
Introduction to OpenMP

R. Bader (LRZ)

G. Hager (RRZE)

V. Weinberg (LRZ)

© 2010-17 LRZ/RRZE Introduction to OpenMP

How to build faster computers – a survey

1. Increase performance / throughput of CPU core

a) Reduce cycle time, i.e. increase clock speed (Moore)

b) Increase throughput, i.e. superscalar + SIMD

2. Improve data access time

a) Increase cache size

b) Improve main memory access (bandwidth & latency)

3. Use parallel computing (shared memory)

a) Requires shared-memory parallel programming

b) Shared/separate caches

c) Possible memory access bottlenecks

4. Use parallel computing (distributed memory)
“Cluster” of computers tightly connected

a) Almost unlimited scaling of memory and performance

b) Distributed-memory
parallel programming

CPU
Cache

Memory

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

2

How to build faster computers (cont‘d)

5. Use an accelerator with your compute node

a) Requires offload of program regions

(semantics may be limited)

b) Host and accelerator memory are connected, but separate

(Improvements are under way)

c) Programming complexity is higher than for shared memory systems

(„heterogeneous parallel computing“)

© 2010-17 LRZ/RRZE Introduction to OpenMP 3

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory

Accelerator
Device #1

Accelerator
Device #2

P
C

I

Accelerator memory
is very fast,

but limited in size

© 2010-17 LRZ/RRZE Introduction to OpenMP

Multi-core processor

MS

arithmetic
unit

Main Memory

FP
registers

L1 cache

L2 cache

„DRAM Gap“

P
ro

c
e
s
s
o

r c
h

ip

FP
registers

L1 cache

arithmetic
unitIn

te
l
X

e
o
n
 (

W
o
o
d
c
re

s
t)

It is not a faster CPU – it is a parallel computer on a chip.

Put multiple processors (“cores”) on a chip which share resources
(example shows a dual core that shares L2 cache and memory bandwidth)

Efficient use of all cores for a single application programmer

4

… the party is over!

 Option 1 a) is not feasible any more, option 2 only in small increments

© 2010-17 LRZ/RRZE Introduction to OpenMP 5

Over-clocked
(+20%)

1.00x

1.73x

1.13x

Max Frequency

Power

Performance

Dual-core
(-20%)

1.02x

1.73x

Dual-Core

By courtesy of D. Vrsalovic, Intel

Paradigms supported by OpenMP –

three faces of parallelism

Node
Architecture

Threaded
Parallelism

(multi-core, shared
memory)

Vectorized
execution

(SIMD)

Offloaded
execution

(accelerators)

© 2010-17 LRZ/RRZE Introduction to OpenMP 6

Focus of this course

Also discussed in
this course

Not covered in
this course

OpenMP and portability

 Syntactic portability

• Directives / pragmas

• Conditional compilation permits

to masks API calls

 Semantic portability

• Standardized across platforms

 safe-to-use interface

• Unsupported/unavailable

hardware features irrelevant

directives will be ignored
(you might need a special compiler

for your devices …)

 Performance portability

• Unfortunately performance is not

necessarily portable

• Has traditionally been a problem
(partly due to differences in

hardware/architectural properties)

© 2010-17 LRZ/RRZE Introduction to OpenMP 7

Compatibility with Sequential Execution

Are semantics for sequential execution retained?

Do memory accesses occur in the same order?

Are the same numeric results obtained for parallel execution?

• yes, due to directive concept

• programmer may choose not to

• no, due to relaxed memory

consistency (performance feature!)

• no associativity for model number

operations

• parallel execution might reorder

operations
(programmer may need to enforce ordering

for reproducibility and/or numeric stability)

© 2010-17 LRZ/RRZE Introduction to OpenMP 8

OpenMP Standard

 Responsible body: OpenMP Architecture Review Board

• Published OpenMP 4.5 in November 2015

• Development continues

 Base languages

• Fortran (77, 95, 2003)

• C, C++
• (Java is not a base language)

 Resources:

• http://www.openmp.org (including standard documents)

• http://www.compunity.org

© 2010-17 LRZ/RRZE Introduction to OpenMP 9

Fortran and C examples
will be displayed

History of OpenMP
starts in 1997

http://www.openmp.org/
http://www.compunity.org/

OpenMP history
(courtesy Intel „The Parallel Universe“, issue 18)

© 2010-17 LRZ/RRZE Introduction to OpenMP 10

Note the increase in
the standard's size

Course Target:

Learn the most useful and
therefore most commonly
used features of OpenMP

© 2010-17 LRZ/RRZE

OpenMP Architecture

11Introduction to OpenMP

Application

Compiler
Directives

User

Environment
Variables

Runtime Library

Threads in OS
CPUs in Hardware

Comment lines
in source code

Some library routines
are exposed

to the programmer

Determine resource
allocation and
assignment,

scheduling strategies,
etc.

Your program …

OS threads are
executed

concurrently on
HW cores

A simple application

© 2010-17 LRZ/RRZE Introduction to OpenMP 12

program

use m

implicit none

call f()

end program

module m

implicit none

contains

subroutine f()

print *, 'Hello'

end subroutine

end module

Fortran

#include <stdio.h>

int main() {

f();

return 0;

}

void f() {

printf("Hello\n");

}

C

Aim is to execute
f() in parallel

Parallel execution model

 fork-join sequence

• can repeat, with differing thread counts

© 2010-17 LRZ/RRZE Introduction to OpenMP 13

fork

f() f() f() f() f()

join

Program start: only
master thread runs

(serial execution)

Parallel region entry: team of
worker threads is generated

worker threads
execute concurrently

ex
ec

u
ti

o
n

se
q

u
en

ce

Parallel region exit: all threads
of team synchronize

Serial region:
only master thread executes

(workers usually persist, but are inactive)

Adding a parallel region

© 2010-17 LRZ/RRZE Introduction to OpenMP 14

program

use m

implicit none

!$omp parallel

call f()

!$omp end parallel

end program

Fortran

#include <stdio.h>

int main() {

#pragma omp parallel

{

f();

}

return 0;

}

C

enclosed
lexical block

 General form of directives:

• clauses, if present, modify a directive‘s semantics

• multiple clauses per directive are possible

• continuation lines are supported for long directives: & \

!$omp <directive> [<clause>]

enclosed
lexical block

#pragma omp <directive> [<clause>]

sentinel sentinel

Fortran C

OpenMP structured block rules

• statements between a beginning

and ending directive pair

• GOTO into block is prohibited

• GOTO, RETURN, EXIT outside

block are prohibited

• STOP, ERROR STOP

• delineated by braces following a

directive

• setjmp() into block is prohibited

• longjmp() and throw() outside

block are prohibited

• exit()

© 2010-17 LRZ/RRZE Introduction to OpenMP 15

Fortran C / C++

single point of entry

single point of exit

permitted: program termination

Using library calls

© 2010-17 LRZ/RRZE Introduction to OpenMP 16

subroutine f()

!$ use omp_lib

integer :: me

me = 0

!$ me = omp_get_thread_num()

print *, 'Hello from thread ', me

end subroutine

Fo
rt

ra
n

#include <stdio.h>

#include <omp.h>

void f() {

int me = 0;

#ifdef _OPENMP

me = omp_get_thread_num();

#endif

printf("Hello from thread %i\n",me);

}

C

!$ indicates statement should
be compiled conditionally

OpenMP module:
explicit interfaces for API

returns an integer
(avoid implicit typing!)

OpenMP include file:
prototypes for API

OpenMP-specific macro for
conditional compilation

Independent execution contexts

 As many independent function calls as there are threads

 Thread-individual memory management within function call

• local variables ("me") are created in the

thread-specific stack

• malloc() or ALLOCATE create memory in

the heap separately for each thread

 Private variables

• associated with a particular thread are

inaccessible by any other thread

• pro: safe to use

• con: communication is not possible

(it is needed by many parallel algorithms),

unnecessary replication of objects may happen.

 Thread-individual stack limit

• control via environment variable

(example: 100 MByte)

© 2010-17 LRZ/RRZE Introduction to OpenMP 17

private

T0

T2

T1

private

private

T3

private

export OMP_STACKSIZE=100M

OpenMP API

 Classes of routines:

• Execution environment (36), Locking (12), Timing (2), Device Memory (7)

Name Result type Purpose

omp_set_num_threads
(int num_threads)

none number of threads to be created for
subsequent parallel region

omp_get_num_threads() int number of threads in currently executing
region

omp_get_max_threads() int maximum number of threads that can be
created for a subsequent parallel region

omp_get_thread_num() int thread number of calling thread (zero
based) in currently executing region

omp_get_num_procs() int number of processors available

omp_get_wtime() double return wall clock time in seconds since
some (fixed) time in the past

omp_get_wtick() double resolution of timer in seconds

© 2010-17 LRZ/RRZE Introduction to OpenMP 18

m
o

st
co

m
m

o
n

ly
u

se
d

su
b

se
t

Compiling and Running

 Compilation:

 Switch for OpenMP

• specific spelling is compiler-dependent

• toggles both directives and conditional compilation

• generates threaded code and links against OpenMP run time

 Execution:

 Output for example

program:

© 2010-17 LRZ/RRZE Introduction to OpenMP 19

export OMP_NUM_THREADS=4

./hello.exe

f90 –fopenmp –o hello.exe hello.f90Fortran

C cc –fopenmp –o hello.exe hello.c

by default, parallel regions
generate a team with 4 threads

Hello from 1

Hello from 3

Hello from 0

Hello from 2

ordering will vary between runs
(asynchronous execution)

serial compilation may
require stub library

Now: First exercise session

generic instructions ...

Simple work sharing,

Scoping of Data,

and Synchronization

Questions that now arise ...

 We know how to set up threading, but

• how can a large work item be divided up among threads?
(using the API for this works in principle, but is tedious)

• what happens with objects that already exist before the parallel region

starts?

 Example:

• matrix-vector multiplication r = M ∙ x i.e.

© 2010-17 LRZ/RRZE Introduction to OpenMP 21

M x r

𝑟𝑖 =

𝑗=1

𝑛

𝑀𝑖𝑗𝑥𝑗

A bunch of scalar
products

Concept of work sharing

 The idea is to split the work among threads

 Note that

• all elements of x must be available to all threads

• Matrix-Vector is often deployed iteratively r becomes x in the next iteration

 copying of data must be possible

 Consequence:

• need for variables that are accessible to all threads

 "data sharing" is often a prerequisite for "work sharing"

 a natural concept for a shared memory programming model

© 2010-17 LRZ/RRZE Introduction to OpenMP 22

M x r

Thread 0

Thread 1

Thread 2

Thread 3

Sharing variables across threads

 The „shared“ clause

• implies that scalar s and array a both are accessible to all threads

 Rules for concurrent accesses to a single object

• reads/writes or writes/writes by different threads are not permitted („data races“)

© 2010-17 LRZ/RRZE Introduction to OpenMP 23

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

real :: s, a(200)

s = …

!$omp parallel shared(s,a)

select case (me)

case (0)

a(1:100) = … * s

case (1)

a(101:200) = … * (-s)

end select

!$omp end parallel

s fork: T0 T1

s

s

join

a

thread ID

a

read

write

disjoint
parts of a
disjoint

parts of a

synchronization
guarantees

availability of a

Note: updates to array a are OK because disjoint parts of object are updated

shared
variables

Fortran

Data dependencies that prevent parallelization

 Flow dependency ("read after write", RAW):

 Anti-dependency ("write after read", WAR):

 Output dependency ("write after write", WAW):

© 2010-17 LRZ/RRZE Introduction to OpenMP 24

a = …
b = a
c = b

second instruction
cannot execute

concurrently with first

b = a
a = …
… = a + …

b = a
a2 = …
… = a2 + …

resolvable at cost of
introducing a new variable

("name dependency")

a = …
b = a
a = …

a = …
b = a
a2 = …

after name dependency
resolution, statements 1

and 3 can execute
concurrently.

Flow dependency remains.

Privatization

© 2010-17 LRZ/RRZE Introduction to OpenMP 25

e
x
e
c
u
ti
o
n

s
e
q
u
e
n
c
e

a[k] = …;

#pragma omp parallel \

shared(a)

{ int i; float s;

s = 0.0;

for (i=…;i<…;i++) {

s += a[i];

}

}

fork:

T0 T1 T2 T3

s0 s1 s2 s3

s0 s1 s2 s3

join: i, s go out of scope

 Block-local variables in C/C++

 are automatically private

shared private

a

a

a

thread-local copies of
s are updated

Note: I would expect the same behaviour for the
Fortran 2008 BLOCK construct, but this is currently
not specified in the OpenMP standard

example calculates
thread-individual sums

C

useless, from a practical point
of view. But bear with me -

we'll fix this, eventually

Privatization with masking

© 2010-17 LRZ/RRZE Introduction to OpenMP 26

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

real :: s

real :: a(:)

integer :: i

s = …

!$omp parallel private(s) &

!$omp shared(a)

s = 0.0

do i = …, …

s = s + a(i)

end do

!$omp end parallel

… = … + s

s
fork:

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists

(inaccessible)

s join: si become undefined

shared private

 Masking occurs

• for privatized variables
declared outside the
parallel region

 Loop variables

• are always private

Fortran
a

a

a

would expect value from before
parallel region to persist, but side

effects are possible.
For example, modification
via a pointer (avoid this!)

If s were shared, the program would have a race condition.

Code for work-shared Matrix-Vector multiplication:

The DO / FOR directive

 Serial

 OpenMP parallel

© 2010-17 LRZ/RRZE Introduction to OpenMP 27

DO k = 1, n

DO j = 1, n

r(j) = r(j) + a(j, k) * x(k)

END DO

END DO

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r[j] = r[j] + a[k*n+j] * x[k];

}

}

!$omp parallel

!$omp do

DO j = 1, n

DO k = 1, n

r(j) = r(j) + a(j, k) * x(k)

END DO

END DO

!$omp end do

… = r(…)

!$omp end parallel

Fortran

#pragma omp parallel

{

#pragma omp for

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r[j] = r[j] + a[k*n+j] * x[k];

}

}

… = r[…];

}

applies to j-loop

all threads synchronize

no race condition
against previous

definitions

C

implicit barrier

Further rules for work shared loops

 Slicing of iteration space

• „loop scheduling“

• default behaviour is

implementation dependent

• usually as equal as possible

chunks of largest possible size,

one chunk per thread

 In the example,

• slicing is done as shown some

slides earlier

• loop order was switched to avoid

having many synchronizations

 Additional clauses

• on both !$OMP DO and

!$OMP END DO will be

discussed in another talk

 Restrictions on loop structure

• Trip count must be computable at

entry to loop

• Disallowed:

C style loops modifying the loop

variable in the loop body, or using a

non-evaluable exit condition, or

Fortran DO WHILE loop;

• loop body must be a well-formed

structured block with single entry

and single exit point

 Note:

• directive (by default) acts only on

outermost enclosed loop

© 2010-17 LRZ/RRZE Introduction to OpenMP 28

actually, we're caught between a
rock and a hard place here ...

Avoiding race conditions (1):

mutual exclusion via the critical directive

© 2010-17 LRZ/RRZE Introduction to OpenMP 29

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

real :: s, stot

real :: a(:)

integer :: i

stot = 0.0

!$omp parallel private(s) &

!$omp shared(a,stot)

s = 0.0

!$omp do

do i = 1, size(a)

s = s + a(i)

end do

!$omp end do

!$omp critical

stot = stot + s

!$omp end critical

!$omp end parallel

fork:

T0 T1 T2 T3

s0 s1 s2 s3

s0 s1 s2 s3

join

 Only one thread at a time can execute a critical region

 others must wait code in region is effectively serialized

Fortran

stot

stot

synchronization
point

shared private

stot

stot

stot

stot

parallel array summation

updates are now
synchronized

Dealing with race conditions

through atomic updates

 Properties of atomic operations

• the atomic directive applies only for

a single update to a scalar shared

variable of intrinsic type

• this way of updating can be made

safe when executed concurrently

(explicit use of race condition!)

• otherwise, no synchronising effect

imposed by semantics

• if hardware atomic instructions are

available, likely to be more efficient

than a critical region

© 2010-17 LRZ/RRZE Introduction to OpenMP 30

float stot;

stot = 0.0;

#pragma omp parallel \

shared(a,stot)

{ int i; float s;

s = 0.0;

#pragma omp for

for (i=0;i<N;i++) {

s += a[i];

}

#pragma omp atomic update

stot += s;

}

C

parallel array summation
legacy notation
omp atomic

is also permitted

© 2010-17 LRZ/RRZE

The two kinds of memory in OpenMP

 Data accessed by can be

shared or private

 shared data – one instance

of an entity available to all

threads (in principle)

 private data – each per-

thread copy only available

to thread that owns it

 Data transfer transparent to

programmer

 Synchronization

necessary for accessing sha-

red data from different

threads to avoid race

conditions

 implicit barrier

 explicit directive

private

Shared

T0

T2

T1

T3

private

private

private

31Introduction to OpenMP

The firstprivate clause

 Extension of private:

• value of master copy is transferred to
private variables

• restrictions: not a pointer, not assu-
med shape, not a subobject, master
copy not itself private etc.

© 2010-17 LRZ/RRZE Introduction to OpenMP 32

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

real :: s

s = …

!$omp parallel &

!$omp firstprivate(s)

… = … + s

s = …

!$omp end parallel

… = … + s

s
fork:

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists

(inaccessible)

s join

shared private

uses value from
master copy

Fortran

now starting to wrap up ...

real :: s

s = …

!$omp parallel

!$omp do lastprivate(s)

do i = 1, n

s = …

end do

!$omp end do

… = … + s

!$omp end parallel

The lastprivate clause

 Extension of private:

• value from thread which executes last

update in the serial code is transferred

back to master copy

• restrictions similar to firstprivate

© 2010-17 LRZ/RRZE Introduction to OpenMP 33

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

s
fork:

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists

(inaccessible)

s join

shared private

 When to use?

• as little as possible

• legacy code

on work sharing

directive

s has value produced by
i-loop iteration n

Fortran

Data scoping defaults

 Scoping clauses can be

specified for

• parallel regions

• loop work sharing constructs

 Defaults

• apply if no clause is specified

• may vary by construct, but for

the above the following apply:

pre-existing objects are by

default shared, except for loop

variables, which are private.

objects declared inside the

lexical or dynamic scope of the

construct are private.

 Recommendation:

• specify a default(none) clause

on each directive that permits

scoping:

• this forces you to explicitly

consider and specify scoping for

all pre-existing objects

© 2010-17 LRZ/RRZE Introduction to OpenMP 34

Fortran

!$omp parallel default(none) &

!$omp shared(…) private(…) …

…

C

#pragma omp parallel default(none) \

shared(…) private(…) …

…

other values
are possible

this cannot be changed, of course Now: Second exercise session

Reductions

Concept of Reduction

 Seen in previous exercise:

• need for assembling partial

results across threads

• up to now: with critical region

 OpenMP reductions:

• sometimes more efficient -

implementation tunings like

reduce complexity from

O(nthreads) to O(log2(nthreads))

• always easier to understand and

maintain

© 2010-17 LRZ/RRZE Introduction to OpenMP 36

fork

join

ex
ec

u
ti

o
n

se
q

u
en

ce

want σ𝑖 𝑠𝑖 here
(not directly possible because s is private)

s0 s1 s2 s3 s4

si = si + … on each thread

new syntax needed ...

for associative and
commutative operations

 Example 1: Sum reduction in a parallel region

• value of s after end of parallel region: 𝑠incoming + σ𝑖 𝑠𝑖

 Note: multiple reductions are permitted

Reduction clause

© 2010-17 LRZ/RRZE Introduction to OpenMP 37

!$omp parallel reduction(+:x,y,z)

Fortran float s;

s = 2.2;

#pragma omp parallel reduction(+:s)

{

…

s += …;

}

… *= s;

C

s can be safely consumed due to
previous implicit barrier

private copy of s
operation consistent

real :: s

s = 2.2

!$omp parallel reduction(+:s)

…

s = s + …

!$omp end parallel

… = … * s

operation consistent

incoming value

!$omp parallel reduction(+:x,y) &

!$omp reduction(*,z)

private copy of s
(initial value 0.0)

s can be safely consumed due to
previous implicit barrier

 Example 2: Sum reduction in a work shared region

• value of s after end of worksharing region: 𝑠incoming + σ𝑖 𝑠𝑖

Reduction clause cont'd

© 2010-17 LRZ/RRZE Introduction to OpenMP 38

real :: s

s = 2.2

!$omp parallel shared(s)

…

!$omp do reduction(+:s)

do i = 1, n

…

s = s + …

end do

!$omp end do

… = … * s

!$omp end parallel

Fortran float s;

s = 2.2;

#pragma omp parallel shared(s)

{

…

#pragma omp for reduction(+:s)

for (i=0, i<n, i++) {

…

s += …;

}

… *= s;

}

C

s can be safely consumed due to
previous implicit barrier

s can be safely consumed due to
previous implicit barrier

private copy of sprivate copy of s
(initial value 0.0)

operation consistentoperation consistent

incoming value

Initial value of private reduction variables

Operation Initial value

+ 0

- 0

* 1

.and. .true.

.or. .false.

.eqv. .true.

.neqv. .false.

MAX -HUGE(X)

MIN HUGE(X)

IAND all bits set

IEOR all bits 0

IOR all bits 0

© 2010-17 LRZ/RRZE Introduction to OpenMP 39

 Depends on operation

 Supported intrinsic operations:

Operation Initial value

+ 0

- 0

* 1

& 0

| 0

^ 0

&& 1

|| 0

MAX smallest
representable value

MIN largest
representable value

Fortran C / C++

Array reductions

 Example

• reduces complete array b and m

elements of array a, elementwise

• uses regular Fortran array

section notation

• C example does the same as the

Fortran example

• OpenMP-defined sectioning

syntax (differs from Fortran):

© 2010-17 LRZ/RRZE Introduction to OpenMP 40

now also supported
in C/C++ (GCC 6.1)!

 General rules:

• array section must be a contiguous object (no strides permitted)

• dynamic objects must be associated / allocated, and the status must not be

modified for the private copies

real :: a(*)

real :: b(n)

!$omp parallel reduction(+:b) &

!$omp reduction(*:a(1:m))

…

Fortran float *a;

float b[N];

#pragma omp parallel \

reduction(+:b[:]) \

reduction(*:a[0:m])

…

C/C++

[lower bound : length][lower bound : upper bound]

pointee created
e.g. via malloc()

no deallocate/free within reduction region

must specify
upper bound

(assumed size)

same as
b[0:N]

User-defined reductions

 Using derived types

 And now we want to write

• but the compiler will refuse to build it („+“ not known to OpenMP) unless

further measures are taken ...

© 2010-17 LRZ/RRZE Introduction to OpenMP 41

typedef struct {

int numerator, denominator;

} Fraction;

Fortran
type :: fraction

integer :: numerator, denominator

end type

C

add overloaded operators +, -, * etc.
or even user-defined operators

type(fraction) :: af

af = …

!$omp parallel reduction(+:af)

…

af = af + …

!$omp end parallel

Fraction af;

af = …;

#pragma omp parallel \

reduction(+:af)

{

…

Fraction_sum(af, …);

}

provide functions to add, etc.

Declaring a user-defined reduction

 Combiner
• connects to operator implementation

Fortran: example defers to overloaded „+“, C: references „Fraction_add“

special OpenMP parameters omp_in, omp_out formally describe the two

operands for each operation needed

 Initializer

• implements initial value setting for private copies

Fortran: uses (overloaded) structure constructor, C similar

special OpenMP parameter omp_priv formally describes private copy

© 2010-17 LRZ/RRZE Introduction to OpenMP 42

!$omp declare reduction(+:fraction:omp_out=omp_out+omp_in) &

!$omp initializer(omp_priv=fraction(0,1))

Fo
rtran

#pragma omp declare reduction(+:Fraction: \

Fraction_add(omp_out,omp_in)) \

initializer(omp_priv=Fraction{0,1})

C

declare reduction(<op>:<type>:<combiner>)

initializer(omp_priv=...) or initializer(function(...))

More on Work Sharing

Loops and loop scheduling

Collapsing loop nests

Parallel sections

The schedule clause

 Default scheduling:

• implementation dependent

• typical: largest possible chunks of as-

equal-as-possible size

(„static scheduling“)

 User-defined scheduling:

chunk: always a non-negative integer.

If omitted, has a schedule dependent

default value

 1. Static scheduling
• schedule(static,10)

• minimal overhead (precalculate work

assignment)

• default chunk value: see left

 2. Dynamic scheduling

• after a thread has completed a

chunk, it is assigned a new one, until

no chunks are left

• synchronization overhead

• default chunk value is 1

© 2010-17 LRZ/RRZE Introduction to OpenMP 44

static
!$OMP do schedule(dynamic [,chunk])

guided

iteration space (threads color coded)

schedule(dynamic, 10)

10 iterations

both threads take long to complete

their chunk (workload imbalance)

Fortran

3. Guided scheduling

© 2010-17 LRZ/RRZE Introduction to OpenMP 45

 Size of chunks in dynamic schedule

• too small large overhead

• too large load imbalance

 Guided scheduling: dynamically vary chunk size.

• Size of each chunk is proportional to the number of unassigned iterations

divided by the number of threads in the team, decreasing to chunk-size.

(default: 1)

 Chunk size:

• means minimum chunk size (except perhaps final chunk)

• default value is 1

• both dynamic and guided scheduling are useful for handling poorly balanced

and unpredictable workloads.

iteration space

chunk == 7

OpenMP Scheduling of simple for loops

© 2010-17 LRZ/RRZE Introduction to OpenMP 46

OMP_SCHEDULE=static OMP_SCHEDULE=dynamic,10

OMP_SCHEDULE=static,10 OMP_SCHEDULE=guided,10

4. Deferred scheduling

 Decided at run time:

 auto (automatic scheduling)

• programmer gives

implementation the freedom to

use any possible mapping.

 runtime

• schedule is one of the above or

the previous two slides

• determine by either setting

OMP_SCHEDULE, and/or calling

omp_set_schedule()
(overrides env. setting)

• find which is active by calling

omp_get_schedule()

 Examples:

• environment setting:
export OMP_SCHEDULE=ꞌguidedꞌ

export OMP_NUM_THREADS=4

./myprog.exe

• call to API routine:

© 2010-17 LRZ/RRZE Introduction to OpenMP 47

auto
!$OMP do schedule(runtime)

omp_set_schedule(
omp_sched_dynamic,4);

#pragma omp parallel
{
#pragma omp for schedule(runtime)

for (…) {
…

}
}

C

Fortran

Final remarks on scheduling

 Please check your compiler documentation for implementation-

dependent aspects

 An implementation may add its own scheduling algorithms

• code using specific scheduling may be at a disadvantage

• recommendation: Allow changing of schedule during execution

 If runtime scheduling is chosen and OMP_SCHEDULE is not set

• execution starts with implementation-defined setting

© 2010-17 LRZ/RRZE Introduction to OpenMP 48

Collapsing Loop nests

 Example: Two nested loops

• assume kmax is 2, and jmax is 3

• then the workshared loop will
scale to at most 2 threads

 Therapy:

• use a collapse clause to improve
scaling

• this flattens two (or more) loop
nests into a single iteration space

 Improved example:

• slicing is performed on the virtual
index Icoll:

 Restrictions:

• rectangular iteration space

• CYCLE/continue in innermost
loop only

© 2010-17 LRZ/RRZE Introduction to OpenMP 49

!$OMP do

do k=1, kmax

do j=1, jmax

:

end do

end do

!$OMP end do

!$OMP do collapse(2)

do k=1, kmax

do j=1, jmax

:

end do

end do

!$OMP end do

specify nesting level
to collapse

Icoll 0 1 2 3 4 5

J 1 2 3 1 2 3

K 1 1 1 2 2 2

sequenced by
serial

execution
order

Fortran

Collecting load imbalances

at synchronization points

 Example:

 Assumptions on code following the synchronization point:

• does not involve tsum

• has a load imbalance that is inverse to that of preceding code block

© 2010-17 LRZ/RRZE Introduction to OpenMP 50

!$omp parallel

!$omp do reduction(+:tsum)

do k=1, kmax

tsum = tsum + foo(a, b, c)

end do

!$omp end do

…

… = tsum …

!$omp end parallel
ti

m
e

T0 T1 T2 T3

waiting in barrier

barrier
completed by

all threads

implicit
barrier

actively executing

Fortran

T0 performance
slows all others

nowait clause and explicit barrier directive

 Reduce load imbalance

• by removing the barrier via the

nowait clause

 Assure code correctness

• may require explicit barrier directive

before tsum (or other modified

shared variable) is accessed

© 2010-17 LRZ/RRZE Introduction to OpenMP 51

!$omp parallel

!$omp do reduction(+:tsum)

do k=1, kmax

tsum = tsum + foo(a, b, c)

end do

!$omp end do nowait

…

!$omp barrier

… = tsum …

!$omp end parallel

ti
m

e

T0 T1 T2 T3

waiting in barrier

barrier
completed by

all threads

no barrier

actively executing DO

actively executing post-DO code

code not involving tsum

Fortran

#pragma omp for reduction(+:tsum) \

nowait

{ … } C

Parallel sections

 Non-iterative work-sharing construct

• distribute a static set of structured blocks

• each block is executed exactly once by one of the threads in the team

 Allowed clauses on sections:

• private, first/lastprivate, reduction, nowait

© 2010-17 LRZ/RRZE Introduction to OpenMP 52

!$OMP sections

!$OMP section

:

:

:

!$OMP section

:

:

:

…

!$OMP end sections

code block 1

by thread 0

code block 2

by thread 1

synchronization

#pragma omp sections

#pragma omp section

{

:

}

#pragma omp section

{

:

}

…

// end sections

Fortran C

Parallel sections cont'd

 Restrictions:

• section directive must be within lexical scope of sections directive, and

directly enclosed (no interleaved language construct is permitted)

• sections directive binds to innermost enclosing parallel region

→ only the threads executing the binding parallel region participate in the

execution of the section blocks and the implicit barrier (if not eliminated with

nowait)

 Scheduling to threads

• implementation-dependent

• if there are more threads than code blocks, excess threads wait at synchro-

nization point

 In modern OpenMP,

• tasking provides a much more flexible and scalable way to implement this

and much more general patterns will be treated tomorrow

© 2010-17 LRZ/RRZE Introduction to OpenMP 53

single directive and copyprivate clause

 Execution:

• only one thread of the team executes

the statements in the block

• others go to the end of the block

© 2010-17 LRZ/RRZE Introduction to OpenMP 54

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

fork:

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3

persists

(inaccessible)

s join

shared private

s2
copyprivate(s)
→ Broadcast

parallel

 Synchronization

• of all threads at end of single

block

end parallel

single

end single

thread T2

arrives first

float s;

s = …;

#pragma omp parallel private(s)

{

#pragma omp single \

copyprivate(s)

{

…;

s = …;

} // end single

… = … + s;

} // end parallel

single directive syntax

 Note:

• update of shared variables inside a single block is safe against subsequent

accesses, due to synchronization at the end of that block

© 2010-17 LRZ/RRZE Introduction to OpenMP 55

real :: s

s = …

!$omp parallel private(s)

!$omp single

…

s = …

!$omp end single &

!$omp copyprivate(s)

… = … + s

!$omp end parallel

Fortran

C

block executed by
one thread only

Work sharing with single:

the nowait clause

 Implement a self-written work scheduler

• one possible scheme (of many ...), sketched only:

• not the most efficient method
 preferably use tasking (covered tomorrow); the single construct will be

relevant in this context

© 2010-17 LRZ/RRZE Introduction to OpenMP 56

…

!$omp parallel

do iw=1, nwork

!$omp single

…

!$omp end single nowait

…

!$omp barrier

end do ! iw

!$omp end parallel

produce work for
iteration 1

produce work for iteration
iw+1 (using a non-trivial
amount of time e.g. I/O)

other threads continue
and work on iteration iw

Fortran

Global variables

and threading

Global variables and their default scope

 Examples:

 Such variables by default have shared scope

 The same applies for variables with the SAVE (Fortran) or static (C)

attribute

 Implication:

• code using such memory is often not thread-safe, unless mutual

exclusion is used for accessing the objects

© 2010-17 LRZ/RRZE Introduction to OpenMP 58

module my_globals

implicit none

integer :: my_count

real, allocatable :: a(:)

…

end module

Fortran

REAL :: A(1000)

INTEGER :: MY_COUNT

COMMON / MY_GLOBS / A, MY_COUNT

FORTRAN 77

#define NMAX 1000

float a[NMAX];

void my_func() {

extern float a;

…

}

C

Privatizing global objects

 When program semantics requires that each thread work on its

own copy, privatization is necessary

• not exactly the same as private variables separate syntax needed

 C:

• #pragma omp threadprivate(list)

• list is a comma-separated list of file-scope, namespace-scope, or

static block-scope variables that do not have incomplete types

 Fortran:

• !$omp threadprivate(list)

• list is a comma-separated list of named variables and named common

blocks. Common block names must appear between slashes.

 Objects start out with master copy existing only

• thread-private copies (with undefined values) spring into existence

when the first parallel region is started

© 2010-17 LRZ/RRZE Introduction to OpenMP 59

Further properties of threadprivate storage

 Copyin clause

• broadcasts object values from

master copy to thread-

individual copies

• works analogous to the

firstprivate clause

 Subsequent parallel regions:

• thread-individual copies retain

their values (by thread) if

1. second parallel region not

nested inside first

2. same number of threads is

used

3. no dynamic threading is

used

Note: none of the potential viola-

tions of the above three rules

are dealt with in this course

© 2010-17 LRZ/RRZE Introduction to OpenMP 60

allocate(a(ndim))

a(:) = …

!$omp parallel copyin(a)

… = a(i) + …

a(i) = …

!$omp end parallel

Fortran

uses value set on
master

Recommendations:
• Avoid using global variables in the context of threading
• Use object-based design instead

... useful varia

© 2010-17 LRZ/RRZEIntroduction to OpenMP 61

The master construct

 Only thread zero (from the current team) executes the enclosed

code block

 there is no implied barrier either on entry to, or exit from, the master

construct. Other threads continue without synchronization

 Notes:

• Not all threads must reach the construct; if the master thread does not reach

it, it will not be executed at all

• this is not a work sharing construct, it only serves for execution control

© 2010-17 LRZ/RRZE Introduction to OpenMP 62

!$omp master

block

!$omp end master

#pragma omp master

{ block }

Fortran C

Combined constructs

 Certain combinations of constructs can be fused

• the result is a single construct that behaves as if the two individual

ones were tightly nested

• may be more efficient due to reduced synchronization needs

• is often easier to read

 Example: joint "parallel do" (C has "parallel for" here ...)

• both variants have the same semantics

© 2010-17 LRZ/RRZE Introduction to OpenMP 63

!$omp parallel

!$omp do

do i=1, n

…

end do

!$omp end do

!$omp end parallel

!$omp parallel do

do i=1, n

…

end do

!$omp end parallel do

Fo
rt

ra
n

Conditional parallelism

 Put an "if" clause on a

parallel region

• specify a scalar logical

argument

• may require manual tuning for

properly dealing with thread

count dependency etc.

 Specific uses:

1. execute serially for small

problem sizes

(parallel overhead may kill

performance)

2. suppress nested parallelism in

a library routine:

© 2010-17 LRZ/RRZE Introduction to OpenMP 64

!$omp parallel if (n > 8000)
…

!$omp end parallel

#pragma omp parallel if \
(! omp_in_parallel())

{
…

}

process work
item of size O(np)

Fortran

logical / int function
from OpenMP run time:

are we already parallel in
executing scope?

Now: Third exercise session

OpenMP 4.0

SIMD (vectorization) directives

Optimization of innermost

loop structures

Acknowledgment due to M. Klemm (Intel)

SIMD - single instruction multiple data

 Example:

• Sandy Bridge vector unit

• 256 Bit SIMD

• addition of 8 Byte words

 Instruction capability

• 1 vector add and 1 vector mult

per cycle theoretical Peak 8

Flops/cycle (double precision)

 LD/ST issue capability for

Sandy Bridge

• 4 Words LD/cycle

• 4 Words ST/(2 cycles)

• performance boost depends on

algorithm, including its temporal

locality properties

 More recent processors may

have more advanced units

• more SIMD lanes

• additional vector operations

© 2010-17 LRZ/RRZE Introduction to OpenMP 66

R0 R1 R2

+

+

+

+

6
4

 b
it

D
P

 w
o

rd
2

5
6

 B
it
 r

e
g
is

te
rs

A + B = C
4 elements with 1 AVX instruction

Before OpenMP 4.0 …

 … programmers had to rely on auto-vectorization,

• or use non-portable extensions

 programming models (e.g. Intel Cilk Plus)

 intrinsics (e.g. _mm_add_pd())

 compiler pragmas

which may or may not get ignored by the compiler

© 2010-17 LRZ/RRZE Introduction to OpenMP 67

#pragma omp parallel for
#pragma vector always
#pragma ivdep
for (int i=0; i<N; i++) {
a[i] = b[i] + …;

}

C

OpenMP SIMD loop construct

 Vectorize a loop nest

• cut into chunks that fit into a SIMD vector register

• without parallelization of the loop body

 Syntax

© 2010-17 LRZ/RRZE Introduction to OpenMP 68

#pragma omp simd [clause[[,] clause], …]

for loops

!$omp simd [clause[[,] clause], …]

do loops

[!$omp end simd] Fortran

C

Simple example

 Scalar product

 Converts serial element-wise execution

to vectorized one:

© 2010-17 LRZ/RRZE Introduction to OpenMP 69

void sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp simd reduction(+:sum)

for (int k=0; k<n; k++) {

sum += a[k] * b[k];

}

vectorization

architecture-specific
vector length

C

Data Sharing Clauses

 Existing ones adapted to SIMD-style execution

• required for more complex loop bodies

 private (var-list)

create uninitialized vectors for variables in var-list

(loop iteration variables are private by default)

 lastprivate (var-list)

copy last iteration value to variable at the end of the construct

 reduction (op:var-list)
create private copies for variables in var-list and apply the reduction
operation op at the end of the construct

© 2010-17 LRZ/RRZE Introduction to OpenMP 70

42 ? ? ? ?

4212 5 8 17 +

Loop clauses (1)

 safelen (length)

• maximum distance between

iterations that can run

concurrently without breaking

any dependencies

 linear (list[:linear-step])

• produce private copy of a variable that is in linear relationship with the

loop iteration variable: xi = xstart + (i – istart) * linear-step

© 2010-17 LRZ/RRZE Introduction to OpenMP 71

#pragma omp simd safelen(5)
for (int k=0; k<n; k++) {
b[k] = a[k] * b[k-j];

}

• programmer assures j > 5
• compiler can use a vector

length of at most 6

Loop clauses (2)

 aligned (list[:alignment])

• specifies that variables in the list are aligned, either by the specified

integer value of alignment in units of bytes, or in implementation-

specific manner

 collapse(n)

• collapse iteration space of a SIMD loop nest

© 2010-17 LRZ/RRZE Introduction to OpenMP 72

SIMD worksharing construct

 Parallelize and vectorize a loop nest

• distribute iteration space of loops across threads

• subdivide loop chunks to be processed in SIMD registers

 Syntax

© 2010-17 LRZ/RRZE Introduction to OpenMP 73

#pragma omp for simd [clause[[,] clause], …]
for loops

!$omp do simd [clause[[,] clause], …]
do loops
[!$omp end do simd]

Fortran

C

Scalar product again …

© 2010-17 LRZ/RRZE Introduction to OpenMP 74

void sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp for simd reduction(+:sum)
for (int k=0; k<n; k++) {
sum += a[k] * b[k];

}

vectorization

Thread 0 Thread 1 Thread 2
parallelization

assume invocation by
all threads executing in a

parallel region

Function vectorization

 Function call inside SIMD region Therapy: explicitly declare for

use in vectorized loops

• C/C++ syntax

• Fortran syntax

• clauses are also supported

• causes generation of multi-

version code by the compiler

© 2010-17 LRZ/RRZE Introduction to OpenMP 75

float min(float a, float b) {
return a < b ? a : b;

}

float distsq(float x, float y) {
return (x – y)*(x – y);

}

void example() {
#pragma omp for simd
for (i=0; i<N; i++) {
d[i] = min(
distsq(a[i],b[i]),c[i]);

}
}

may fail if functions
outside file scope

#pragma omp declare simd
function def. or decl.

!$omp declare simd &
!$omp (proc-name-list)

Code generation for SIMD functions

 vectorized versions of generated functions are shown

© 2010-17 LRZ/RRZE Introduction to OpenMP 76

#pragma omp declare simd
float min(float a, float b) {
return a < b ? a : b;

}

#pragma omp declare simd
float distsq(float x, float y) {
return (x – y)*(x – y);

}

void example() {
#pragma omp for simd
for (i=0; i<N; i++) {
d[i] = min(
distsq(a[i],b[i]),c[i]);

}
}

vec8 min_v(vec8 a, vec8 b) {
return a < b ? a : b;

}

vec8 distsq_v(vec8 x, vec8 y) {
return (x – y)*(x – y);

}

vd = min_v(
distsq_v (va, vb), vc);

no SIMD directives permitted
inside vectorized functions!

Clauses applicable for declare simd

 simdlen (length)

generate function to support supplied vector length

 uniform (argument-list)

argument has a constant value between iterations of invoking loop

 inbranch vs. notinbranch

function always / never called from inside an if statement

 linear (list[:linear-step])

 aligned (list[:alignment])

 reduction (op:var-list)

© 2010-17 LRZ/RRZE Introduction to OpenMP 77

as before

Final remarks on SIMD

 Case studies on vectorizable applications:

• show performance improvements of factor 1.5 – 4.3 compared to

auto-vectorized code

• you may not be as successful, but a 20% performance improvement

for 45 min optimization work is also quite nice

 Resolution of dependencies

• may sometimes involve code restructuring and splitting of loops

 Further features available: combination of device control

directives with SIMD

• not discussed in this talk

© 2010-17 LRZ/RRZE Introduction to OpenMP 78

Now: Fourth exercise session

More on Synchronization

and Correctness

Memory model

Identifying correctness problems

Named critical regions

Atomic operations

Mutual exclusion with locks

Concurrent updates on shared variables

 Scenario:

• the above is non-conforming

• data race causes unpredictable results to be produced

 Reason:

• different threads can have different views on same variable: temporary view

(in-register value) vs. memory value

• these two views become inconsistent when a thread modifies the variable

© 2010-17 LRZ/RRZE Introduction to OpenMP 80

real :: a

a = 0

!$omp parallel shared(s) num_threads(2)

a = a + 1

write(*,'(''a on thread ',i0,' is ',i0)') &

omp_get_thread_num(), a

!$omp end parallel

write(*,'(''a after construct is ',i0)') a

Fortran

Thread 0 Thread 1

1 1

2 1

1 2

possible results
for first write

possible results for second
write: 1 or 2

fix number of threads
for parallel execution

© 2010-17 LRZ/RRZE

Memory consistency rules

 Flush Operation

• is performed on a set of (shared)

variables or on the whole thread-

visible data state of a program

• discards temporary view:

 modified values are forced to

cache/memory (requires exclu-

sive ownership)

 next read access must be

from cache/memory

• further memory operations only

allowed after all involved threads

complete flush:

 restrictions on memory in-

struction reordering (by compiler)

 Ensure consistent view of

memory:

• Assumption: want to write a data

item with one thread, read it with

another one

• Order of execution required:

1. thread A writes to shared variable

2. thread A flushes variable

3. thread B flushes same variable

4. thread B reads variable

81Introduction to OpenMP

• The challenge is to assure step 3
happens after step 2

• OpenMP synchronization semantics
assure this as well as the necessary
flush operations (if correctly used)

!$omp flush [list]
recommend to avoid
use of explicit flushes

But it is possible to make mistakes ...

 Example: update via critical region

• mutual exclusion is only assured for the statements inside the block

i.e., subsequent threads executing the block are synchronized against each

other

 If other statements access the shared variable, you may be in

trouble:

© 2010-17 LRZ/RRZE Introduction to OpenMP 82

!$omp parallel shared(x) …
:

!$omp critical
x = x + y

!$omp end critical
…
a = f(x, …)

!$omp end parallel

Race on read to x.

A barrier is required before this

statement to assure that all threads

have executed their atomic updates

 OpenMP correctness analysis:

• no special compiler option needed (except perhaps –g)

• GUI also for Linux-based system

 Identify memory issues in addition to threading issues

• leaks, dangling pointers etc.

 Start up GUI

• prerequisites: set up environment and possibly stack limit

• then, invoke the GUI with

• command line inspxe-cl is also available, but will not be discussed

in this talk

© 2010-17 LRZ/RRZE

Using Intel Inspector on x86-based systems

inspxe-gui &

Introduction to OpenMP 83

© 2010-17 LRZ/RRZE

Starting up the GUI start a new project

enter project name
then press „create project“

Introduction to OpenMP 84

 Needed information:

• executable name
(must have been built with

OpenMP)

• executable path
(autocompleted)

• arguments if needed

by executable

 Further advanced

settings are possible

© 2010-17 LRZ/RRZE

Configure the project

Introduction to OpenMP 85

© 2010-17 LRZ/RRZE

Run Analysis: New Analysis Result

Select analysis mode, then start

here: Threading Error Analysis

locate deadlocks and data races

note potentially high performance

impact

Introduction to OpenMP 86

© 2010-17 LRZ/RRZE

Error indication by severity

Note:
requires debug

option for

compiled code

a race condition
was identified

Introduction to OpenMP 87

© 2010-17 LRZ/RRZE

Source window: conflicting reads/writes

Introduction to OpenMP 88

Critical regions: consider multiple updates

a) same shared variable

critical region is global OK

b) different shared variables

mutual exclusion not required unnecessary loss of performance

© 2010-17 LRZ/RRZE Introduction to OpenMP 89

subroutine foo()
!$omp critical
x = x + y

!$omp end critical

thread 0

subroutine bar()
!$omp critical
x = x + z

!$omp end critical

thread 1

subroutine foo()
!$omp critical
x = x + y

!$omp end critical

subroutine bar()
!$omp critical
w = w + z

!$omp end critical

Fo
rt

ra
n

Fo
rt

ra
n

Named critical regions

 Solution:

• use a named critical

mutual exclusion only if same name is used for critical regions acting on

different code blocks

 Note: The atomic directive is bound to the updated variable

 problem does not occur when such a directive is used.

© 2010-17 LRZ/RRZE Introduction to OpenMP 90

subroutine foo()
!$omp critical (foo_x)
x = x + y

!$omp end critical (foo_x)

subroutine bar()
!$omp critical (foo_w)
w = w + z

!$omp end critical (foo_w)Fo
rt

ra
n

More variants of atomic operations

 Assumption:

• v, w private or shared scalar

variables

• x a shared scalar variable

 Atomic read:

 Atomic write:

 Atomic capture

• different ordering of statements

also allowed

 Not atomic:

• evaluation of expressions or

updates on v

 Atomic update:

• !$omp atomic update

• same as „traditional“ atomic

directive

© 2010-17 LRZ/RRZE Introduction to OpenMP 91

#pragma omp atomic read
v = x;

#pragma omp atomic write
x = v;

!$omp atomic capture
v = x
x = x <op> w

!$omp end atomic

Atomic operations require care

 Atomic directives

• permit the programmer to

explicitly program with race

conditions

 Rationale for use:

• performance

• tailored synchronizations will

usually require explicit flush

operations (not discussed)

 Programmer's responsibility

• to assure that no inconsistencies

result must evaluate results

from all possible interleavings of

execution by different threads

• tools might not be able to

observe problems

 Synchronization effect

• apart from the value change on

the variable itself being visible,

no synchronization is done

• sequentially consistent atomic

operations:

perform a flush on all thread-

visible variables (but no

synchronization otherwise).

Semantics are the same as for

such operations in the C++11

standard

© 2010-17 LRZ/RRZE Introduction to OpenMP 92

#pragma omp atomic \
seq_cst update

x = x + v;

© 2010-17 LRZ/RRZE

 Statements must be within body of a loop

• threads do work with statements in O2 ordered as in sequential
execution

• requires ordered clause on enclosing loop worksharing directive

• only effective if code is executed in parallel

• only one ordered region per loop

 Execution scheme:

!$OMP do ordered
do I=1,N

O1
!$OMP ordered

O2
!$OMP end ordered

O3
end do
!$OMP end do

The ordered clause and directive

i=n1 i=n1+1 i=n2 i=n2+1 ...

O1 O1

O1O2

O2

O2

O2

O3

O3

O3
O3

Barrier

Exe
cu

tio
n

se
q

u
en

ce

...

93Introduction to OpenMP

ni is the last
iteration in chunk i

© 2010-17 LRZ/RRZE

Two applications of ordered

 Loop contains recursion

• dependency requires
serialization

• only small part of loop (otherwise
performance issue)

#pragma omp for ordered

for (i=1;i<n;i+) {

… // large block

#pragma omp ordered

{ a(i) = a(i-1)+…; }

} // end loop

 Loop contains I/O

• it is desired that content of output

(file) be consistent with serial

execution

!$OMP do ordered
do I=1,N
… ! calculate a(:,I)
!$OMP ordered
write(unit, …) a(:,I)

!$OMP end ordered
end do
!$OMP end do

94Introduction to OpenMP

FortranC

© 2010-17 LRZ/RRZE

Mutual exclusion with locks

A shared lock variable can be used to implement
specifically designed synchronization mechanisms

• mutual exclusion bound to objects more

flexible than critical regions

95Introduction to OpenMP

OpenMP lock variables

 Two variants of locks exist:

• simple locks

• nestable locks (will not be dealt with in detail in this course)

 Declaration of a lock variable

© 2010-17 LRZ/RRZE Introduction to OpenMP 96

use omp_lib

…

integer(omp_lock_kind) :: a_lock

integer(omp_nest_lock_kind) :: a_nestable_lock

#include <omp.h>

…

omp_lock_t a_lock;

omp_nest_lock_t a_nestable_lock;

Fortran

C

typically an integer capable of
representing an adress

Preparing locks for use

 The initial state of a lock variable is "uninitialized"

• i.e. it is not actually associated with a lock variable

 Need to invoke an initialization function on it before it is used

• subroutines / void functions provided in OpenMP run time

• Fortran: replace *lock argument by integer of appropriate kind

© 2010-17 LRZ/RRZE Introduction to OpenMP 97

Name Purpose

omp_init_lock(omp_lock_t *lock) initializes an uninitialized lock; the lock variable
has the state "unlocked" on return

omp_destroy_lock(omp_lock_t *lock) destroys a lock that has the state "unlocked".

omp_init_nest_lock
(omp_nest_lock_t *lock)

initializes an uninitialized nestable lock; the lock
variable has the state "unlocked" on return, and
its nesting count is zero.

omp_destroy_nest_lock
(omp_nest_lock_t *lock)

destroys a nested lock that has the state
"unlocked".

Lock ownership

 An initialized OpenMP lock can be in one of the states unlocked, or locked

 The (unique) thread that has successfully acquired the lock is said to own

the lock

 Only the thread that owns the lock can release it, returning it to the

unlocked stage.

 Notes:

• state combinations not described in the table are not permitted (e.g., a thread

trying to unset a lock it does not own)

• the lock variable must be shared in the calling scope

© 2010-17 LRZ/RRZE Introduction to OpenMP 98

Name Purpose

omp_set_lock(omp_lock_t *lock) If the lock is already locked by another thread,
block until the state of the lock changes. If the
lock is in the state unlocked, acquire it, setting it
to the locked state, and continue execution.

omp_unset_lock(omp_lock_t *lock) Release the lock that is owned by the executing
thread.

Simplest possible example

 Usage pattern analogous to named critical region

• programmer is responsible for relationship between lock and objects

protected by it

© 2010-17 LRZ/RRZE Introduction to OpenMP 99

use omp_lib

integer(omp_lock_kind) :: lock

call omp_init_lock(lock)

…

!$omp parallel

call omp_set_lock(lock)

…

call omp_unset_lock(lock)

…

!$omp end parallel

call omp_destroy_lock(lock)

starts in unlocked state

#include <omp.h>

omp_lock_t lock;

omp_init_lock(&lock);

#pragma omp parallel

{

omp_set_lock(&lock);

…

omp_unset_lock(&lock);

…

}

omp_destroy_lock(&lock);

only one thread at a
time gets to play
with the red balls

starts in unlocked state

only one thread at a
time gets to play
with the red balls

release resourcesrelease resources

Fortran C

Non-blocking attempt at ownership

 Function call signature

• if the lock is already locked by another thread, return "false"

• if the lock has the state unlocked, acquire it (setting the state to locked) and

return the value "true".

 Permits implementing additional concurrency

© 2010-17 LRZ/RRZE Introduction to OpenMP 100

logical function omp_test_lock(lock) Fortran

int omp_test_lock(omp_lock_t *lock) C

!$omp parallel

do while (.not. omp_test_lock(lock))

…

end do

…

call omp_unset_lock(lock)

!$omp end parallel

do stuff unrelated
to the red balls

#pragma omp parallel

{

while (! omp_test_lock(&lock)) {

…

}

…

omp_unset_lock(&lock);

}

play with the red
balls

play with the red
balls

do stuff unrelated
to the red balls

Fortran C

Final notes on locking

 Potential performance issues

• locks are a relatively expensive synchronization mechanism

• lock contention (algorithm dependent)

 Programming issues

• easy to produce deadlock (non-composable against other constructs)

 Nestable locks

• extended semantics for repeated locking (additional nesting count)

 Locks with hints (OpenMP 4.5)

• programmer can specify expected usage pattern, but the actual effect

is implementation dependent

• this is an advanced topic, and success may require special hardware

features (transactional processing)

© 2010-17 LRZ/RRZE Introduction to OpenMP 101

Synchronization overhead

 Syncbench from the EPCC OpenMP microbenchmarks is used

• evaluates the overheads for all synchronizing constructs

systematically

• overhead is what remains even if no workload is processed

 Showing results as a function of thread count

• alternatively, depending on node architecture and used compiler

 Note order of magnitude

• a microsecond typically corresponds to a couple of thousand CPU

cycles

© 2010-17 LRZ/RRZE Introduction to OpenMP 102

Thread count dependence

© 2010-17 LRZ/RRZE Introduction to OpenMP 103

0,01 0,05 0,09 0,08 0,07 0,07
0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

Westmere 4-socket node overhead with ICC 15

Parallel Barrier Critical / Lock Atomic Reduction

o
ve

rh
ea

d
in

 µ
s 2 sockets

used

Architecture dependence

© 2010-17 LRZ/RRZE Introduction to OpenMP 104

0,06 0,19 0,08 0,13
0,00

2,00

4,00

6,00

8,00

10,00

12,00

Westmere-EX (20) AMD Magny Cours (16) Sandy Bridge EP (16) Haswell EP (28)

2-socket results with ICC 15

Parallel Barrier Critical / Lock Atomic Reduction

o
ve

rh
ea

d
in

 µ
s

Compiler dependence

© 2010-17 LRZ/RRZE Introduction to OpenMP 105

0,40
1,10

0,070,06 0,06 0,13
0,00

5,00

10,00

15,00

20,00

25,00

30,00

ICC 15 GCC 6.1 PGCC 15

Westmere 20 thread results

Parallel Barrier Lock Atomic Reduction

o
ve

rh
ea

d
in

 µ
s

How to deal with synchronization overhead

 Therapy 1:

• use the right compiler

• note: x86 does not (yet) support hardware synchronization

 Therapy 2:

• execute serially for small problem sizes

• conclude parallel execution if not needed any more

 Therapy 3 (may be most effective):

• reduce the synchronization requirements of your algorithm

• Examples: nowait clause, or extend parallel regions to reduce

number of forks/joins

© 2010-17 LRZ/RRZE Introduction to OpenMP 106

Now: Fifth exercise session

Tasking

Work sharing for irregular problems,

recursive problems

and information structures

Acknowledgement due to L. Meadows/T. Mattson (Intel)

for their SC08 slides

Processing information structures

 Example: linked list

 Data layout

• each list item may carry a different payload

• parallel processing on a per-list-item basis load imbalance is likely

to occur

• the list as a whole is intended to be shared (i.e. no copies of payload

should be created during processing)

© 2010-17 LRZ/RRZE Introduction to OpenMP 108

type :: list

type(list), pointer :: next => null

real, allocatable :: data(:)

end type

Fortran

typedef struct {

List *next;

real *data; int n;

} List;

C

∅

data component
of first list item

Serial processing of a linked list

 Not a regular loop in the sense of OpenMP

• cannot use work sharing constructs even though potential concurrency is

obvious.

 In general:

• API calls for processing information structures often are recursively invoked

 OpenMP 2.5 offers no means of parallelization for this situation, although

concurrency can be formally exposed.

© 2010-17 LRZ/RRZE Introduction to OpenMP 109

subroutine process_list(head)

type(list), target :: head

type(list), pointer :: p

p => head

do while (associated(p))

call do_work(p%data)

p => p%next

end do

end subroutine Fortran

void process_list(list *head) {

list *p = head;

while (p) {

do_work(p->data, p->n);

p = p->next;

} C

What is a task?

 Aim: make OpenMP worksharing more flexible

 Semantics:

• When a thread encounters a task construct, a task is generated from the

code of the associated structured block.

• Data environment of the task is created (according to the data-sharing

attributes, defaults, …)

• The encountering thread may immediately execute the task, or defer its

execution.

In the latter case, any thread in the team may be assigned the task.

 Introduced with OpenMP 3.0

• additional features and improvements added in later versions of the standard

© 2010-17 LRZ/RRZE Introduction to OpenMP 110

Concept of tasking

 If free resources are available,

• expect task to start execution immediately

 Task binds to innermost enclosing parallel region

© 2010-17 LRZ/RRZE Introduction to OpenMP 111

fork

ex
ec

u
ti

o
n

se
q

u
en

ce

pragma omp task [clause,…]

a thread (any one)
encounters a
task directive

join

{
structured-block

}

OpenMP scheduler assigns
execution of block to a free resource

block & data put
into queue

task queue (a limited resource)

illustration of deferred tasks

Simplest example: code sections

© 2010-17 LRZ/RRZE Introduction to OpenMP 112

program code_sections

use mod_functions

implicit none

real :: a, b

integer :: n = …

!$omp parallel

!$omp master

!$omp task

a = function_1(n)

!$omp end task

!$omp task

b = function_2(n)

!$omp end task

!$omp end master

!$omp end parallel

write(*,*) a + b

end program

concurrently executed

int main() {

float a, b;

int n = …;

#pragma omp parallel

#pragma omp master

{

#pragma omp task

{ a = function_1(n); }

#pragma omp task

{ b = function_2(n); }

}

printf("%f\n", a + b);

}

no synchronization

(different than single)

concurrently executed

if sufficiently many

threads available

a and b have

shared scope

only thread 0

creates tasks

Fortran C

threads waiting here

will be put to work

Data scoping in task regions

 Recommendation:

• use a default(none) clause

on all task directives

• explicitly specify the scoping for

each data object

© 2010-17 LRZ/RRZE Introduction to OpenMP 113

int main() {

float a, b;

int n, i;

a = …; n = …;

#pragma omp parallel private(b)

b = …;

#pragma omp master

#pragma omp task

{

for (i=0;i<n;i++) {

b = b + …;

… = a + foo(i);

}

}

}

C

a is shared (because it is

shared in all lexically

enclosing constructs)

i is private

(loop index)

b is

firstprivate

default scopings

Tasked linked list

 Need to have local pointer p firstprivate:

• avoid race condition on shared original (vs. subsequent update)

• assure that association status is copied to thread executing the task region

© 2010-17 LRZ/RRZE Introduction to OpenMP 114

subroutine process_list(head)

type(list), target :: head

type(list), pointer :: p

!$omp parallel

!$omp single shared(p)

p => head

do while (associated(p))

!$omp task firstprivate(p)

call do_work(p%data)

!$omp end task

p => p%next

end do

!$omp end single nowait

!$omp end parallel

end subroutine Fortran

void process_list(list *head) {

list *p = head;

#pragma omp parallel

{

#pragma omp single \

nowait shared(p)

{

while (p) {

#pragma omp task firstprivate(p)

{ do_work(p->data, p->n); }

p = p->next;

}

} // end single

} // end parallel C

only one thread
creates tasks

only one thread
creates tasks

synchronization
here all tasks

done

synchronization
here all tasks

done

task region (includes
procedure execution)
task region (includes
procedure execution)

The „if“ clause on a task directive

 When „if“ argument evaluates to „false“,

• the parent task must suspend execution until the encountered task region

has been completed (an „undeferred task“). However, it is not fully clear from the

standard whether the child task must be executed by the same thread.

• but otherwise semantics are the same (with respect to data environment and

synchronization) as for a „deferred“ task

 User-directed optimization („task pruning“)

• avoid overhead for deferring small task

• avoid creating too many tasks (resource limits!)

• cache locality / memory affinity are likely to change

© 2010-17 LRZ/RRZE Introduction to OpenMP 115

#pragma omp task firstprivate(p) if (sizeof(p->data) > threshold)

{ do_work(p->data); }

C

!$omp task firstprivate(p) if (size(p%data) > threshold)

call do_work(p%data)

!$omp end task

Fo
rtran

Recursive tasking

 Divide and conquer

• initial function invocation in a

parallel region, usually from a

single thread

 Previous example:

• only sibling tasks are created

 This example:

• each task creates two child tasks

 „deep hierarchy“ of tasks

 Scoping for xl, yl:

• start out as private variables

• only newly created tasks share

scope with these variables

• shared scope is needed to

communicate data outside the

task regions

© 2010-17 LRZ/RRZE Introduction to OpenMP 116

float daq(float *data, int n) {

float xl, yl;

int n1 = …, n2 = …;

float *data2 = …;

if (n1 < THRESHOLD)

{ … }

#pragma omp task shared(xl)

{ xl = daq(data, n1); }

#pragma omp task shared(yl)

{ yl = daq(data2, n2); }

#pragma omp taskwait

return xl - yl;

} C

private at
this point

data data2

n
n1 n2

terminate
recursion

Tasking-specific synchronization

 The taskwait directive

• suspends execution until immediate child tasks of current task complete

(the directive does not apply for descendants of child tasks)

 Syntax:

 Needed in example from previous slide

• avoid race condition of assignments vs. evaluation

• avoid local variables vanishing into thin air while tasks are still executing

© 2010-17 LRZ/RRZE Introduction to OpenMP 117

!$omp taskwait

#pragma omp taskwait

Fortran

C

Task switching

 Possible issues with task

scheduling:

• large number of tasks are

created implementation-

defined limit on unassigned tasks

may be reached

• all currently active tasks reach a

synchronization statement

threat of deadlock?

 Task switching

• permits a thread to suspend a

task and start or resume another

task at a task scheduling point

• for tied tasks, the same thread is

obliged to resume execution of

the suspended task later

Task scheduling points

immediately after generation of a task

at the end of a task region

in implicit or explicit barrier regions
(wait until all tasks executed by the team are done)

in a taskwait region

in a taskyield region

at the end of a taskgroup region

© 2010-17 LRZ/RRZE Introduction to OpenMP 118

e.g., a thread that creates lots of
tasks may stop doing so and start

working on one of them

tasks are tied by default ...

d
is

cu
ss

ed
la

te
r

Thread switching

 Default behaviour:

• a task assigned to a thread must be (eventually) completed by that

thread task is tied to the thread

 Change this via the untied clause

• execution of task block may change

to another thread of the team at any task scheduling point

 Deployment of untied tasks

• Starvation scenario:

Task switching has caused the task-generating thread to run a long

calculation, with the result that all generated tasks were consumed

and most threads idle.

If the task that generates the work is untied, a different thread can

take over the task-generating workload.

© 2010-17 LRZ/RRZE Introduction to OpenMP 119

pragma omp task untied
structured-block C

Interactions of Untied Tasks

with other OpenMP features

 Thread-related semantics
used in the untied task region are

likely to trip you up, for example ...

• relying on results delivered by

omp_get_thread_num()

 may become inconsistent

after thread switch

• referencing and defining values

stored in threadprivate global

variables

 may access a different copy

after thread switch

 Workaround

• revert from untied to tied for the

duration of problematic

operations, if possible

• or use an "if (0)" clause
(undeferred task might be executed by a

different thread, though)

© 2010-17 LRZ/RRZE Introduction to OpenMP 120

#pragma omp task untied

{

...

#pragma omp task final (1)

{

...

} // end included tied task

...

} // end untied task

all thread-centric
programming is localized here

Further potentially dangerous interactions

 Use of threadprivate data by tied tasks

• value of threadprivate variables cannot be assumed to be unchanged across

a task scheduling point. Might have been modified by another task executed

by the same thread.

 Tasks and locks:

• if a lock is held across a task scheduling point, interleaved code trying to

acquire it (maybe using the same thread) may cause deadlock

 Tasks and critical regions:

• similar issue if suspension of a task happens inside a critical region and the

same thread tries to access the same critical region in another scheduled task

 Tools?

• correctness tools will currently only find some of the issues that can arise

© 2010-17 LRZ/RRZE Introduction to OpenMP 121

Note: locks are owned by tasks, not threads

Comment: implementation-defined task scheduling points in untied
tasks have been removed from the standard

Programmer-defined task scheduling points

 Syntax and Semantics

• permits (but does not force) task

suspension for the current task at

the point where the directive is

placed

 Example

• avoid deadlock in a mutual

exclusion region
(taken from the OpenMP examples)

subroutine foo (lock, n)

use omp_lib

integer(kind=omp_lock_kind) :: lock

integer :: n

integer :: i

do i = 1, n

!$omp task

call something_useful()

do while &

(.not. omp_test_lock(lock))

!$omp taskyield

end do

call something_critical()

call omp_unset_lock(lock)

!$omp end task

end do

end subroutine

© 2010-17 LRZ/RRZE Introduction to OpenMP 122

!$omp taskyield

#pragma omp taskyield

Fortran

C

Fortran

Task group synchronization

 Purpose:

• synchronize all tasks created inside a structured block

• includes all descendants, not only immediate child tasks

• synchronization (i.e. waiting for task completion)

happens at the end of the taskgroup region (task scheduling point)

 Syntax:

 Note:

• tasks that were created before the taskgroup region started execution are

not synchronized

© 2010-17 LRZ/RRZE Introduction to OpenMP 123

!$omp taskgroup
structured block

!$omp end taskgroup

#pragma omp taskgroup
{
structured block

}

Fortran

C

↔ taskwait

↔ taskwait, barrier

new tasks are started
during execution of this block

(„taskgroup set“)

Example:
recursive tasking with atomic
updates in each task guarantee
completeness of updates

Final and mergeable tasks

 Final tasks

• use a final clause with a

condition on a task directive

• if the condition evaluates to

„true“, the resulting task is

always undeferred, and is

immediately executed by the

parent task‘s thread

• reduces the overhead of placing

tasks in the “task pool”

• all tasks created inside task

region are also final (different

from an if clause)

• inside a task block,

omp_in_final() can be used

to check whether the task is final

 Merged tasks

• using a mergeable clause

may create a merged task if it

is undeferred or final

• a merged task has the same

data environment as its

creating task region

 Final and/or mergeable

• can be used for optimization

purposes

• e.g. to optimize wind-down

phase of a recursive

algorithm

© 2010-17 LRZ/RRZE Introduction to OpenMP 124

current implementations seem not
to actively support merging.

Task priority

 Syntax

 Semantics

• provides a hint to the run time on prioritizing (ordering) task execution

• the priority value must be a non-negative integer; higher values

correspond to higher priorities; maximum value is

omp_get_max_task_priority()

• do not rely on a particular ordering of tasks imposed by specifying a

priority

© 2010-17 LRZ/RRZE Introduction to OpenMP 125

!$omp task priority(priority_value)

#pragma omp task priority(priority_value)

Fortran

C

#pragma omp task priority(9999)
participants.get_coffee(100);

Order and Chaos

 Example program

© 2010-17 LRZ/RRZE Introduction to OpenMP 126

s1 = '‘; s2 = 'and‘; s3 = 'chaos'

!$omp parallel

!$omp master

!$omp task

s1 = 'order'

write(*, fmt='(a)', advance='NO') trim(s1) // ' '

!$omp end task

!$omp task

write(*, fmt='(a)', advance='NO') trim(s2) // ' '

!$omp end task

!$omp task

write(*, fmt='(a)', advance='NO') trim(s3) // ' '

!$omp end task

!$omp end master

!$omp end parallel

write(*, fmt='(a)', advance='NO') new_line('a')

Observed output with 3 threads can be
any of ...
and order chaos
order chaos and
chaos order and
order and chaos
chaos and order
and chaos order

Serialization?

 Consider

• a set of sibling tasks

• a shared variable x that is referenced or defined by more than one of them

• in dependence: synchronizes memory operations against previously started tasks with an inout

or out dependence on same memory location

• out or inout dependence: synchronizes memory operations against any defined

dependence on same memory location for previously started task

x = ...

A

... = x

B

x = x + ...

C

Introducing data-driven dependencies:

the „depend“ clause

© 2010-17 LRZ/RRZE Introduction to OpenMP 127

i.e., all created by the same
(parent) task

order of task generation

depend(out:x) depend(in:x) depend(inout:x)

C must wait for both A and B
to complete memory operations

list of variables defines
critical memory locations

Ordering the Chaos

 Via addition of depend clauses

© 2010-17 LRZ/RRZE Introduction to OpenMP 128

s1 = '‘; s2 = 'and‘; s3 = 'chaos'

!$omp parallel

!$omp master

!$omp task depend(out:s1)

s1 = 'order'

write(*, fmt='(a)', advance='NO') trim(s1) // ' '

!$omp end task

!$omp task depend(in:s1) depend(out:s2)

write(*, fmt='(a)', advance='NO') trim(s2) // ' '

!$omp end task

!$omp task depend(in:s2)

write(*, fmt='(a)', advance='NO') trim(s3) // ' '

!$omp end task

!$omp end master

!$omp end parallel

write(*, fmt='(a)', advance='NO') new_line('a')

Observed output with 3 threads can only be
order and chaos

The type of memory operation that is actually
performed is irrelevant for the ordering
properties (although it usually determines
what type of dependency must be declared to
avoid race conditions)

Real-world example:

Cholesky decomposition

 Drawing the square root of a matrix

𝑨 = 𝑳 ∙ 𝑳𝑻

 Recursive blocked algorithm

 LAPACK algorithm ?POTRF

© 2010-17 LRZ/RRZE Introduction to OpenMP 129

symmetric
positive definite

𝐴11 𝐴21
𝑇

𝐴21 𝐴22

𝐿11 O

𝐿21 𝐿22

lower triangular

𝐿11
𝑇 𝐿21

𝑇

O 𝐿22
𝑇= *

 Phase 2

• parallel updates of columns

K = J+NB, J+2*NB, ...

 Phase 1

• one thread only

• „hot“ block column is J

Loop Parallel Cholesky

© 2010-17 LRZ/RRZE Introduction to OpenMP 130

Step 1: ?POTRF2
(non-blocked)

Step 2: ?TRSM
(linear equation)

Step 3: ?SYRK

J

NB Step 4: ?GEMM

J K

load imbalance

 use suitable schedule

Loop-parallel implementation sketch

 Reminiscence:

• Parallelization of Linear Algebra Algorithms on the KSR1, R. Bader (1994)

• same basic structure of algorithm, but OpenMP is more elegant

© 2010-17 LRZ/RRZE Introduction to OpenMP 131

!$OMP PARALLEL PRIVATE(JB, KB)

DO J = 1, N, NB

JB = MIN(NB, N-J+1)

!$OMP SINGLE

! Update the current diagonal block

! A(J,J), JB by JB and test for

! non-positive-definiteness

CALL POTRF2(...)

IF (J+JB.LE.N) THEN

! using the above, solve for

! A(J+JB,J), N-J-JB+1 by JB

CALL DTRSM(...)

END IF

!$OMP END SINGLE

...

!$OMP DO SCHEDULE(...)

DO K = J+NB, N, NB

KB = MIN(NB, N-K+1)

! Update diagonal block A(K,K)

! from A(J,K)

CALL DSYRK(...)

IF (K+KB.LE.N) THEN

! Update subdiagonal block A(K+KB,K)

! from A(K+KB,J) and A(K,J)

CALL DGEMM(...)

END IF

END DO

!$OMP END DO

END DO

!$OMP END PARALLEL

Extracting more parallelism

 Phase 1:

• multithread the TRSM update

by subdividing the block

column

 Phase 2:

• multithread the GEMM update

by subdividing the block column

• pipelined startup of

SYRK/GEMM updates possible

as phase 1 blocks complete

 Tasking makes this easy to do

 Note:

• nested parallelism has more overhead

and is more difficult to manage

© 2010-17 LRZ/RRZE Introduction to OpenMP 132

Requirement:

need to specify the data

dependencies

 Fortran array sections

in depend clauses

?SYRK can
proceed

Tasked implementation sketch

© 2010-17 LRZ/RRZE Introduction to OpenMP 133

!$OMP PARALLEL PRIVATE(JB, JJB, KB)

DO J = 1, N, NB

JB = MIN(NB, N-J+1)

!$OMP SINGLE

!$OMP TASK &

!$OMP& DEPEND(inout: &

!$OMP& A(J:J+JB-1,J:J+JB-1))

CALL POTRF2(...)

!$OMP END TASK

DO JJ = J+JB, N, NB

JJB = MIN(NB, N-JJ+1)

!$OMP TASK &

!$OMP& DEPEND(in: &

!$OMP& A(J:J+JB-1,J:J+JB-1)) &

!$OMP& DEPEND(inout: &

!$OMP& A(JJ:JJ+JJB-1,J:J+JB-1))

CALL DTRSM(...)

!$OMP END TASK

END DO

...

DO K = J+NB, N, NB

KB = MIN(NB, N-K+1)

!$OMP TASK DEPEND(in: &

!$OMP& A(K:K+KB-1,J:J+JB-1))

!$OMP& DEPEND(inout: &

!$OMP& A(K:K+KB-1,K:K+KB-1))

CALL DSYRK(...)

!$OMP END TASK

DO JJ = K+KB, N, NB

JJB = MIN(NB, N-JJ+1)

!$OMP TASK DEPEND(in: &

!$OMP& A(JJ:JJ+JJB-1,J:J+JB-1),&
!$OMP& A(K:K+KB-1,J:J+JB-1))

!$OMP& DEPEND(inout: &

!$OMP& A(JJ:JJ+JJB-1,K:K+KB-1))

CALL DGEMM(...)

!$OMP END TASK

END DO

END DO

!$OMP END SINGLE

END DO

!$OMP END PARALLEL

explicit
synchronization
point removed

Performance numbers
problem size: n = 10,000, block size: nb = 256

© 2010-17 LRZ/RRZE Introduction to OpenMP 134

0,453
0,571

0,3

0,5

1,0

2,0

4,0

8,0

16,0

1 2 4 7 14 21 28

So
lu

ti
o

n
 ti

m
e

(s
)

Threads

Cholesky Decomposition on 2.6 GHz Haswell

MKL loop parallel task parallel

Performance numbers
problem size: n = 10,000, block size: nb = 256

© 2010-17 LRZ/RRZE Introduction to OpenMP 135

0,380
0,480

0,3

0,5

1,0

2,0

4,0

8,0

16,0

1 2 4 8 16 32 64

So
lu

ti
o

n
 ti

m
e

(s
)

Threads

Cholesky Decomposition on 1.4 GHz KNL

MKL loop parallel task parallel

Technology advances ...

 Comparing the N = 6000 solution time

© 2010-17 LRZ/RRZE Introduction to OpenMP 136

KSR1 (24 cells) Haswell
(28 cores)

KNL
(64 cores)

year of release 1992 2014 2015

solution time (s) 270 0.13 0.16

GFlop/s 0.267 566 440

memory limit
of machine

strong scaling limit

Applying tasking to loops

 Tasking and worksharing loops:

• coexistence is difficult, because tasks are often issued in a context

that does not permit application of "omp do/for"

• creating a task for each loop iteration may be too fine-grained

 New construct: taskloop

• creates task regions for iterations of associated loop(s)

© 2010-17 LRZ/RRZE Introduction to OpenMP 137

!$omp taskloop [clauses]
do var = ni, ne
...

end do
!$omp end taskloop

#pragma omp taskloop [clauses]
for (var = ni; var <= ne; var++) {
...

}

Fortran

C

Taskloop clauses

 Scoping:

• private, firstprivate, shared, default

 Inherited from work sharing:

• collapse, lastprivate

 Inherited from tasking:

• if, final, mergeable, priority, untied

 New clauses:

• grainsize(size)

• num_tasks(num)

• nogroup

© 2010-17 LRZ/RRZE Introduction to OpenMP 138

constrains number of iterations assigned to each

task (upper limit < 2*grainsize)

maximum number of tasks created

by default, a taskloop construct implies a

taskgroup region. This is similar to the sync at

the end of a worksharing construct.The nogroup
clause removes this additional synchronization.

Current compiler support
is very limited

reduction support targeted
for next standard

Now: 6th exercise session

Performance:

Architectural aspects

We need ideas on ...

 What can be expected from the processor architecture?

• want at least an estimate for performance limits avoid „stumbling in

the dark“

• much more detailed node performance engineering and modeling:
course by G. Hager and G. Wellein – see

and references cited within

 How to exploit the architecture as best as possible

• use optimal data access patterns

• minimize synchronization overhead

• Account for interactions of OpenMP features with „serial“ optimization

techniques (might be compiler optimization or lack thereof!)

© 2010-17 LRZ/RRZE Introduction to OpenMP 140

http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=300&username=guest&password=guest&lang=en

http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=300&username=guest&password=guest&lang=en

Processor Architecture

 Performance Characteristics

• determined by memory

hierarchy

 Impact on Application

performance: depends on

where data are located

• temporal locality: reuse of

data stored in cache allows

higher performance

• no temporal locality:

reloading data from memory

(or high level cache) reduces

performance

 For multi-core CPUs,

• available bandwidth may

need to be shared between

multiple cores

© 2010-17 LRZ/RRZE Introduction to OpenMP 141

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

Bandwidth:

determines how

fast application

data can be

brought to

computational

units on CPU

high
bandwidth
available

low
bandwidth
available

 shared caches and memory

Concept of cache

 A small but fast memory area

• used for storing a (small)

memory working set for efficient

access

 Reasons:

• physical and economic

limitations

 Loads (stores) to (from)

core registers

• may trigger cache miss

transfer of memory block („cache

line“, CL) from memory

 Cache fills up …

• usually least recently used CL

is evicted

 Example:

© 2010-17 LRZ/RRZE Introduction to OpenMP 142

Main memory

Cache

Core

c(:) = a(:) + …

a CL of A a CL of C

core register:
load a(1)

…
store c(1)

delayed
to eviction

Control of Affinity

NUMA effects

False Sharing

Current Node architecture ...

• multi-core multi-threaded processors with a deep cache hierarchy

• typically, two sockets per node

© 2010-17 LRZ/RRZE Introduction to OpenMP 144

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

ccNUMA architecture: „cache-coherent non-uniform memory access“

Illustration shows 4 cores per socket. Current sockets have 8 – 14 cores

HT or QPI

socket

Prolegomenon: nested parallelism

 An implementation might

support this:

• nesting of parallel regions

© 2010-17 LRZ/RRZE Introduction to OpenMP 145

#include <stdio.h>

int main() {

#pragma omp parallel

{ …

#pragma omp parallel

{

…

}

}

return 0;

} C

fork

joinex
ec

u
ti

o
n

se
q

u
en

ce

fork fork fork fork

join join join join

each thread in „outer“ region
becomes master thread of

„inner“ region

„outer“ region

„inner“ region

mentioned here for illustrative purposes

Resource assignment

 Suitable environment settings

 Operating system:

• responsible for assigning hardware resources to threads

• in general not trivial – note that (active) thread count can change during

execution

 Possible issues (performance impact):

• threads might move around between cores

• multiple threads might share a core (or other resources)

© 2010-17 LRZ/RRZE Introduction to OpenMP 146

export OMP_NUM_THREADS=4,2
export OMP_NESTED=true
export OMP_DYNAMIC=false
…
./my_nested_openmp_program.exe

one integer for each
nesting level

 a mechanism for controlling thread affinity / binding is desirable

else, „inner“ regions might/will
execute with 1 thread only.

forbid implementation to interfere with
number of threads assigned

Thread affinity – Processor binding

 Two aspects:

1. What entity should a thread be bound to? concept of place

2. How should the binding be performed (if at all ...)?

 Optimal binding strategy depends on machine and application

 Putting threads far apart („spread“, „scatter“) might

• improve aggregate memory bandwidth

• improve combined cache size

• decrease performance of synchronization constructs

 Putting threads close together (i.e. on two adjacent cores) might

• improve performance of synchronization constructs

• decrease available memory bandwidth and cache size per thread

© 2010-17 LRZ/RRZE Introduction to OpenMP 147

 available since OpenMP 4.0
before that: implementation-specific mechanisms

OpenMP place:

a container unit for pinning of threads

© 2010-17 LRZ/RRZE Introduction to OpenMP 148

 Places are defined via either

• an abstract name (threads, cores, or sockets), optionally followed by a

bracketed positive integer (number of places):

• or an explicit list of places, specified as list of integer intervals

(in the following example, all three specs are equivalent)

meaning of the index is implementation defined, but you can expect

the smallest unit of execution (a hardware thread on x86) to be used.

export OMP_PLACES=“{0,1,2,3},{4,5,6,7}“

export OMP_PLACES=“{0:4},{4:4}“

export OMP_PLACES=“{0:4}:2:4“-

export OMP_PLACES=“cores(8)“

2 places with 4 hw
threads each

same, using
<offset:length> notation

same, using
<firstplace:#_of_places:stride_of_offset>

notation

8 places with 1
physical core each

OpenMP binding

© 2010-17 LRZ/RRZE Introduction to OpenMP 149

 Determine whether threads should be pinned

• environment variable OMP_PROC_BIND

• with values true or false, or

• a comma-separated list of entries:

 Example:

• binding is determined for at most two levels of parallel nesting

master bind created threads to same place as
master thread

close bind created threads to a place close to the
one assigned to the master

spread use a sparse distribution pattern to bind
created threads to places

export OMP_PROC_BIND=spread,close

Example for OpenMP binding

 Nested parallelism example from earlier

 Threads are named Si, and S'i, S''i, ..., for outer and inner region, respectively:

 Overcommitment causes places to be reused (i.e. multiple threads per place)

© 2010-17 LRZ/RRZE Introduction to OpenMP 150

export OMP_NUM_THREADS=4,2
…
export OMP_PLACES=“cores(8)”
export OMP_PROC_BIND=spread,close
./my_nested_openmp_program.exe

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

outer region S0 S1 S2 S3

inner region S'0 S'1 S''0 S''1 S'''0 S'''1 Siv
0 Siv

1

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

Node

Socket 0 Socket 1

Identifying binding strategy within the program

 The function

returns one of the following constants:

 The value may depend on the nesting level from which the

function is called

© 2010-17 LRZ/RRZE Introduction to OpenMP 151

integer(…) function omp_get_proc_bind() Fortran

omp_proc_bind_t omp_get_proc_bind(void) C

omp_proc_bind_false 0

omp_proc_bind_true 1

omp_proc_bind_master 2

omp_proc_bind_close 3

omp_proc_bind_spread 4

Identifying placement

 A number of functions exist to handle various inquiries:

© 2010-17 LRZ/RRZE Introduction to OpenMP 152

Name Result type Purpose

omp_get_num_places() int number of places available

omp_get_place_num_procs
(int place_num)

int number of processors available in
place_num (0 .. number of places - 1)

omp_get_place_proc_ids
(int place_num, int *ids)

void ids contains numerical identifiers of
processors in place place_num

omp_get_place_num() int place number of place to which calling
thread is bound

omp_get_partition_num_places() int number of places in place partition of
innermost implicit task

omp_get_partition_place_nums
(int *place_nums)

void list of place numbers for innermost implicit
task

Program-internal binding

 A proc_bind clause can be specified

 Example:

© 2010-17 LRZ/RRZE Introduction to OpenMP 153

#pragma omp parallel num_threads(4) proc_bind(spread)

{ …

#pragma omp parallel num_threads(2) proc_bind(close)

{ …

}

}
C

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

outer region S0 S1 S2 S3

inner region S'0 S'1 S''0 S''1 S'''0 S'''1 Siv
0 Siv

1

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

Node

Socket 0 Socket 1
executed with

OMP_PLACES=cores(8)

Identifying node topology

 Topology =

• Where in the machine does

core #n reside?

• awkward numbering anyway?

• which cores share which

cache levels

• which hardware threads

(“logical cores”) share a

physical core?

 Use LIKWID tool to identify

• developed by J. Treibig

• see
http://code.google.com/p/likwid

for source code and

documentation

 Available commands

• likwid-topology: Print thread and

cache topology

• likwid-pin: Pin threaded

application without touching code

• likwid-perfctr: Measure perfor-

mance counters

• likwid-mpirun: mpirun wrapper

script for easy LIKWID integration

• likwid-bench: Low-level

bandwidth benchmark generator

tool

• … some more

© 2010-17 LRZ/RRZE Introduction to OpenMP 154

http://code.google.com/p/likwid

Intel / Sandy Bridge topology

 Output of likwid-topology –g (ASCII art section):

Socket 0:

+---+

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 0 16 | | 1 17 | | 2 18 | | 3 19 | | 4 20 | | 5 21 | | 6 22 | | 7 23 | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +---+ |

| | 20MB | |

| +---+ |

+---+

Socket 1:

+---+

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 8 24 | | 9 25 | | 10 26 | | 11 27 | | 12 28 | | 13 29 | | 14 30 | | 15 31 | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +---+ |

| | 20MB | |

| +---+ |

+---+

© 2010-17 LRZ/RRZE Introduction to OpenMP 155

hyperthreaded
cores

L1D

L2

shared
L3

each socket forms

a NUMA domain

AMD / Magny Cours topology

 Output of likwid-topology –g (ASCII art section):

Socket 0:

+---+

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------------------------------------+ +-------------------------------------+ |

| | 5MB | | 5MB | |

| +-------------------------------------+ +-------------------------------------+ |

+---+

Socket 1:

+---+

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------------------------------------+ +-------------------------------------+ |

| | 5MB | | 5MB | |

| +-------------------------------------+ +-------------------------------------+ |

+---+

© 2010-17 LRZ/RRZE Introduction to OpenMP 156

single threaded
cores

L1D

L2

shared
L3

each socket forms

two NUMA domains

likwid-pin – Overview

 Pins processes/threads to specific cores without touching code

• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Based on combination of wrapper tool together with overloaded pthread

library binary must be dynamically linked!

 Can also be used as a superior replacement for Linux command

taskset

 Supports logical core numbering within a node and within an

existing CPU set

• Useful for running inside CPU sets defined by someone else, e.g., the MPI

start mechanism or a batch system

 Usage examples:

• Physical numbering (as given by likwid-topology):

• Logical numbering by topological entities:

© 2010-17 LRZ/RRZE Introduction to OpenMP 157

likwid-pin -c 0,2,4-6 ./myApp parameters

likwid-pin -c S0:0-3 ./myApp parameters

all of a(:) physically
located here

Memory affinity

 Allocation of memory (with C malloc() / Fortran ALLOCATE)

• only provides a virtual memory address

 Physical memory

• is assigned when a memory location is initialized („first touch“)

• units of pages (note overhead due to page faults!)

 Consequence for OpenMP

• possible memory accesses across socket boundaries

• only half the available

memory BW might be exploited on a 2-socket system

© 2010-17 LRZ/RRZE Introduction to OpenMP 158

L1D
L2

L1D
L2

L1D
L2

L1D
L2

L3

Memory Interface

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

a(:) = 0.0
!$omp parallel do
DO i=1, size(a)
… = … a(i) …

END DO
!$omp end parallel do

L1D
L2

L1D
L2

L1D
L2

L1D
L2

L3

Memory Interface

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

unused

one half of
a processed

other half of a
processed

first touch here

Fo
rt

ra
n

Balancing memory affinity

 Desirable and scalable memory access pattern:

• requires initialization with an OpenMP parallelized loop

 Distributed first touch

• ideally, uses same loop schedule as later processing

• now, the full available

memory BW can be exploited on a multi-socket system

© 2010-17 LRZ/RRZE Introduction to OpenMP 159

L1D
L2

L1D
L2

L1D
L2

L1D
L2

L3

Memory Interface

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

L1D
L2

L1D
L2

L1D
L2

L1D
L2

L3

Memory Interface

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

unused

one half of
a processed

other half of a
processed

!$omp parallel do
DO i=1, size(a)
a(i) = …

END DO
!$omp end parallel do
…
!$omp parallel do
DO i=1, size(a)
… = … a(i) …

END DO
!$omp end parallel do same half of a

located on-socket
same half of a

located on-socket

Fo
rt

ra
n

MVM performance for N=8000

 Measured on two AMD Magny Cours sockets

• thread pinning uses „close“ strategy

© 2010-17 LRZ/RRZE Introduction to OpenMP 160

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

First touch master only First touch distributed

Tasking and NUMA effects

 Remember:

• tasking decouples data items and associated functions from the

threading model

 Consequence:

• repeated execution of tasking on data items might use different

threads memory affinity will get lost!

© 2010-17 LRZ/RRZE Introduction to OpenMP 161

#pragma omp task
execute_my_function(a, b, c);

#pragma omp task shared(a, b, c)
establish_my_data(a, b, c);

#pragma omp taskwait
#pragma omp task shared(a, b, c)

execute_my_function(a, b, c);

this function might
execute on a different
thread than this one

Partial therapy: register locality

 At initialization

• store which thread performed it – threads are color coded below

 Working on data items

• first work on items that are local to the executing thread

• next work on items that are located elsewhere (nearby first)

 task stealing due to unpredictable thread assignment

• additional bookkeeping (mutual exclusion) is needed to assure

complete and unique execution

© 2010-17 LRZ/RRZE Introduction to OpenMP 162

D1
D2

D3
D4

D5

D6

D7

integer :: work_item(idm, nthr)

thread 0 1 2

item # 1 2 3

item # 4 5 6

item # 7 - -

Simple example: NUMA-aware tasked triads

© 2010-17 LRZ/RRZE Introduction to OpenMP 163

tasking
overhead

effective
memory BW

biggest possible
chunk size was used
 1 chunk per thread

possible

mutex effect

Performance problems with

small shared variables

 Example program: count even and odd array values

© 2010-17 LRZ/RRZE Introduction to OpenMP 164

integer is(2), ict(2,ntdm), ia(n)

…

!$omp parallel private(myid) shared(ict, ia)

myid = omp_get_thread_num()+1

!$omp do private(index)

do i=1,n

index = mod(ia(i),2)+1

ict(index,myid) = ict(index,myid) + 1

end do

!$omp end do

!$omp critical

is = is + ict(1:2,myid)

!$omp end critical

!$omp end parallel

initialization omitted

formally correct,
no race condition

Fortran

Example program parallel efficiency

 Baseline 1 thread execution time: AMD 0.75 s, Intel SandyBridge 0.37 s

© 2010-17 LRZ/RRZE Introduction to OpenMP 165

7

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Ef
fi

ci
e

n
cy

 in
 %

Number of Threads

AMD Magny Cours Intel Sandy Bridge

Array size
250,000,000

Updating neighbouring data

from different cores

P0

load a(1)

store a(1)

 Store operation

• write back always done on

complete cache lines

• "merging of partial cache lines" is

not possible

 Cache coherence protocol

• keeps track of cache line status

• assures data consistency by

enforcing hardware

synchronization between writes

© 2010-17 LRZ/RRZE Introduction to OpenMP 166

Main memory

Cache 0

Core 0

a CL of A

core register

Core 1

Cache 1

P1

load a(2)

store a(2)

Typical sequence of write operations

 Hardware execution sequence for

write on Core 0:

1. Request exclusive access to CL (Core 0

issues it first)

2. Invalidate CL in Cache 1

3. Modify CL in Cache 0 (exclusively owned)

4. mark CL shared

 Hardware execution sequence

on Core 1:

5. Request CL from memory for reading

(granted after CL is marked shared)

6. Request exclusive access to CL

7. Invalidate CL in Cache 0

8. Modify CL in Cache 1 (exclusively owned)

9. mark CL shared

© 2010-17 LRZ/RRZE Introduction to OpenMP 167

Main memory

Cache 0

Core 0

a CL of A

Core 1

Cache 1

Diagram shows state
after step 3

Consequences

 Repeated access to data in same cache line:

• causes thrashing of cache lines

• for each access, more than twice the memory latency may be

accumulated, resulting in significant performance reduction

 This effect is called "false sharing"

© 2010-17 LRZ/RRZE Introduction to OpenMP 168

Avoidance of false sharing

 Privatization ‒ here through use of a reduction variable

 Alternative for retaining shared variables: Add padding

• tradeoff: may lose spatial locality

© 2010-17 LRZ/RRZE Introduction to OpenMP 169

integer is(2), ia(n)

…

!$omp parallel shared(ict, ia)

!$omp do private(index) reduction(+:is)

do i=1,n

index = mod(ia(i),2)+1

is(index) = is(index) + 1

end do

!$omp end do

!$omp end parallel

initialization omitted

Fortran

private variables are assured

of using well-separated

parts of the physical memory

(thread-individual stack or

heap)

Parallel efficiency for improved example

 Baseline 1 thread execution time: AMD 0.81 s, Intel SandyBridge 0.36 s

© 2010-17 LRZ/RRZE Introduction to OpenMP 170

56

75

0

10

20

30

40

50

60

70

80

90

100

110

1 2 4 8 16

Ef
fi

ci
e

n
cy

 in
 %

Number of Threads

AMD Magny Cours Intel Sandy Bridge
Now: last exercise session

Remaining performance degradation
is due to saturation of memory bus

Outlook: Towards

quantifying performance

Using synthetic loop kernels

for performance evaluation

 Characteristics

• known operation count, load/store count

• some variants of interest:

• run repeated iterations for varying vector lengths (working set sizes)

© 2010-17 LRZ/RRZE Introduction to OpenMP 172

132Vector Triadai = bi * ci + di

122Linked Triad (Stream)ai = bi * s + ci

012Normn2 = n2 + ai * ai

022Scalar Products = s + ai * bi

StoresLoadsFlopsNameKernel

 Synthetic benchmark: bandwidths of „raw“ architecture

for a single core

Vector Triad D(:) = A(:) + B(:) * C(:)

© 2010-17 LRZ/RRZE Introduction to OpenMP 173

L1D – 32kB
< 112 GB/s

L2 – 256 kB
< 62 GB/s

L3 – 20 MB
~ 33 GB/s

Memory
~ 14.7 GB/s

measured „effective“ BW:

3 LD+1ST

16 Bytes / Flop, repeated execution
(actually issued: 4 LD+1ST in L2 and higher)

Vectorization (256 Bit registers)

provides performance boost

mostly in L1/L2 cache

Theoretical performance limit

 Sandy Bridge vector unit:

• 256 Bit SIMD (single instruction

multiple data)

• Example: addition of 8 Byte words

 Instruction capability

• 1 vector add and 1 vector mult

per cycle theoretical Peak 8

Flops/cycle

 LD/ST issue capability

• 4 Words LD/cycle

• 4 Words ST/(2 cycles)

 Vector triad:

• required loads limit performance

to 8 Flops / 3 cycles

i.e. 7.2 GFlop/s at 2.7 GHz

 Consult processor-specific

architecture manual

© 2010-17 LRZ/RRZE Introduction to OpenMP 174

R0 R1 R2

+

+

+

+

6
4

 b
it

D
P

 w
o

rd
2

5
6

 B
it
 r

e
g
is

te
rs

A + B = C
4 elements with 1 AVX instruction

Only L1 might maintain needed bandwidth

 Throughput mode: run with independent threads up to number of cores on a socket

Vector Triad D(:) = A(:) + B(:) * C(:)

© 2010-17 LRZ/RRZE Introduction to OpenMP 175

memory interface of socket:

saturated w/ 4 threads

effective per-core
share of L3 shrinks

L1/L2/L3 bandwidths
scale well

Looking at Memory Performance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N=12506888 Vector Triad

Sandy Bridge

Magny Cours

© 2010-17 LRZ/RRZE Introduction to OpenMP 176

saturation of
1st socket

with 4 threads

second socket
memory interface

per-socket bandwidth

40 GB/s

per-socket bandwidth

24 GB/s

More on cache-based memory systems

 Loads and Stores

• usually apply to cache lines

• size: 64, 128 or more Bytes

 Pre-fetch

• avoid latencies when

streaming data

• pre-fetches usually done in

hardware

• decision according to memory

access pattern

 Pre-Requisite:

• spatial locality

• violation of spatial locality:

if only part of a cache line is used

 effective reduction in

bandwidth

© 2010-17 LRZ/RRZE Introduction to OpenMP 177

Performance of strided triad on Sandy Bridge
- loss of spatial locality

ca. 40 MFlop/s

(remains constant

for strides > ~25)

© 2010-17 LRZ/RRZE Introduction to OpenMP 178

Notes:

 stride known at

compile time

 serial compiler

optimizations may

compensate perfor-

mance losses in

real-life code

D(::stride) = A(::stride) + B(::stride)*C(::stride)
Example: stride 3

Returning to the matrix-vector product

 r = M ∙ x i.e.

© 2010-17 LRZ/RRZE Introduction to OpenMP 179

𝑟𝑖 =

𝑗=1

𝑛

𝑀𝑖𝑗𝑥𝑗

 First parallelization attempt:

 Parallel patterns used:

• data decomposition (load balanced)

• loop parallelism (no dependencies)

 Directive placement:

• coarse grained parallelism to
avoid synchronization overhead

!$omp parallel

!$omp do

DO j = 1, n

DO k = 1, n

r(j) = r(j) + a(j, k) * x(k)

END DO

END DO

!$omp end do

… = r(…)

!$omp end parallel

index ordering
causes non-contiguous

accesses

M x r

j j

Measured performance (size 8000)

 Speed-Up:

as a function of number of threads

on 8-core processors

• Scaling bad beyond 4 threads

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Sandy
Bridge

Magny
Cours

Ideal

© 2010-17 LRZ/RRZE Introduction to OpenMP 180

𝑆 𝑛𝑡 =
𝑇(1)

𝑇(𝑛𝑡)
 Absolute performance:

• MFlop/s = 2 ∙ n2 / time

• used dgemv for serial run

 Speed-Up useless if baseline

performance is bad

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

Sandy
Bridge

Magny
Cours

SB serial

MC serial

a measure for execution time

if problem size is constant

threads

threads

Improved Matrix-Vector Multiply

 Switch loop order

• map column blocks to threads:

• color code indicates thread

assignment

© 2010-17
LRZ/RRZE

Introduction to OpenMP 181

 Variant 2 of code:

• contiguous access to M

• array reduction on result vector

 Performance estimate for single

thread:

• double that of triad 1.86 GFlop/s

M x r

!$omp parallel do reduction(+:r)
DO k = 1, n
DO j = 1, n
r(j) = r(j) + M(j, k) * x(k)

END DO
END DO
!$omp end parallel do

j j

2 loads (?)1 store (?)

vector add scalar mult

Cannot be the whole truth –

remember serial performance: 3.7 GFlop/s!

Re-measured performance (size 8000)

 For variant 2 of the MVM: Performance in MFlop/s

 Comments:

• „no OpenMP“ variant 2 compiled without OpenMP

• Conclusion: compiler stops making certain serial optimizations if OpenMP

switch is toggled

© 2010-17 LRZ/RRZE Introduction to OpenMP 182

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5 6 7 8

Sandy Bridge

Magny Cours

SB no OpenMP

MC no OpenMP

threads

Variant 3: Reduce memory traffic

 Outer loop unrolling

• conditioning omitted

• asymptotically increases intensity to

2 Flops per word (1 load on matrix

per original loop iteration)

 Expected performance

• for M from memory (i.e. outside

any cache)

• contiguous streaming of data

• assuming 40 GB/s bandwidth

for a socket

• estimation method is known

as „Roofline Model“

© 2010-17 LRZ/RRZE Introduction to OpenMP 183

!$omp parallel do reduction(+:r)
DO k = 1, n-3, 4
DO j = 1, n
r(j) = r(j) + M(j, k) * x(k)&

+ M(j, k+1) * x(k+1) &
+ M(j, k+2) * x(k+2) &
+ M(j, k+3) * x(k+3)

END DO
END DO
!$omp end parallel do

2 Flop 40 GB
Perf = ---------- * ---------- = 10 GFlop/s

8 Bytes s

computational
intensity

available
bandwidth

(slowest path)

Unrolling is limited by number of

available registers and prefetch

streams (architecture-dependent!)

Graphical representation of Roofline

1,00

10,00

100,00

0,03125 0,0625 0,125 0,25 0,5 1

P
e

rf
o

rm
an

ce
 in

 G
Fl

o
p

/s

Computational intensity (Flop/Byte)

BW = 40 GB/s (Memory) BW = 400 GB/s (aggregate L2 caches in socket)

Peak AVX (2.7 GHz) Peak SSE (2.7 GHz)

© 2010-17 LRZ/RRZE Introduction to OpenMP 184

MVM from memory

MVM from L2 (?)
need AVX?

compute
bound

Variant 3 MVM performance (N=8000)

 In MFlop/s. Unroll factors: Sandy Bridge 4, Magny Cours 8

 Comment:

• roofline model only predicts „saturated“ performance

• single-thread performance is limited by non-overlapping memory/core

operations (see ref. (2))

© 2010-17 LRZ/RRZE Introduction to OpenMP 185

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5 6 7 8

Sandy Bridge

Magny Cours

SB serial

MC serial

threads

Why use variant 3 …

 … if variant 2 gives us the full performance anyway?

• even if this only is attained with 8 threads

 Possible reasons:

• „switch off“ cores 6-8 to save energy (relevant for you if this is

budgeted – may happen not too far in the future!)

• use cores 6-8 for other tasks that are cache bound

• use cores 6-8 for MPI communication (I/O via PCI) if you do hybrid

programming (i.e., combine MPI with OpenMP)

© 2010-17 LRZ/RRZE Introduction to OpenMP 186

References

© 2010-17 LRZ/RRZEIntroduction to OpenMP 187

Recommended reading

(1) OpenMP 4.5 standard and examples (currently 4.0.2) at

http://openmp.org/wp/openmp-specifications/

(2) Parallel programming in OpenMP

Rohit Chandra et al; Morgan Kaufmann 2000

(3) Using OpenMP - portable shared memory parallel programming

B. Chapman, G. Jost, R. van der Pas; MIT Press 2008

(4) J. Treibig, G. Hager, G. Wellein: LIKWID

A lightweight performance-oriented tool suite for x86 multicore environments.

PSTI2010, Sep 13-16, 2010, San Diego, CA DOI: 0.1109/ICPPW.2010.38;

Preprint: http://arxiv.org/abs/1004.4431

(5) G. Hager, J. Treibig, J. Habich, and G. Wellein:
Exploring performance and power properties of modern multicore chips via

simple machine models. Preprint: arXiv:1208.2908

(6) G. Hager, G. Wellein: Introduction to High Performance Computing for

Scientists and Engineers. Chapman & Hall / CRC (2011)

© 2010-17 LRZ/RRZE Introduction to OpenMP 188

http://openmp.org/wp/openmp-specifications/
http://arxiv.org/abs/1004.4431

Appendix:

Setting up Vtune Amplifier

© 2010-17 LRZ/RRZEIntroduction to OpenMP 189

 Tuning of serial and threaded programs

• performance counter access requires group rights

 Start up GUI

• prerequisites: set up environment and possibly stack limit

• then, invoke the GUI with

• command line amplxe-cl is also available, but will not be discussed

 Project generation analogous to Intel Inspector

© 2010-17 LRZ/RRZE

Using Vtune Amplifier on x86-based systems

amplxe-gui &

Introduction to OpenMP 190

Example run: A badly performing

solution of the histogram calculation

#pragma omp parallel private(seed,i,k,me)

{

me = omp_get_thread_num();

seed = 123 + 159*me;

for (k=0; k<100000; ++k) {

#pragma omp for

for (i=0; i<10000; ++i) {

ir[i] = rand_r(&seed) & 0xf;

}

#pragma omp master

for (i=0;i<10000; ++i) {

hist[ir[i]]++;

}

#pragma omp barrier

// prevents ir from being modified

// before hist update is done

}

}

© 2010-17 LRZ/RRZE Introduction to OpenMP 191

 Various types are provided

• select „Concurrency“

• in the project properties, set

OMP_NUM_THREADS to

number of physical cores

 Note:

• analysis may take quite a

long time to run, even for

programs of small size

© 2010-17 LRZ/RRZE

Choose Analysis type

Note:
performance quality evaluation

assumes complete system is used

Introduction to OpenMP 192

 Result:

• thread concurrency

very low although

CPU usage is high

© 2010-17 LRZ/RRZE

Result tabs: Summary

Introduction to OpenMP 193

 Observation:

• much time spent in

OpenMP run time

library

• lots of transitions

indicated have

false sharing

© 2010-17 LRZ/RRZE

Result tabs: Bottom-up view

Introduction to OpenMP 194

 Click on routine with significant resource usage

© 2010-17 LRZ/RRZE

Drill down to source

many updates to

small shared variable

Introduction to OpenMP 195

