be used for this purpose. Run the executable with 1, 4 and 8

threads.

3. Add code to f() instructing it to sleep for omp_get_thread_num() seconds. Then,

measure the execution time of the resulting program using the UNIX time command.

What do you observe?

4. Set the environment variable OMP_DISPLAY_ENV to either “true” or “verbose”. Then

rerun the program and observe.

3

Second exercise session

Parallelization of a code for calculating π using random numbers (30 minutes)

The quarter circle in the first quadrant with origin at (0,0) and radius 1 has an area of π/4.

Consider random number pairs in [0, 1] × [0, 1]. The probability that such a point lies inside

the quarter circle is π/4, so given enough statistics we are able to calculate π using this “Monte

Carlo” method. You can find a serial version (C and Fortran) in the samples folder PI. It prints

its run time and the relative accuracy of the computed approximation to π.

Parallelize the code using OpenMP. Use the rand_r() function to get separate random

number sequences for all threads. What is the best relative accuracy that you can achieve with

twelve cores in five seconds of wall time?

Third exercise session

Triangular matrix-vector multiplication (45 minutes)

As a variant of the full matrix-vector multiply, consider the triangular matrix-vector multiplication,

∑ 𝑀𝑗𝑘 ∙ 𝑥𝑘

𝑗

𝑘=1

= 𝑟𝑗 , 𝑗 = 1 . . 𝑛

where the summation only runs over the lower triangular part of the n by n matrix M. Starting out with

a copy of the serial code provided as a skeleton (in the folder MVM, the programs named tri_mvm*),

parallelize the code with OpenMP. Please write parallel variants for both the j-loop and the k-loop as

outer loops; what do you need to take care of for the latter? Investigate the baseline performance

(compare with the performance of the serial code!) and the scaling behavior for problem sizes n=1000,

2000, 4000, 8000 using between 1 and 16 threads, for both variants. Which of the two performs

better? Why can imposing an explicit schedule further improve performance?

(C programmers: please use gcc version 6.1 or higher, or Intel icc 17.0.2 or higher for this exercise)

4

On recursion and its elimination (30 minutes)

The first part of this exercise is only theoretical and should only take 5 minutes to complete.

1. Consider the following loop structure:

x(:) = …; a(:) = …; b(:) = …

!$omp parallel do

do i=1, n

 x(i) = a(i) * x(i-1) + b(i)

end do

!$omp end parallel do

Why exactly is the above program non-conforming? More precisely: for which loop iterations does

the work sharing construct run into trouble? How could a program find out which ones are the

problematic iterations?

2. Parallelize the loop in the following piece of code using OpenMP (you can pick up the sample

code from the folder RECURSION):

C Fortran
const double up = 1.00001;

double Sn = 1.0;

double opt[N+1];

int n;

for (n=0; n<=N; ++n) {

 opt[n] = Sn;

 Sn *= up;

}

double precision, parameter :: &

 up = 1.00001d0

double precision :: Sn

double precision :: opt(0:ndim)

integer :: n

do n=0, ndim

 opt(n) = Sn

 Sn = Sn * up

end do

The parallelized code should work independently of the OpenMP schedule used. Try to avoid,

as far as possible, expensive operations that might harm serial performance.

Hint: To solve this problem you might want to use the firstprivate and lastprivate
OpenMP clauses discussed in the foregoing slide session.

5

Fourth exercise session

SIMD operations in a ray tracer (45 minutes)

The RAY folder contains a serial raytracer code (in a Fortran and a C version), which

computes a pretty picture. It writes the picture to a file called "result.pnm". Look at the

file using, e.g., the display program. The central function is calc_tile(), which

computes one tile of the picture. The size of one tile and of the whole picture is hardcoded at

the start of the main program. Please

vectorize, as far as possible, the serially

executed code in the procedures

intersect() and shade() using

OpenMP SIMD directives. What speed-up

can be achieved? Once you are done,

temporarily remove the OpenMP switch

from the compilation to assess what fraction

of the speed improvement is due to the code

restructuring. After the exercise, the solution

can be picked up from the subfolder

RAY_SIMD.

6

Fifth exercise session

Performance tuning the heat conduction equation (60 minutes)

The folder HEAT contains (quite trivial) OpenMP parallel code that calculates a stationary

solution of the heat conduction equation

∂Φ

∂t
=

∂2Φ

∂x2
+

∂2Φ

∂y2

on a square (two dimensional Jacobi iteration).

Starting out from initial values and (fixed) boundary values, increments are calculated using

δΦ = δt ∙ [ΔΦ]discretized

and the process is repeated until the stationary state is reached.

1. Look at the OpenMP directives that were used. Build the program for a problem size of

200 x 200 and run it with 1, 4, 8, 12 threads, noting down the performance numbers.

2. The supplied version of the heat equation solver has its parallel region inside the iteration

loop, leading to many forks and joins. Consider reducing the parallel overhead by pulling

the parallel region outside the iteration loop. What other changes are necessary to ensure

correct execution of the code? It is strongly suggested to use Intel Inspector to identify

problems as they arise. Furthermore, building and executing for the small problem size is

suggested since the printout immediately indicates whether something has gone wrong.

3. Measure the performance for the improved version for the 200 x 200 problem size, with

the same thread counts as in step 1. above. How much improvement do you see?

7

Sixth exercise session

Task-parallel ray tracer (60 minutes)

We are now returning to the ray tracer code from yesterday. You can either start out from

your own solution, or use the program from the RAY_SIMD solution folder. The code

assumes that the picture size is a multiple of the tile size. In the version given, the picture size

is 2000 by 2000 and the tile size is 200 by 200. The program outputs its run time at

conclusion.

Parallelize the code using OpenMP task

directives for processing of each tile. Decide

which procedure and loop nest to work on.

You can deactivate the output for testing, but

make sure that your parallel code computes

the correct result (this is easy since you can

always display the picture). What

speedup does your code get from 1 to 12

threads? Why does tasking make sense for

this type of problem? After the exercise, the

solution can be picked up from the subfolder RAY_TASKS.

8

Seventh exercise session

Performance of OpenMP programs with affinity settings (10 minutes)

Study the performance of both versions of the HEAT code with suitably chosen affinity

settings for the problem size 200 x 200. Alternatively, do the same for the RAY tracer or the

triangular Matrix-Vector program.

Increasing the problem size in the HEAT example (20 minutes)

Using the likwid-topology tool (or the hwloc command lstopo if likwid is not

available), determine the size of the largest caches on your compute node. Given the word

size of 8 Bytes for a double precision variable, estimate how large the problem in the HEAT

code can be if both phi and phin should fit into the cache. Run a problem size at least 4

times as large (you will probably need to fix the maximum iteration count at a lower value for

sufficiently short run times) and ensure that the fastest available path is used for all memory

accesses.

Parallel histogram computation (30 minutes)

Build the OpenMP program provided in the folder HISTO that calculates a histogram with 16

bins from the results of the standard rand_r() random number generator, and run it with 1

and 8 threads, respectively. Even if you can deduct from visual inspection what is going

wrong, use the VTune Amplifier to perform an analysis of the code based on the procedure

described in the Appendix at the end of the supplied slides. Then, fix the problem in the code

and rerun the analysis.

