
Introduction	to	HPC-UGent
March	28th	2018	

http://users.ugent.be/~kehoste/hpcugent-intro-20180328.pdf	

hpc@ugent.be	 	 	 	 	 http://ugent.be/hpc

http://users.ugent.be/~kehoste/hpcugent-intro-20180328.pdf
mailto:hpc@ugent.be
http://ugent.be/hpc

• Inform	you	of	HPC-UGent	services	and	infrastructure	

• Learn	what	the	benefit	can	be	for	your	research	

• Get	you	started	on	the	central	HPC	infrastructure	at	UGent	

• Successfully	connect	to	the	HPC	infrastructure	

• Successfully	launch	your	first	job	

• Figure	out	how	to	leverage	it	for	your	research	

• Answer	your	questions

About	this	training	–	purpose

�2

• A	manual	is	available,	applicable	for	all	VSC	infrastructure	

• Download	it	here:	https://www.ugent.be/hpc/en/support/documentation.htm	

• This	is	work	in	progress.	If	you	find	errors,	do	let	us	know.	

• We	will	specifically	use	information	from	these	chapters:	

1/	Introduction	to	HPC	 	 4/	Running	batch	jobs	

2/	Getting	an	HPC	account	 6/	Running	jobs	with	input/output	data	

3/	Connecting	to	the	HPC		 8/	Fine-tuning	job	specifications

About	this	training	–	VSC	manual

�3

https://www.ugent.be/hpc/en/support/documentation.htm

“High	Performance	Computing”	(HPC)	is	computing	on	a	

“supercomputer”,	a	system		at	the	frontline	of	contemporary	processing	

capacity	–	particularly	in	terms	of	size,	supported	degree	of	parallelism,	

network	interconnect	and	(total)	available	memory	&	disk	space.	

A	computer	cluster	consists	of	a	set	of	loosely	or	tightly	connected	

computers	that	work	together	so	that	in	many	respects	they	can	be	

viewed	as	a	single	system.	

	 	 	 	 	 (a.k.a.	“supercomputing”)

What	is	High	Performance	Computing?

�4

harness	power	of	multiple	interconnected	cores/nodes/processing	units

What	is	High	Performance	Computing?

�5 6

Everyday	applications	of	supercomputing

�6

Scientific	applications	of	supercomputing

�7

Modern	servers,	also	referred	to	as	(worker)	nodes	in	the	context	of	HPC,	

include	one	or	more	sockets,	each	housing	a	multi-core	processor	(next	to	

memory,	disk(s),	network	cards,	…).	A	modern	(micro)processor	consists	of	

multiple	CPUs	or	cores	that	are	used	to	execute	computations.

Cores,	CPUs,	processors,	sockets,	(worker)nodes

�8

(worker)node	

processor	(in	socket)	

core	

memory	(RAM)

example:	
node	with  

two	16-core	
processors

(not	included	in	picture: 
local	disk,	network	cards,	...)

In	parallel	software,	many	calculations	are	carried	out	simultaneously.  
They	are	based	on	the	principle	that	large	problems	can	often	be	divided 
into	smaller	tasks,	which	are	then	solved	concurrently	(“in	parallel”).	

e.g.,	OpenFOAM	can	easily	use	160	cores	at	the	same	time	to	solve	a	CFD	problem	
		

Parallel	programming	paradigms:	

OpenMP	for	shared	memory	systems	(multithreading)	->	on	cores	of	a	single	node	

MPI	for	distributed	memory	systems	(multiprocessing)	->	on	multiple	nodes

Parallel	vs	sequential	software

�9

OpenMP	software	
can	use	multiple	or 
all	cores	in	a	node

MPI	software	
can	use	(all)	cores	
in	multiple	nodes

Sequential	(a.k.a.	serial)	software	does	not	do	calculations	in	parallel,	

i.e.	it	only	uses	one	single	core	of	a	single	workernode.	

		

(Sequential)	software	does	not	become	faster	by	just	throwing	cores	at	it...	
	  

But,	you	can	run	multiple	instances	at	the	same	time	on	a	supercomputer.		

e.g.,	you	can	easily	run	a	Python	script	1000	times	at	once	to	quickly	analyse	1000	datasets

Parallel	vs	sequential	programs

�10

Part	of	ICT	Department	of	Ghent	University	

Our	mission	

HPC-UGent	provides	centralised	scientific	computing	services,	training,	

and	support	for	researchers	from	Ghent	University,	industry,	and	other	

knowledge	institutes.	

Our	core	values	

Empowerment	-	Centralisation	-	Automation	-	Collaboration

HPC-UGent

�11

hpc@ugent.be

mailto:hpc@ugent.be

HPC-UGent:	staff

�12

Stijn	De	Weirdt 
technical	lead

Kenneth	Hoste 
user	support	&	training

Jens	Timmerman  
sysadmin,	security

Andy	Georges 
sysadmin,	tools	&	testing

Ewald	Pauwels  
team	lead

Wouter	Depypere  
sysadmin,	hardware

Kenneth	Waegeman 
sysadmin,	storage

Alvaro	Simon	Garcia	
cloud,	user	support

Centralised	hardware

�13

Centralised	hardware

�14

�15

1548	-	1620	
°Bruges	

STEVIN	
HPC	

infrastructure

Financing	bodies: HPC-UGent 
users

HPC-UGent	Tier2	(STEVIN):	central	investments

HPC-UGent	Tier2	(STEVIN)

�16

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

4	Tier2	clusters 
in	total	500	workernodes,	~10k	cores

(retired	on	Jan	15th	2018)

126

470

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

HPC-UGent	Tier2	(STEVIN)

�17

2	new	Tier2	clusters,	replacements	for	raichu	&	delcatty	

about	6000	extra	compute	cores,	latest	Intel	processor	generation	

current	status:	operational	&	being	tested	by	pilot	users 
expected	to	be	'publicly'	available	in	summer	2018

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent
https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

HPC-UGent	Tier2	(STEVIN)

�17

2	new	Tier2	clusters,	replacements	for	raichu	&	delcatty	

about	6000	extra	compute	cores,	latest	Intel	processor	generation	

current	status:	operational	&	being	tested	by	pilot	users 
expected	to	be	'publicly'	available	in	summer	2018

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent
https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

Network	connections	between	nodes	

	 Ethernet:	1-10	Gbit/s	 	 	 Infiniband:	50	-	100	Gbit/s	

	 	 								€	 	 	 	 	 							€€(€)	
	 for	single	core/node	jobs	 	 			required	for	MPI	jobs

HPC-UGent	Tier2	(STEVIN)

�18

VSC	Tier2

�19

Antwerp	University	association

Brussels	University	association	
	 +	Grid	specialization

Ghent	University	association	
	 +	Big	Data	specialization

KU	Leuven	association	
Limburg	association	University-Colleges	
	 +	Shared	memory,	accelerator	specialization

Vlaams	Supercomputer	Centrum 
(Flemish	Supercomputer	Center)	

https://www.vscentrum.be/en/access-and-infrastructure/tier-2	

(GPGPU	systems	@	KUL:	http://hpc.ugent.be/userwiki/index.php/Tips:Software:GPGPU)

https://www.vscentrum.be/en/access-and-infrastructure/tier-2
https://www.vscentrum.be/en/access-and-infrastructure/tier-2
https://www.vscentrum.be/en/access-and-infrastructure/tier-2
http://hpc.ugent.be/userwiki/index.php/Tips:Software:GPGPU

VSC	Tier1	–	muk	(@	HPC-UGent)

�20

For	up	to	date	information,	see:	
https://www.vscentrum.be/en/access-and-infrastructure/tier-1

retired	on	Jan	1st	2017

https://www.vscentrum.be/en/access-and-infrastructure/tier-1
https://www.vscentrum.be/en/access-and-infrastructure/tier-1

VSC	Tier1	–	BrENIAC	(@	KU	Leuven)

�21

For	up	to	date	information,	see:	
https://www.vscentrum.be/en/access-and-infrastructure/tier-1

(16,240	cores	in	total)

https://www.vscentrum.be/en/access-and-infrastructure/tier-1
https://www.vscentrum.be/en/access-and-infrastructure/tier-1

VSC	Tier1

�22

For	academics	(all	Flemish	research	centers):	

• Free	of	charge	

• Starting	Grant	(100	node	days)	

• https://www.vscentrum.be/en/access-and-infrastructure/tier1-starting-grant	

• Fill	in	application	form,	send	it	to	hpc@ugent.be	

• Project	access	(500-5000	nodedays)	

• 3	evaluation	moments	per	year	

• Application	form	and	more	info  
https://www.vscentrum.be/en/access-and-infrastructure/project-access-tier1	

• Don’t	hesitate	to	contact	hpc@ugent.be	for	help!

https://www.vscentrum.be/en/access-and-infrastructure/tier1-starting-grant
mailto:hpc@ugent.be
https://www.vscentrum.be/en/access-and-infrastructure/project-access-tier1
mailto:hpc@ugent.be

VSC	Tier1

�23

For	industry:	

• Exploratory	access	(100	node	days)	

• Free	of	charge	

• Contact	hpc@ugent.be	

• Contract	access	

• FWO/UGent/company	contract	

• Payed	usage	(~13	euro	/	node	/	day)	

• Contact	hpc@ugent.be

mailto:hpc@ugent.be
mailto:hpc@ugent.be

Getting	a	VSC	account

�24

• See	Chapter	2	in	HPC-UGent	intro	course	notes	
• https://www.vscentrum.be/en/access-and-infrastructure/requesting-access	

• All	users	of	AUGent	can	request	an	account	
• Researchers	
• Master/Bachelor	students	(after	motivation	of	ZAP)	

• Staff	
• Subscribed	to	hpc-announce	and	hpc-users	mailing	lists	

• Beware	of	using	HPC	for	teaching/exam	purposes!	

• No	guarantee	on	HPC	availability	(power	outage/maintenance)	

• Have	a	backup	plan	at	hand	
• Advisable	teaching/exam	formula:	project	work

https://www.vscentrum.be/en/access-and-infrastructure/requesting-access
https://www.vscentrum.be/en/access-and-infrastructure/requesting-access

�25

1. Connect	to	login	nodes	

2. Transfer	your	files	

3. (Compile	your	code	and	test	it)	

4. Create	a	job	script	

5. Submit	your	job	

6. Be	patient	

• Your	job	gets	into	the	queue	

• Your	job	gets	executed	

• Your	job	finishes	

7. Move	your	results

Workflow	on	HPC	infrastructure

�26

High-level	overview	of	HPC-UGent	infrastructure

�27

1. Connect	to	login	nodes	

2. Transfer	your	files	

3. (Compile	your	code	and	test	it)	

4. Create	a	job	script	

5. Submit	your	job	

6. Be	patient	

• Your	job	gets	into	the	queue	

• Your	job	gets	executed	

• Your	job	finishes	

7. Move	your	results

See	Chapter	3	in	course	notes	

• Users	interact	with	the	infrastructure	via	the	login	nodes	
• No	direct	access	to	the	workernodes	
• Except	when	a	job	is	running	on	it

Workflow	on	HPC	infrastructure

Workflow	on	HPC	infrastructure

�28

1. Connect	to	login	nodes	

2. Transfer	your	files	

3. (Compile	your	code	and	test	it)	

4. Create	a	job	script	

5. Submit	your	job	

6. Be	patient	

• Your	job	gets	into	the	queue	

• Your	job	gets	executed	

• Your	job	finishes	

7. Move	your	results

• Choose	correct	PBS	directives	(Chapter	4,	8)	
• Load	software	modules	(Chapter	3)	
• Useful	environment	variables	(Chapter	4)	
• Select	correct	data	volume	(Chapter	6)

• required	resources	can	be	specified	via	#PBS	lines	in	job	script	(or	via	qsub)	
• maximum	walltime:	72	hours	

• for	longer	jobs,	use	checkpointing	
• preferable	internal/application	checkpointing	

• external	checkpointing	

• see	http://hpc.ugent.be/userwiki/index.php/User:Checkpointing

Job	scripts:	PBS	directives

�29

#!/bin/bash

#PBS -N solving_42 ## job name

#PBS -l nodes=1:ppn=all ## single-node job, all available cores

#PBS -l walltime=10:00:00 ## max. 10h of wall time
#PBS -l vmem=50gb ## max. 50GB virtual memory

<rest of job script>

http://hpc.ugent.be/userwiki/index.php/User:Checkpointing
http://hpc.ugent.be/userwiki/index.php/User:Checkpointing
http://hpc.ugent.be/userwiki/index.php/User:Checkpointing

• All	user-end	software	is	made	available	via	modules	

• Modules	prepare	the	environment	for	using	the	software	

• Module	naming	scheme:	<name>/<version>-<toolchain>[-<suffix>]

Load	a	module	to	use	the	software:	
$ module load Python/2.7.14-intel-2018a or $ ml Python/...

See	currently	loaded	modules	using:	
$ module list 	or	 $ ml

Get	overview	of	available	modules	using:	
$ module avail 	or	 $ ml av

• Only	mix	modules	built	with	the	same	compiler	toolchain.  
e.g.,	intel	(Intel	compilers,	Intel	MPI,	Intel	MKL	(BLAS,	LAPACK))	

• See	also	https://www.vscentrum.be/cluster-doc/software/modules/lmod

Job	scripts:	software	modules

�30

https://www.vscentrum.be/cluster-doc/software/modules/lmod
https://www.vscentrum.be/cluster-doc/software/modules/lmod

• $PBS_O_WORKDIR
• directory	from	which	job	was	submitted	on	login	node	
• common	to	use	‘cd $PBS_O_WORKDIR‘	at	beginning	of	job	script	

• $PBS_JOBID
• job	id	of	running	job	

• $PBS_ARRAYID
• array	id	of	running	job	
• only	relevant	when	submitting	array	jobs	(qsub -t)	

• $TMPDIR
• Local	directory	specific	to	running	job	
• Cleaned	up	automatically	when	job	is	done!	

• $EBROOTFOO, $EBVERSIONFOO
• root	directory/version	for	software	package	Foo	
• only	available	when	module	is	loaded

Job	scripts:	useful	environment	variables

�31

• See	Section	6.2	in	course	notes	
• Think	about	I/O:	
• How	will	you	stage	in	your	data	and	input	files?	
• How	will	you	stage	out	your	output	files?	

• Manually	(on	login	nodes)	vs	automatically	(as	a	part	of	job	script)	

• Home	filesystem:	only	for	limited	number	of	small	files	&	scripts	

• Data	filesystem	($VSC_DATA*):	‘long-term’	storage,	large	files	

• Scratch	filesystems	($VSC_SCRATCH*):	for	‘live’	input/output	data	in	jobs

Job	scripts:	input	data	&	filesystems

�32

• home	directory	($VSC_HOME):	3GB	(fixed)	

• personal	data	directory	($VSC_DATA):	25GB	(fixed)	
• personal	scratch	directory	($VSC_SCRATCH):	25GB	(fixed)	

• current	quota	usage	can	be	consulted	on	VSC	accountpage 
https://account.vscentrum.be	

• more	storage	quota	(GBs,	TBs)	available	for	members	of	virtual	organisations	(VOs)	

• see	http://hpc.ugent.be/userwiki/index.php/User:VSCVos	
• additional	quota	can	be	requested	via	https://account.vscentrum.be/django/vo/edit	

• shared	with	VO:	$VSC_DATA_VO,	$VSC_SCRATCH_VO	
• personal	VO	subdirectories:	$VSC_DATA_VO_USER,	$VSC_SCRATCH_VO_USER

Storage	quota

�33

https://account.vscentrum.be
http://hpc.ugent.be/userwiki/index.php/User:VSCVos
https://account.vscentrum.be/django/vo/edit

Job	scripts:	full	example	(single-core	job)

�34

#!/bin/bash

#PBS -N count_example ## job name

#PBS -l nodes=1:ppn=1 ## single-node job, single core

#PBS -l walltime=2:00:00 ## max. 2h of wall time

module load Python/3.6.4-intel-2018a

copy input data from location where job was submitted from

cp $PBS_O_WORKDIR/input.txt $TMPDIR

go to temporary working directory (on local disk) & run

cd $TMPDIR

python -c "print(len(open('input.txt').read()))" > output.txt

copy back output data, ensure unique filename using $PBS_JOBID

cp output.txt $VSC_DATA/output_${PBS_JOBID}.txt

Job	scripts:	full	example	(multi-node	job)

�35

#!/bin/bash

#PBS -N mpi_hello ## job name

#PBS -l nodes=2:ppn=all ## 2 nodes, all cores per node

#PBS -l walltime=2:00:00 ## max. 2h of wall time

module load intel/2017b

module load vsc-mympirun

go to working directory, compile and run MPI hello world

cd $PBS_O_WORKDIR

mpicc mpi_hello.c -o mpi_hello

mympirun ./mpi_hello

�36

1. Connect	to	login	nodes	

2. Transfer	your	files	

3. (Compile	your	code	and	test	it)	

4. Create	a	job	script	

5. Submit	your	job	

6. Be	patient	

• Your	job	gets	into	the	queue	

• Your	job	gets	executed	

• Your	job	finishes	

7. Move	your	results

• Chapter	4	in	course	notes	
• Demo:	qsub,	qstat,	qdel	
• Job	scheduling

Workflow	on	HPC	infrastructure

• Submit	job	scripts	from	a	login	node	to	a	cluster	for	execution	using	qsub:	

$ module swap cluster/golett

$ qsub example.sh

12345.master19.golett.gent.vsc

• An	overview	of	the	active	jobs	is	available	via	qstat:	
$ qstat

Job id Name User Time Use S Queue

-------------- ------ ---------- -------- - -----

12345.master19 example vsc40000 07:39:30 R long

• To	remove	a	job	that	is	no	longer	necessary,	use	qdel:	

$ qdel 12345

Demo:	qsub,	qstat,	qdel

�37

• All	our	clusters	use	a	fair-share	scheduling	policy.	
• No	guarantees	on	when	job	will	start,	so	plan	ahead!	
• Job	priority	is	determined	by:	

• historical	usage	
• aim	is	to	balance	usage	over	users	

• infrequent/frequent	users	=>	higher/lower	priority	
• requested	resources	(#	nodes/cores,	walltime,	memory,	...)	

• large	resource	request	=>	lower	priority	
• time	waiting	in	queue	

• queued	jobs	get	higher	priority	over	time	

• user	limits	

• avoid	that	a	single	user	fills	up	an	entire	cluster

Job	scheduling

�38

• Use	case:	lots	of	((very)	short)	single-core	tasks	
• Submitting	lots	of	tiny	jobs	(minutes	of	walltime)	is	not	a	good	idea	

• overhead	for	each	jobs	(node	health	checks),	lots	of	bookkeeping	(job	scripts,	failed	jobs,	output	files)	

• Better	approach:	
• Array	jobs	(http://hpc.ugent.be/userwiki/index.php/User:VscScripts#Array_Example)	

• Single	job	script,	but	still	lots	of	submitted	jobs	

• Each	job	is	assigned	a	unique	id	($PBS_ARRAYID);	can	be	used	to	select	input	file,	parameters,	…	

• GNU	parallel	(https://www.gnu.org/software/parallel/parallel_tutorial.html)	

• General-purpose	tool	to	easily	running	shell	commands	in	parallel	with	different	inputs	

• Use	‘parallel’	command	in	your	job	script	

• Worker	(https://www.vscentrum.be/cluster-doc/running-jobs/worker-framework)	

• One	single	job	that	processes	a	bunch	of	tasks	(multi-core	or	even	multi-node)	

• Job	script	is	parameterized,	submit	with	‘wsub’	rather	than	‘qsub’

Embarrassingly	parallel	jobs

�39

http://hpc.ugent.be/userwiki/index.php/User:VscScripts#Array_Example
http://hpc.ugent.be/userwiki/index.php/User:VscScripts#Array_Example
https://www.gnu.org/software/parallel/parallel_tutorial.html)
https://www.gnu.org/software/parallel/parallel_tutorial.html)
https://www.vscentrum.be/cluster-doc/running-jobs/worker-framework)
https://www.vscentrum.be/cluster-doc/running-jobs/worker-framework)

To	submit	a	request	for	software	installation: 
															https://www.ugent.be/hpc/en/support/software-installation-request	

Always	include:	

• software	name	and	website	

• location	to	download	source	files	

• or	make	install	files	available	in	your	account	

• build	instructions	(if	you	have	them)	

• a	simple	test	case	with	expected	output	

• including	instructions	on	how	to	run	it	

Requests	may	take	a	while	to	process;	make	the	request	sooner	rather	than	later!	

	 	 http://hpcugent.github.io/easybuild/

Software	installations

�40

https://www.ugent.be/hpc/en/support/software-installation-request
http://hpcugent.github.io/easybuild/
http://hpcugent.github.io/easybuild/
http://hpcugent.github.io/easybuild/

• Documentation	is	available	at:	

• https://www.vscentrum.be/en/user-portal	

• (http://hpc.ugent.be/userwiki,	being	phased	out)	

• HPC	tutorial:	https://www.ugent.be/hpc/en/support/documentation.htm	

• Basic	Linux:	http://hpc.ugent.be/userwiki/index.php/Tips:Introduction_to_Linux  

• Training	sessions	-	https://www.vscentrum.be/en/education-and-trainings	

• May	22-23	2018:	Introduction	to	multithreading	and	OpenMP		

• May	30	2018:	Introduction	to	MPI	

• fall	2018:	Introduction	to	Linux	+	specialist	courses	on	Fortran	and	(maybe)	Python

Documentation	&	training

�41

https://www.vscentrum.be/en/user-portal
https://www.vscentrum.be/en/user-portal
http://hpc.ugent.be/userwiki
http://hpc.ugent.be/userwiki
http://hpc.ugent.be/userwiki
https://www.ugent.be/hpc/en/support/documentation.htm
http://hpc.ugent.be/userwiki/index.php/Tips:Introduction_to_Linux
http://hpc.ugent.be/userwiki/index.php/Tips:Introduction_to_Linux
http://hpc.ugent.be/userwiki/index.php/Tips:Introduction_to_Linux
https://www.vscentrum.be/en/education-and-trainings
https://www.vscentrum.be/en/education-and-trainings

Contact	HPC-UGent	support:	hpc@ugent.be	

Always	include:	

• clear	description	of	problem	(or	question)	

• location	of	job	script	and	output/error	files	in	your	account	
• don’t	send	them	in	attachment,	we	prefer	to	look	at	it	‘in	context’	

• job	IDs,	which	cluster		
• VSC	login	id	
Preferably	use	your	UGent	email	address	

Alternatives:	

• short	meeting	(for	complex	problems,	big	projects)	

• hpc-users	mailing	list

Getting	help

�42

mailto:hpc@ugent.be

Introduction	to	HPC-UGent
March	28th	2018	

http://users.ugent.be/~kehoste/hpcugent-intro-20180328.pdf	

hpc@ugent.be	 	 	 	 	 http://ugent.be/hpc

http://users.ugent.be/~kehoste/hpcugent-intro-20180328.pdf
mailto:hpc@ugent.be
http://ugent.be/hpc

