

Introduction to HPC-UGent

March 28th 2018 http://users.ugent.be/~kehoste/hpcugent-intro-20180328.pdf

hpc@ugent.be

http://ugent.be/hpc

About this training – purpose

- Inform you of HPC-UGent services and infrastructure
- Learn what the benefit can be for your research
- Get you started on the central HPC infrastructure at UGent
 - Successfully connect to the HPC infrastructure
 - Successfully launch your first job
 - Figure out how to leverage it for *your* research

• Answer your questions

About this training – VSC manual

- A manual is available, applicable for all VSC infrastructure
- Download it here: https://www.ugent.be/hpc/en/support/documentation.htm
- This is work in progress. If you find errors, do let us know.
- We will specifically use information from these chapters:
 - 1/ Introduction to HPC
 - 2/ Getting an HPC account
 - 3/ Connecting to the HPC

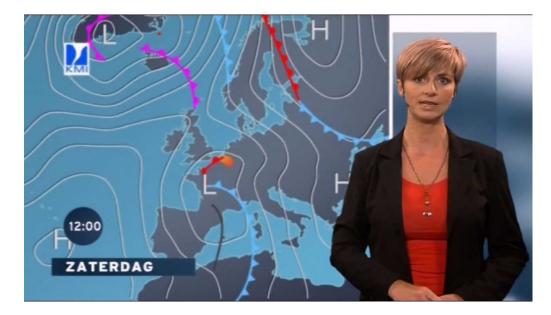
- 4/ Running batch jobs
- 6/ Running jobs with input/output data
- 8/ Fine-tuning job specifications

What is High Performance Computing?

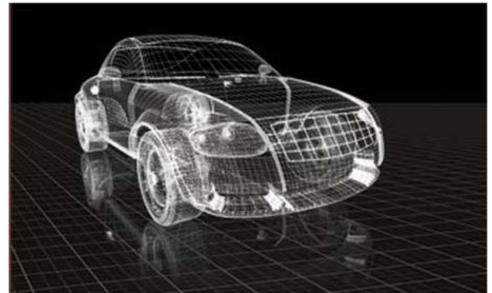
"High Performance Computing" (HPC) is computing on a "supercomputer", a system at the frontline of contemporary processing capacity – particularly in terms of size, supported degree of *parallelism*, network interconnect and (total) available memory & disk space.

A computer *cluster* consists of a set of loosely or tightly connected computers that work together so that in many respects they can be viewed as a single system.

(a.k.a. "supercomputing")


What is High Performance Computing?

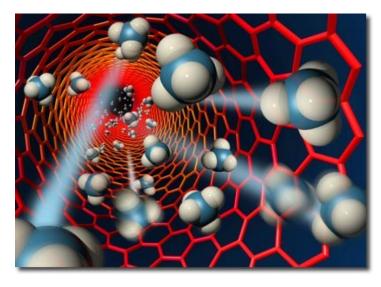
harness power of multiple interconnected cores/nodes/processing units

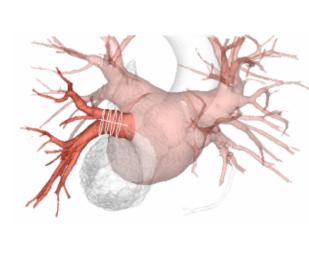


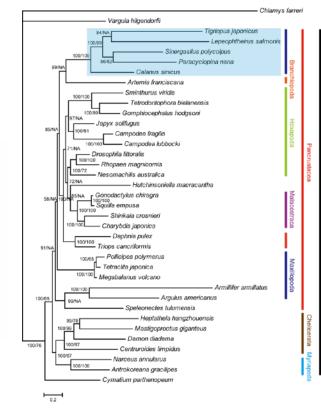
Everyday applications of supercomputing

GHENT

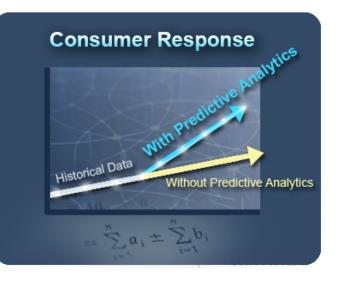
UNIVERSITY

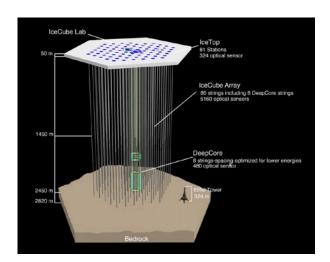


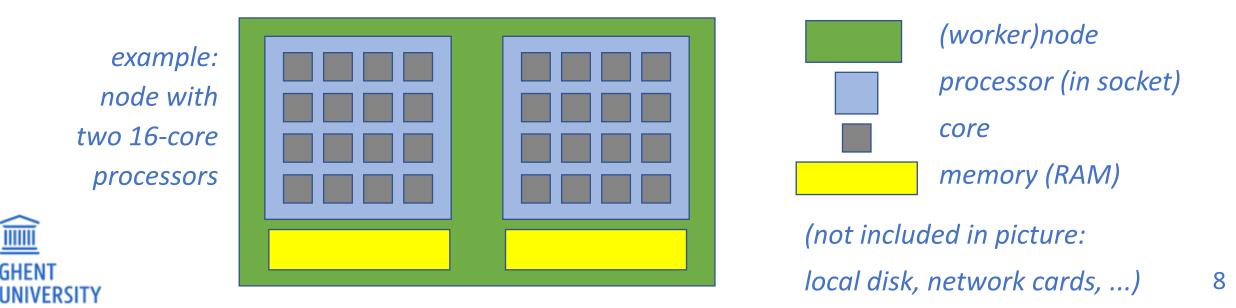





Scientific applications of supercomputing







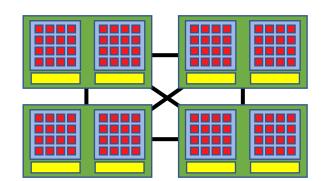
Cores, CPUs, processors, sockets, (worker)nodes

Modern servers, also referred to as **(worker) nodes** in the context of HPC, include one or more **sockets**, each housing a *multi-core processor* (next to memory, disk(s), network cards, ...). A modern (micro)**processor** consists of multiple CPUs or **cores** that are used to execute *computations*.

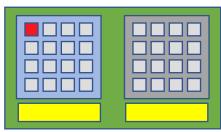
Parallel vs sequential software

In **parallel** software, *many* calculations are carried out *simultaneously*. They are based on the principle that large problems can often be divided into smaller tasks, which are then solved concurrently ("in parallel"). *e.g., OpenFOAM can easily use 160 cores at the same time to solve a CFD problem*

Parallel programming paradigms:


OpenMP for shared memory systems (*multithreading*) -> on cores of a *single* node **MPI** for distributed memory systems (*multiprocessing*) -> on *multiple* nodes

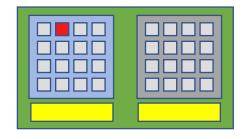
OpenMP software can use multiple or all cores in a node

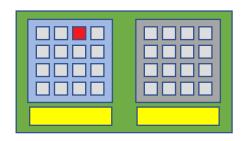

MPI software can use (all) cores in multiple nodes

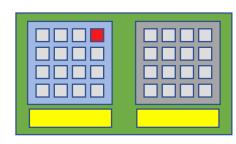
Parallel vs sequential programs

Sequential (a.k.a. serial) software does not do calculations in parallel,

i.e. it only uses *one single core* of a single workernode.




(Sequential) software does not become faster by just throwing cores at it...


But, you can run *multiple instances* at the same time on a supercomputer.

e.g., you can easily run a Python script 1000 times at once to quickly analyse 1000 datasets

hpc@ugent.be

Part of ICT Department of Ghent University

Our mission

HPC-UGent provides centralised scientific computing services, training, and support for researchers from Ghent University, industry, and other knowledge institutes.

Our core values

Empowerment - Centralisation - Automation - Collaboration

HPC-UGent: staff

Stijn De Weirdt technical lead

Kenneth Hoste user support & training

Ewald Pauwels team lead

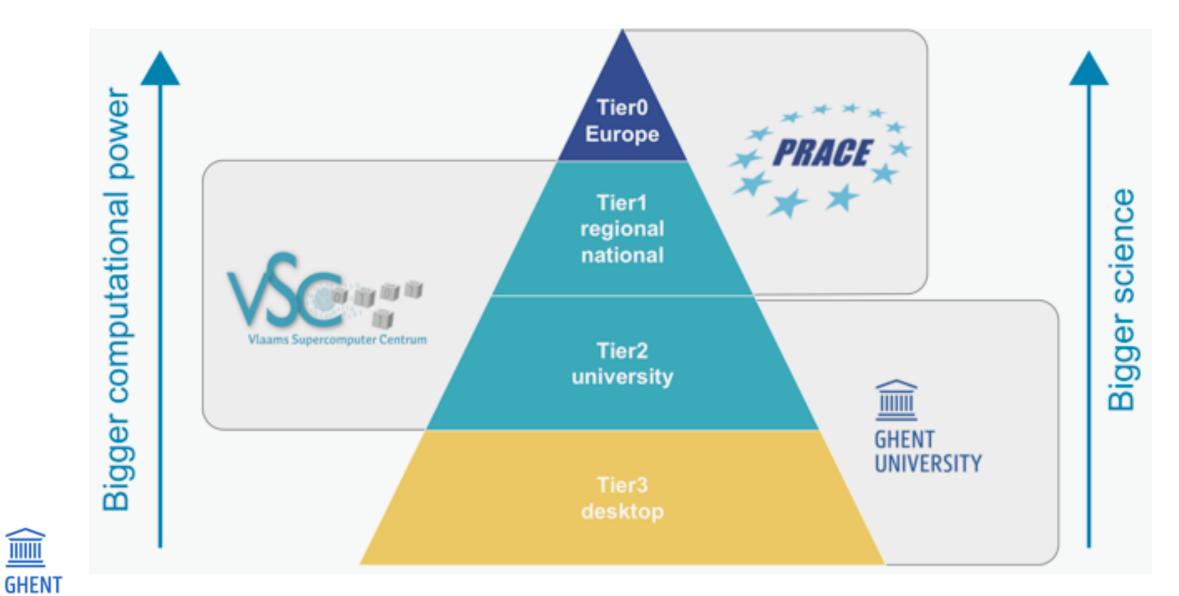
Wouter Depypere sysadmin, hardware

Jens Timmerman sysadmin, security

Kenneth Waegeman sysadmin, storage

Alvaro Simon Garcia cloud, user support 12

Andy Georges sysadmin, tools & testing


Centralised hardware

Centralised hardware

UNIVERSITY

HPC-UGent Tier2 (STEVIN): central investments

GHEN1

UNIVERSITY

Total investment in HPC-UGent compute infrastructure

HPC-UGent Tier2 (STEVIN)

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

	4 Tier2 clusters							
		Compute clusters		S in total 500 worke 470)k cores			
			#nodes	CPU	Mem/node	Diskspace/node	Network	
		Raichu	64	(retired on Jan 15th 2018) (Sandy Bridge @ 2.6 GHz)	32 GB	400 GB	GbE	
		Delcatty	160. 126	2 x 8-core Intel E5-2670 (Sandy Bridge @ 2.6 GHz)	64 GB	400 GB	FDR InfiniBand	
		Phanpy	16	2 x 12-core Intel E5-2680v3 (Haswell-EP @ 2.5 GHz)	512 GB	3x 400 GB (SSD, striped)	FDR InfiniBand	
		Golett	200	2 x 12-core Intel E5-2680v3 (Haswell-EP @ 2.5 GHz)	64 GB	500 GB	FDR-10 InfiniBand	
GHENT UNIVERS	ITY	Swalot	128	2 x 10-core Intel E5-2660v3 (Haswell-EP @ 2.6 GHz)	128 GB	1 TB	FDR InfiniBand	

HPC-UGent Tier2 (STEVIN)

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

2 new Tier2 clusters, replacements for raichu & delcatty

about 6000 extra compute cores, latest Intel processor generation

current status: operational & being tested by pilot users

expected to be 'publicly' available in summer 2018

	8		#nodes	CPU	Mem/node	Diskspace/node	Network
		skitty	72	2 x 18-core Intel Xeon Gold	192 GB	1 TB	EDR InfiniBand
				6140 (Skylake @ 2.3 GHz)		240 GB SSD	
	00	victini	96	2 x 18-core Intel Xeon Gold	96 GB	1 TB	10 GbE
				6140 (Skylake @ 2.3 GHz)		240 GB SSD	
GHENT							

HPC-UGent Tier2 (STEVIN)

https://www.vscentrum.be/infrastructure/hardware/hardware-ugent

2 new Tier2 clusters, replacements for raichu & delcatty

about 6000 extra compute cores, latest Intel processor generation

current status: operational & being tested by pilot users

expected to be 'publicly' available in summer 2018

R R R		#nodes	CPU	Mem/node	Diskspace/node	Network
	skitty	72	2 x 18-core Intel Xeon Gold	192 GB	1 TB	EDR InfiniBand
			6140 (Skylake @ 2.3 GHz)		240 GB SSD	
000	victini	96	2 x 18-core Intel Xeon Gold	96 GB	1 TB	10 GbE
			6140 (Skylake @ 2.3 GHz)		240 GB SSD	·

Network connections between nodes

Ethernet: 1-10 Gbit/s

Infiniband: 50 - 100 Gbit/s

€

€€(€) required for MPI jobs

VSC Tier2

Vlaams Supercomputer Centrum (Flemish Supercomputer Center)

https://www.vscentrum.be/en/access-and-infrastructure/tier-2

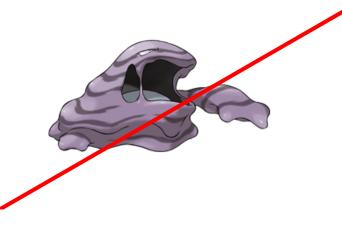
(GPGPU systems @ KUL: http://hpc.ugent.be/userwiki/index.php/Tips:Software:GPGPU)

Antwerp University association

Brussels University association + Grid specialization

Ghent University association + Big Data specialization

KU Leuven association Limburg association University-Colleges + Shared memory, accelerator specialization



VSC Tier1 – muk (@ HPC-UGent)

For up to date information, see:

https://www.vscentrum.be/en/access-and-infrastructure/tier-1

Hardware

retired on Jan 1st 2017

- 528 computing nodes
 - Two 8-core Intel Xeon processors (Sandy Bridge, E5-2670, 2.6 GHz)
 - 64 GiB RAM
- FDR InfiniBand interconnect with a fat tree topology
 - High bandwidth (6.5 GB/s per direction, per link)
 - Low latency
- Storage system
 - Capacity of 400 TB
 - Peak bandwidth of 9.5 GB/s

VSC Tier1 – BrENIAC (@ KU Leuven)

For up to date information, see: https://www.vscentrum.be/en/access-and-infrastructure/tier-1

Hardware

- 580 computing nodes (16,240 cores in total)
 - Two 14-core Intel Xeon processors (Broadwell, E5-2680v4)
 - 128 GiB RAM (435 nodes) or 256 GiB (145 nodes)
- EDR InfiniBand interconnect
 - High bandwidth (11.75 GB/s per direction, per link)
 - Slightly improved latency over FDR
- Storage system
 - Capacity of 634 TB
 - Peak bandwidth of 20 GB/s

VSC Tier1

For academics (all Flemish research centers):

- Free of charge
- Starting Grant (100 node days)

- https://www.vscentrum.be/en/access-and-infrastructure/tier1-starting-grant
- Fill in application form, send it to hpc@ugent.be
- Project access (500-5000 nodedays)
 - 3 evaluation moments per year
 - Application form and more info

https://www.vscentrum.be/en/access-and-infrastructure/project-access-tier1

• Don't hesitate to contact hpc@ugent.be for help!

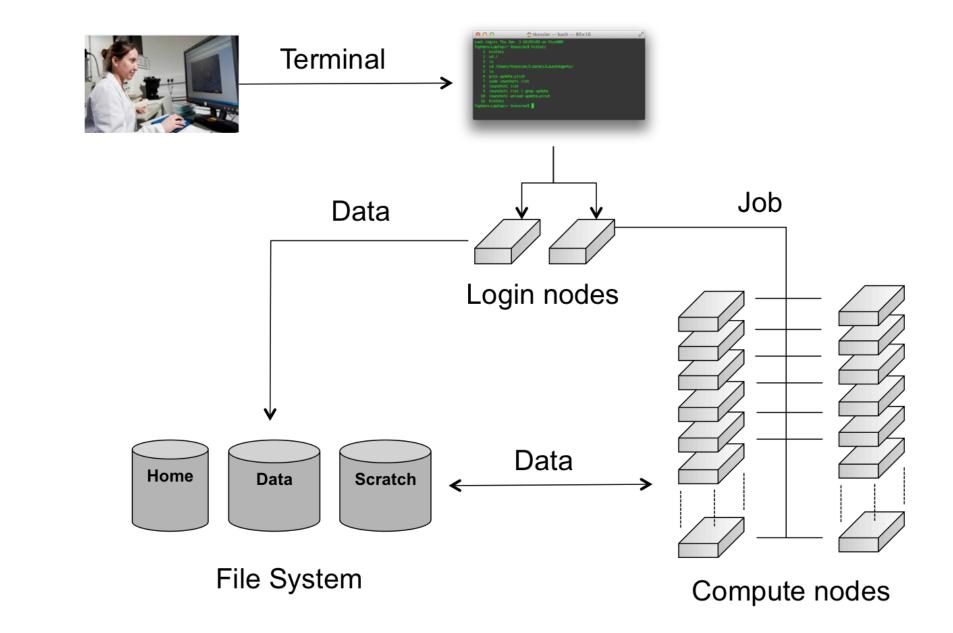
VSC Tier1

For industry:

- Exploratory access (100 node days)
 - Free of charge
 - Contact hpc@ugent.be
- Contract access
 - FWO/UGent/company contract
 - Payed usage (~13 euro / node / day)
 - Contact hpc@ugent.be

Getting a VSC account

- See Chapter 2 in HPC-UGent intro course notes
- https://www.vscentrum.be/en/access-and-infrastructure/requesting-access
- All users of AUGent can request an account
 - Researchers
 - Master/Bachelor students (after motivation of ZAP)
 - Staff
- Subscribed to hpc-announce and hpc-users mailing lists
- Beware of using HPC for teaching/exam purposes!
 - No guarantee on HPC availability (power outage/maintenance)
 - Have a backup plan at hand


• Advisable teaching/exam formula: project work

Workflow on HPC infrastructure

- 1. Connect to login nodes
- 2. Transfer your files
- 3. (Compile your code and test it)
- 4. Create a job script
- 5. Submit your job
- 6. Be patient
 - Your job gets into the queue
 - Your job gets executed
 - Your job finishes
- 7. Move your results

High-level overview of HPC-UGent infrastructure

GHENT

Workflow on HPC infrastructure

- **1. Connect to login nodes**
- 2. Transfer your files
- 3. (Compile your code and test it)

See Chapter 3 in course notes

- Users interact with the infrastructure via the login nodes
- No direct access to the workernodes
- Except when a job is running on it

• Your job gets executed

• Your job finishes

7. Move your results

Workflow on HPC infrastructure

- 1. Connect to login nodes
- 2. Transfer your files
- 3. (Compile your code and test it)
- 4. Create a job script
- 5. Submit your job
- Choose correct PBS directives (Chapter 4, 8)
- Load software modules (Chapter 3)
- Useful environment variables (Chapter 4)
- Select correct data volume (Chapter 6)

Job scripts: PBS directives

```
#!/bin/bash
#PBS -N solving_42  ## job name
#PBS -l nodes=1:ppn=all  ## single-node job, all available cores
#PBS -l walltime=10:00:00  ## max. 10h of wall time
#PBS -l vmem=50gb  ## max. 50GB virtual memory
<rest of job script>
```

- required resources can be specified via #PBS lines in job script (or via qsub)
- maximum walltime: 72 hours
- for longer jobs, use *checkpointing*
 - preferable internal/application checkpointing
 - external checkpointing
 - see http://hpc.ugent.be/userwiki/index.php/User:Checkpointing

Job scripts: software modules

- All user-end software is made available via *modules*
- Modules prepare the environment for using the software
- Module naming scheme: <name>/<version>-<toolchain>[-<suffix>]

Load a module to use the software: \$ module load Python/2.7.14-intel-2018a or \$ ml Python/... See currently loaded modules using: \$ module list or \$ ml Get overview of available modules using: \$ module avail or \$ ml av

- Only mix modules built with the same compiler toolchain.
- e.g., intel (Intel compilers, Intel MPI, Intel MKL (BLAS, LAPACK))

HENT • See also https://www.vscentrum.be/cluster-doc/software/modules/Imod

Job scripts: useful environment variables

- \$PBS_O_WORKDIR
 - directory from which job was submitted on login node
 - common to use 'cd \$PBS_O_WORKDIR' at beginning of job script
- \$PBS_JOBID
 - job id of running job
- \$PBS_ARRAYID
 - array id of running job
 - only relevant when submitting array jobs (qsub -t)
- \$TMPDIR

GHEN

- Local directory specific to running job
- Cleaned up automatically when job is done!
- \$EBROOTFOO, \$EBVERSIONFOO
 - root directory/version for software package Foo
 - only available when module is loaded

Job scripts: input data & filesystems

- See Section 6.2 in course notes
- Think about I/O:
 - How will you *stage in* your data and input files?
 - How will you *stage out* your output files?
- Manually (on login nodes) vs automatically (as a part of job script)

- Home filesystem: only for limited number of small files & scripts
- Data filesystem (\$VSC_DATA*): 'long-term' storage, large files
- Scratch filesystems (\$VSC_SCRATCH*): for 'live' input/output data in jobs

Storage quota

- home directory (\$VSC_HOME): 3GB (fixed)
- personal data directory (\$VSC_DATA): 25GB (fixed)
- personal scratch directory (\$VSC_SCRATCH): 25GB (fixed)
- current quota usage can be consulted on VSC accountpage https://account.vscentrum.be
- more storage quota (GBs, TBs) available for members of virtual organisations (VOs)
- see http://hpc.ugent.be/userwiki/index.php/User:VSCVos
- additional quota can be requested via https://account.vscentrum.be/django/vo/edit
- shared with VO: \$VSC_DATA_VO, \$VSC_SCRATCH_VO

Job scripts: full example (single-core job)

```
#!/bin/bash
```

```
#PBS -N count example ## job name
```

```
#PBS -1 walltime=2:00:00  ## max. 2h of wall time
```

#PBS -1 nodes=1:ppn=1 ## single-node job, single core

```
module load Python/3.6.4-intel-2018a
# copy input data from location where job was submitted from
cp $PBS O WORKDIR/input.txt $TMPDIR
# go to temporary working directory (on local disk) & run
cd $TMPDIR
python -c "print(len(open('input.txt').read()))" > output.txt
# copy back output data, ensure unique filename using $PBS JOBID
cp output.txt $VSC DATA/output ${PBS JOBID}.txt
```


Job scripts: full example (multi-node job)

```
#!/bin/bash
```

```
#PBS -N mpi hello
```

job name #PBS -1 nodes=2:ppn=all ## 2 nodes, all cores per node #PBS -1 walltime=2:00:00 ## max. 2h of wall time

```
module load intel/2017b
module load vsc-mympirun
```

```
# go to working directory, compile and run MPI hello world
cd $PBS O WORKDIR
mpicc mpi hello.c -o mpi hello
mympirun ./mpi hello
```


Workflow on HPC infrastructure

Connect to login nodes

- Chapter 4 in course notes
- Demo: qsub, qstat, qdel
- Job scheduling
 - 4. Create a Job script
 - 5. Submit your job
 - 6. Be patient
 - Your job gets into the queue
 - Your job gets executed
 - Your job finishes
 - 7. Move your results

Demo: qsub, qstat, qdel

- Submit job scripts from a login node to a cluster for execution using **qsub**:
 - \$ module swap cluster/golett
 - \$ qsub example.sh
 - 12345.master19.golett.gent.vsc
- An overview of the active jobs is available via **qstat**:

\$ qstat					
Job id	Name	User	Time Use	S	Queue
				-	
12345.master19	example	vsc40000	07:39:30	R	long

• To remove a job that is no longer necessary, use **qdel**:

\$ qdel 12345

Job scheduling

- All our clusters use a *fair-share* scheduling policy.
- No guarantees on when job will start, so plan ahead!
- Job priority is determined by:
 - historical usage
 - aim is to balance usage over users
 - infrequent/frequent users => higher/lower priority
 - *requested resources* (# nodes/cores, walltime, memory, ...)
 - large resource request => lower priority
 - time waiting in queue
 - queued jobs get higher priority over time
 - user limits
 - avoid that a single user fills up an entire cluster

Embarrassingly parallel jobs

- Use case: lots of ((very) short) single-core tasks
- Submitting lots of tiny jobs (minutes of walltime) is not a good idea
 - overhead for each jobs (node health checks), lots of bookkeeping (job scripts, failed jobs, output files)
- Better approach:
 - Array jobs (http://hpc.ugent.be/userwiki/index.php/User:VscScripts#Array_Example)
 - Single job script, but still lots of submitted jobs
 - Each job is assigned a unique id (\$PBS_ARRAYID); can be used to select input file, parameters, ...
 - GNU parallel (https://www.gnu.org/software/parallel/parallel_tutorial.html)
 - General-purpose tool to easily running shell commands in parallel with different inputs
 - Use 'parallel' command in your job script
 - Worker (https://www.vscentrum.be/cluster-doc/running-jobs/worker-framework)
 - One single job that processes a bunch of tasks (multi-core or even multi-node)

• Job script is parameterized, submit with 'wsub' rather than 'qsub'

Software installations

To submit a request for software installation:

https://www.ugent.be/hpc/en/support/software-installation-request

Always include:

- software name and website
- location to download source files
 - or make install files available in your account
- build instructions (if you have them)
- a simple test case with expected output
 - including instructions on how to run it

Requests may take a while to process; make the request sooner rather than later!

http://hpcugent.github.io/easybuild/

Documentation & training

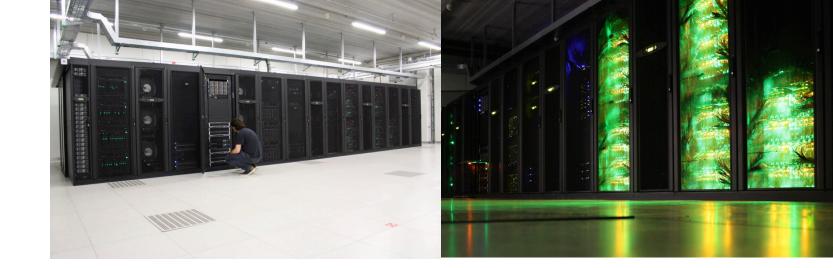
- Documentation is available at:
 - https://www.vscentrum.be/en/user-portal
 - (http://hpc.ugent.be/userwiki, being phased out)
- HPC tutorial: https://www.ugent.be/hpc/en/support/documentation.htm
- Basic Linux: http://hpc.ugent.be/userwiki/index.php/Tips:Introduction_to_Linux
- Training sessions https://www.vscentrum.be/en/education-and-trainings
 - May 22-23 2018: Introduction to multithreading and OpenMP
 - May 30 2018: Introduction to MPI
 - fall 2018: Introduction to Linux + specialist courses on Fortran and (maybe) Python

Getting help

Contact HPC-UGent support: hpc@ugent.be

Always include:

- clear description of problem (or question)
- location of job script and output/error files in your account
 - don't send them in attachment, we prefer to look at it 'in context'
- job IDs, which cluster
- VSC login id


Preferably use your UGent email address

Alternatives:

- short meeting (for complex problems, big projects)
- hpc-users mailing list

Introduction to HPC-UGent

March 28th 2018 http://users.ugent.be/~kehoste/hpcugent-intro-20180328.pdf

hpc@ugent.be

http://ugent.be/hpc

