
Fortran code modernization

Dr. Reinhold Bader
Leibniz Supercomputing Centre

This work is licensed under the Creative Commons Attribution Non-Commercial 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/
When attributing this work, please use the following text block:

Fortran code modernization, Leibniz Supercomputing Centre, 2018.
Available under a Creative Commons Attribution Non-Commercial 3.0 Unported License.

http://creativecommons.org/licenses/by-nc/3.0/

Workshop's aims

© 2015-18 LRZ Modernizing Fortran Legacy Codes 2

Improve Performance
(Time to solution)

speed of
execution

speed of build process
speed of

development
process

correlations and
anticorrelations exist

Need:
1. experience
2. compromise
3. intelligence
4. diligence
(not necessarily in that order)

How can the aims be achieved?

• replace obsolescent / unsuitable features by modern ones
• follow best practices in using advanced featureslanguage features

• edit, document
• build, debug, profile, tunetools

• I/O processing and its design
• visualizationdata handling

• scalability in multiple facets
• proper choice of programming modelparallelism

• reduce problem complexity order while maintaining
efficiency of executionalgorithms

© 2015-18 LRZ Modernizing Fortran Legacy Codes 3

correctness of code contributes
to development speed
correctness of code contributes
to development speed

expect tradeoff

Assumptions on Audience

Good working knowledge of Fortran 77 semantics
Knowledge about the most relevant Fortran 90/95 concepts

modules, array processing, dynamic memory
Basic experience with C programming
Basic experience with parallel programming

using OpenMP, MPI or both
Useful:

some conceptual knowledge about object-oriented programming
(single inheritance, virtual methods, interface classes)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 4

Assumptions on pre-existing code

Language features are used that
date from Fortran 77 or earlier
were never standardized, but are supported in many compilers

How you proceed depends on the specifics of code reuse:
run without (or at most minor isolated) modifications as a standalone
program → no refactoring required

use as library facility → no full refactoring may be needed, but it is
likely desirable to create explicit interfaces
further maintenance (bug fixes with possibly non-obvious effects) or
even further development is needed → refactoring is advisable

© 2015-18 LRZ Modernizing Fortran Legacy Codes 5

„never change a running system“ + Fortran (mostly) backward compatible

History of Fortran

© 2015-18 LRZ Modernizing Fortran Legacy Codes 6

Fortran – the oldest portable
programming language

first compiler developed by John
Backus at IBM (1957-59)

design target: generate code
with speed comparable to
assembly programming, i.e.
for efficiency of compiled
executables

targeted at scientific /
engineering (high
performance) computing

Fortran standardization

ISO/IEC standard 1539-1

repeatedly updated

Generations of standards

TS  Technical Specifications

„mini-standards“ targeted for
future inclusion (modulo bug-fixes)

Fortran 66 ancient

Fortran 77 (1980) traditional

Fortran 90 (1991) large revision

Fortran 95 (1997) small revision

Fortran 2003 (2004) large revision

Fortran 2008 (2010) mid-size revision

TS 29113 (2012) extends C interop

TS 18508 (2015) extends parallelism

Fortran 2018 (2018) next revision

Conventions and Flags used in these talks

Legacy code
Recommend replacement by
a more modern feature

obsolescent feature

deleted feature

Implementation
dependencies
Processor dependent

behaviour (may be
unportable)

Performance
language feature for / against
performance

Standards conformance

Recommended practice

Standard conforming, but
considered questionable
style

Dangerous practice, likely to
introduce bugs and/or non-
conforming behaviour

Gotcha! Non-conforming
and/or definitely buggy

© 2015-18 LRZ Modernizing Fortran Legacy Codes 7

OBS

DEL

Why Fortran?

SW engineering aspects
good ratio of learning effort to
productivity
good optimizability
compiler correctness checks

(constraints and restrictions)

Ecosystem
many existing legacy libraries
existing scientific code bases
 may determine what language
to use
using tools for diagnosis of
correctness problems is
sometimes advisable

Key language features
dynamic (heap) memory
management since , much
more powerful in
encapsulation and code reuse
via modules since
object based and object-
oriented features
array processing
versatile I/O processing
abstraction features: overloaded
and user-defined operators
interoperability with C
FP exception handling
parallelism

© 2015-18 LRZ Modernizing Fortran Legacy Codes 8

When not to use Fortran

When programming an embedded system
these sometimes do not support FP arithmetic
implementation of the language may not be available

When working in a group/project that uses C++, Java, Eiffel,
Haskell, … as their implementation language

synergy in group: based on some – usually technically justified –
agreement
minor exception: library code for which a Fortran interface is desirable
– use C interoperability features to generate a wrapper

© 2015-18 LRZ Modernizing Fortran Legacy Codes 9

Some references

Modern Fortran explained (8th edition incorporates)
Michael Metcalf, John Reid, Malcolm Cohen, OUP, 2018

The Fortran 2003 Handbook
J. Adams, W. Brainerd, R. Hendrickson, R. Maine, J. Martin, B. Smith.
Springer, 2008

Guide to Fortran 2008 programming (introductory text)
W. Brainerd. Springer, 2015

Modern Fortran – Style and Usage (best practices guide)
N. Clerman, W. Spector. Cambridge University Press, 2012

Scientific Software Design – The Object-Oriented Way
Damian Rouson, Jim Xia, Xiaofeng Xu, Cambridge, 2011

© 2009-18 LRZ Advanced Fortran Topics - LRZ section 10

References cont'd

Design Patterns – Elements of Reusable Object-oriented
Software

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Addison-Wesley, 1994
Modern Fortran in Practice

Arjen Markus, Cambridge University Press, 2012
Introduction to High Performance Computing for Scientists
and Engineers

G. Hager and G. Wellein

© 2009-18 LRZ Advanced Fortran Topics - LRZ section 11

Dealing with
legacy language features

© 2015-18 LRZ Modernizing Fortran Legacy Codes 12

Legacy code: Fixed source form

Source code stored in files with extension

Layout of code looks something like this

© 2015-18 LRZ Modernizing Fortran Legacy Codes 13

C 1 2 3 4 5 6 7 8
*2345678901234567890123456789012345678901234567890123456789012345678901234567890

PROGRAM M
Y = 1.0
X = 1.5
X = X + 2.0 +Y
IF (X < 4.0) GOTO 20
WRITE(*,*) 'statement with continuation',

1 'line', X
C comment line

20 CONTINUE
END PROGRAM

.f .for .ftn .F
for use with C-style

preprocessing

Technical reason for fixed source form …

© 2015-18 LRZ Modernizing Fortran Legacy Codes 14

Legacy code: Fixed source form

Fortran 77 (and earlier) language rules for layout:
statements must start at column 7
must end at column 72
continuation line: single non-blank / non-zero character in column 6
limit of 19 continuation lines
comment must have the characters C or * in column 1
labels must be in columns 1-5

© 2015-18 LRZ Modernizing Fortran Legacy Codes 15

C 1 2 3 4 5 6 7 8
*2345678901234567890123456789012345678901234567890123456789012345678901234567890

PROGRAM M
Y = 1.0
X = 1.5
X = X + 2.0 +Y
IF (X < 4.0) GOTO 20
WRITE(*,*) 'statement with continuation',

1 'line', X
C comment line

20 CONTINUE
END PROGRAM

processor extensions to 132 columns
exist. Beware unnoticed errors
if compiler option is not toggled

might get ignored if
line length extension

is not toggled

Legacy code: Fixed source form

Further pitfall: Insignificance of embedded blanks

© 2015-18 LRZ Modernizing Fortran Legacy Codes 16

S = 0.0
DO 10 I=1.5

S = S+I
10 CONTINUE

WRITE(*,*) 'S=',S
END

C = 0.0
AA = 2.0
BB = 2.0
IF (AA .EQ. BB) THEN C = AA + BB
WRITE(*,*) 'C=',C
END

Both codes are conforming, but deliver results that might surprise you ...

Quiz: Which language feature conspires with the embedded blanks to
produce this surprise?

The new way: Rules for free source form

Program line
upper limit of 132 characters
arbitrary indentation allowed

Continuation line
indicated by ampersand:

variant for split tokens:

upper limit: 255
Multiple statements

semicolon used as separator

Comments:
after statement on same line:

separate comment line:

File extension
unrelated to language level

© 2015-18 LRZ Modernizing Fortran Legacy Codes 17

WRITE(*,fmt=*) &
'Hello'

WRITE(*,fmt=*) 'Hel&
&lo'

a = 0.0; b = 0.0; c = 0.0

WRITE(*,*) 'Hello' ! produce output

WRITE(*,*) 'Hello'
! produce output

The art of commenting code:
concise
informative
non-redundant
consistent
(maintenance issue)

.f90 .F90

Tooling options

Open-source software
convert tool by Michael
Metcalf
to_f90 tool by Alan Miller
your mileage may vary
further similar tools exist

NAG compiler
supports =polish as an
option for converting between
fixed and free format
additional suboptions are
available

© 2015-18 LRZ Modernizing Fortran Legacy Codes 18

Implicit and explicit typing of variables (1)

If no type declaration
statement appears:

without an IMPLICIT
statement, typing of entities
is performed implicitly,
based on first letter of the
variable‘s name:
a,...,h and o,...,z
become default real
entities
i,...,n become default
integer entities

Example program:

Note:
newer (scripting) languages
perform auto-typing by
context
this is not possible in Fortran

© 2015-18 LRZ Modernizing Fortran Legacy Codes 19

PROGRAM declarations
REAL :: ip
xt = 5 ! xt is real
i = 2.5 ! i is integer
ip = 2.5 ! ip is real
WRITE(*,*) x, i, ip

END PROGRAM

Implicit and explicit typing of variables (2)

Modify implicit typing scheme
IMPLICIT statement:

changes implicitly acquired type for variables starting with letters a-h,o-z
and leaves default rules intact for all other starting letters

quite commonly used for implicit precision advancement

Recommendation:
enforce strong typing with

programmer is obliged to explicitly declare all variable‘s types

© 2015-18 LRZ Modernizing Fortran Legacy Codes 20

IMPLICIT DOUBLE PRECISION (a-h,o-z)

PROGRAM AUTO_DOUBLE
IMPLICIT DOUBLE PRECISION (a-h,o-z)

xt = 3.5 ! xt has extended precision
:

END PROGRAM
The RHS constant is still single precision

 loss of digits is possible

IMPLICIT NONE

Legacy notations for intrinsic types

The following never was supported in any standard
but is supplied as an extension by many implementations

the parametrization refers to the number of bytes of storage needed by a
scalar entity of the type

Compiler options for default type promotion (e.g., -i8, -r8)
can have unforeseen side effects → avoid use of these
note that the standard requires default integers and reals to use the same
number of numeric storage units

Recommendation
replace declarations with appropriate KIND parameters for the type in
question

© 2015-18 LRZ Modernizing Fortran Legacy Codes 21

INTEGER*4 JJ
INTEGER*8 JJEXT
REAL*4 X
REAL*8 XEXT

Intrinsic numeric types – KIND parameterization

Declarations that should always work
by virtue of standard‘s prescriptions:

FP numbers as declared above will usually use IEEE-754 conforming
representations (no guarantee, but in the following this will be assumed)
the KIND values themselves are not portable

© 2015-18 LRZ Modernizing Fortran Legacy Codes 22

INTEGER, PARAMETER :: ik = KIND(0), &
lk = SELECTED_INT_KIND(18), &
rk = KIND(1.0), &
dk = SELECTED_REAL_KIND(10,37)

INTEGER(ik) :: jdefault ! default integer, can represent 105
INTEGER(KIND=lk) :: jlarge ! can represent 1018

REAL(rk) :: xdefault ! default real,
! likely at least 6 digits

REAL(dk) :: xdouble ! likely double precision,
! at least 10 digits

compile time constant
→ unmodifiable digits decimal exponent

2-colon separator improves readability

Models for integer and real data

real kind is defined by

positive integers p (digits),
b > 1 (base, normally b = 2)

integers emin < emax

real value is defined by
sign s ∈ {±1}

integer exponent emin ≤ e ≤ emax

sequence of fk ∈ {0, ..., b-1},
f1 nonzero

integer kind is defined by

positive integer q (digits)

integer r > 1 (normally 2)

integer value is defined by
sign s ∈ {±1}

sequence of wk ∈ {0, ..., r-1}

© 2015-18 LRZ Modernizing Fortran Legacy Codes 23

Numeric models for integer and real data

𝑖𝑖 = 𝑠𝑠 × �
𝑘𝑘=1

𝑞𝑞

𝑤𝑤𝑘𝑘 × 𝑟𝑟𝑘𝑘−1 𝑥𝑥 = 𝑏𝑏𝑒𝑒 × 𝑠𝑠 × �
𝑘𝑘=1

𝑝𝑝

𝑓𝑓𝑘𝑘 × 𝑏𝑏−𝑘𝑘 or x = 0

fractional part

4 bytesbase 2  „Bit Pattern“

Inquiry intrinsics for model parameters

digits(x) for real oder integer x,
returns the number of
digits (p, q
respectively) as a
default integer value.

minexponent(x),
maxexponent(x)

for real x, returns
the default integer
emin, emax
respectively

precision(x) for real or complex x,
returns the default
integer indicating the
decimal precision
(=decimal digits) for
numbers with the kind
of x.

radix(x) for real or integer x,
returns the default
integer that is the
base (b, r
respectively) for the
model x belongs to.

range(x) for integer, real or
complex x, returns the
default integer
indicating the decimal
exponent range of the
model x belongs to.

© 2015-18 LRZ Modernizing Fortran Legacy Codes 24

Inquiry intrinsics for model numbers

Example representation: e ∈ {-2, -1, 0, 1, 2}, p=3

look at first positive numbers (spacings 1
32

, 1
16

, 1
8

etc.)

largest representable number: ⁄7 2
(beyond that: overflow)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 25

Mapping fl:
to nearest model number
maximum relative error

ℝ ∋ 𝑥𝑥 → 𝑓𝑓𝑓𝑓 𝑥𝑥

𝑓𝑓𝑓𝑓 𝑥𝑥 = 𝑥𝑥 ⋅ 1 + 𝑑𝑑 , ∣ 𝑑𝑑 ∣ < 𝑢𝑢

0 1
8

1
4

1
2

u = 1

tiny(x)
epsilon(x)

huge(x)

spacing(0.35)

rrspacing(x) = abs(x) / spacing(x)

nearest(0.35, -1.0)

0.35

purely
illustrative!

IEEE facilities

Special intrinsic modules exist
enable use of IEEE-conforming representations
enforce use of IEEE-conforming floating point operations
deal with special values (subnormals, infinities, NaNs)
deal with rounding by proper use of rounding modes
many module procedures

Exception handling
five floating point exceptions (underflow, overflow, division by zero, invalid,
inexact)
run-time dispatch vs. termination (halting)
save and restore floating point state

Tiresome to use ...
only at (few) critical locations in application
if a (slow) fallback is needed in case a fast algorithm fails

© 2015-18 LRZ Modernizing Fortran Legacy Codes 26

Inquiry intrinsics for real and integer types
(courtesy Geert Jan Bex, using Intel Fortran)

REAL32 REAL64 REAL128

HUGE 3.40282347E+38 1.7976931E+308 1.1897315E+4932

TINY 1.17549435E-38 2.2250739E-308 3.3621031E-4932

EPSILON 1.19209290E-07 2.2204460E-016 1.9259299E-0034

RANGE 37 307 4931

PRECISION 6 15 33

27

INT8 INT16 INT32 INT64

HUGE 127 32767 2147483647 9223372036854775807

RANGE 2 4 9 18

Notes
REAL32, ..., INT8, ... are KIND numbers defined in the ISO_FORTRAN_ENV
intrinsic module
numbers refer to storage size in bits
if two KINDs using 32 bits exist, REAL32 might be different from default real

default real double precision

default integer

© 2015-18 LRZ Modernizing Fortran Legacy Codes

Notation for operators

Modern Fortran is more readable

© 2015-18 LRZ Modernizing Fortran Legacy Codes 28

F77 Meaning
.LT. < less than
.LE. <= less than or equal
.EQ. == equal
.NE. /= not equal
.GT. > greater than
.GE. >= greater than or equal

Non-numeric intrinsic types

Character type

principle of least surprise (blank padding, truncation)
UNICODE support is possible via (non-default) KIND

Logical type

© 2015-18 LRZ Modernizing Fortran Legacy Codes 29

CHARACTER :: ch ! a single default character
CHARACTER(LEN=11) :: str ! length-parametrization

! supplies fixed-length strings
ch = ′p′
str = ′Programming′
str = str(5:7) // ch ! result is ′ramp ′

LOGICAL :: switch ! default logical flag

switch = .TRUE. ! or .FALSE.
switch = (i > 5) .neqv. switch ! logical expressions

! and operators

not very flexible, but
we’ll learn a better way soon

legacy code often has
CHARACTER*11

A subset of KIND parameter values
defined in the ISO_C_BINDING intrinsic module
unsigned types are not supported

a negative value for a constant causes compilation failure
(e.g., because no matching C type exists, or it is not supported)
a standard-conforming processor must only support c_int
compatible C types derived via typedef also interoperate

C-interoperable intrinsic types
(relative to companion C processor)

C type Fortran declaration C type Fortran declaration

int INTEGER(c_int) char CHARACTER(LEN=1,KIND=c_char)

long int INTEGER(c_long)

size_t INTEGER(c_size_t)

[un]signed char INTEGER(c_signed_char) _Bool LOGICAL(c_bool)

float REAL(c_float)

double REAL(c_double)

On x86 architecture: the same
as default real/double prec.

type. But this is not guaranteed.

may be same as c_int
likely the same as kind(ꞌaꞌ)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 30

Complex types

Not as heavily used as floating point numbers, but still ...

two numeric storage units per variable for default complex
four numeric storage units for double complex

© 2015-18 LRZ Modernizing Fortran Legacy Codes 31

USE, INTRINSIC :: iso_c_binding
IMPLICIT NONE
INTEGER, PARAMETER :: rk = KIND(1.0), &

dk = SELECTED_REAL_KIND(10,37)

COMPLEX(rk) :: cdefault ! default COMPLEX,
COMPLEX(dk) :: cdouble ! double precision COMPLEX
COMPLEX(c_float_complex) :: cc ! can interoperate with

! C99 float _Complex

cdouble = (1.0_dk, 2.5_dk) ! 1 + 2.5 i

Legacy control flow:
Branching via the GO TO statement

Transfer of control

argument is a label

regular execution is resumed at
correspondingly labeled
statement (in same program unit)

Risks:

dead code (often removed by
compiler)

subtle bugs in control flow that
cause infinite looping or
incorrect results

code often hard to understand
and maintain

Recommendation:

Avoid using this statement if
any other block construct can
do the job

Examples follow ...

© 2015-18 LRZ Modernizing Fortran Legacy Codes 32

GO TO 100
80 x = x + 3.0

:
100 x = x * 2.0

IF (…) GO TO 80

unconditional
execution

conditional
branch backward

Conditional execution of statements (1)

Arithmetic IF

expr can be integer or real

note that additional GOTOs
are usually needed

can also set up two-way
branch (how?)

IF block construct

might need special treatment for
overlapping execution (fall-
through)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 33

IF (expr) 2, 7, 8
2 … ! expr < 0
GO TO 10

7 … ! expr == 0
GO TO 10

8 … ! expr > 0
10 CONTINUE

IF (expr < 0) THEN

… ! expr < 0

ELSE IF (expr == 0) THEN

… ! expr == 0

ELSE

… ! expr > 0

END IF

DEL

do-nothing
statement

Conditional execution of statements (2)

Computed GOTO
evaluate integer expression

again: beware overlapping
execution

SELECT CASE construct

easier to read and understand

© 2015-18 LRZ Modernizing Fortran Legacy Codes 34

GO TO (2, 7, 8) expr
… ! expr < 1 or > 3
GO TO 10

2 … ! executed if expr == 1
GO TO 10

7 … ! executed if expr == 2
GO TO 10

8 … ! executed if expr == 3
10 CONTINUE

SELECT CASE (expr)
CASE (1)

…
CASE (2)
…

CASE (3)
…

CASE default
…

END SELECT

OBS

Arrays

Declaration

here: rank 2 and rank 1 arrays
(up to rank 15 is possible)
default lower bound is 1

Purpose
efficient large scale data
processing

Dynamic sizing?
supported

Array constructor

constructor [] or (/ /)
generates rank 1 arrays only
use intrinsic functions to query or
change the shape
use implicit do loops to generate
large arrays

Sectioning

array subobject created by
subscript triplet specification
array syntax for assignment

© 2015-18 LRZ Modernizing Fortran Legacy Codes 35

INTEGER, PARAMETER :: &
ndim = 2, mdim = 3, kdim = 9

REAL(rk) :: c(ndim, mdim), &
d(0:mdim-1, kdim), &
a(ndim), b(mdim)

c = RESHAPE(&
[(REAL(i,rk),i=1,6)], &

SHAPE(c))

d(0::2,1:kdim:3) = c

Attributes

General concept:
declare an additional property
of an object

Example:
DIMENSION attribute:
declares an object to be an
array
as an implicit attribute

(this is particular to DIMENSION,
though)

Syntax for attributes:
may appear in attribute form
or in statement form
attribute form

statement form

(not recommended, because non-
local declarations are more difficult to
read)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 36

REAL(rk), DIMENSION(ndim) :: a

REAL(rk) :: a(ndim)

REAL(rk) :: a
:
DIMENSION(ndim) :: a

The three declarations of entity „a“ on this slide are semantically equivalent

Array storage layout

Element ordering: column major

Array section d(0::2,1::3) of d(:,:)

1

2

3

4

5

6

1 2 3 dim2

array element sequence
(corresponds to

memory ordering)

1

2

3

4

5

6

1 2 3 dim2

all „orange“ storage units
are not part of the subobject

→ subobject is not contiguous

© 2015-18 LRZ Modernizing Fortran Legacy Codes 37

lower bound

c (i, j)
index for dim1 index for dim2

remapped lower
bound

Effect of array assignment
(LHS and RHS conform!)

Legacy versions of looping (1)

Shared loop termination statement

200 loop iterations including
execution of labeled statement
notation is confusing
statement (X) of form

is not permitted because label is
considered to belong to inner loop

Non-block DO loop
use a statement label to identify
end of construct

nested loops require separate
labeled statements

use is not recommended

© 2015-18 LRZ Modernizing Fortran Legacy Codes 38

DO 10 k=1, mdim

: ! (X)

DO 10 j=1, ndim

10 c(j, k) = a(j) * b(k)

DO 20 k = 1, mdim

IF (…) GO TO 20

DO 10, j = 1, ndim

c(j, k) = a(j) * b(k)

10 CONTINUE

20 CONTINUE
IF (…) GO TO 10

OBS DEL

Modern DO Loop Construct
(with fine-grain execution control)

Block construct
for finite looping

Optional naming of construct
CYCLE skips an iteration of the
specified loop
(default: innermost loop)
strided loops also allowed

Unknown iteration count

EXIT terminates specified block
construct (this also works for
non-loop constructs)
Alternative:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 39

outer : DO k = 1, mdim

IF (…) CYCLE outer

inner : DO j = 1, ndim

c(j, k) = a(j) * b(k)

END DO inner

END DO outer

iter : DO

:

IF (diff < eps) EXIT iter

:

END DO iter

DO WHILE (diff >= eps)

:

END DO

Legacy versions of looping (2)

Non-integer loop variable

borderline cases where
number of iterations may
depend on implementation,
rounding etc.

Replace by integer loop
variable

numerics may still be
questionable …

© 2015-18 LRZ Modernizing Fortran Legacy Codes 40

REAL :: r, s, stride

s = 0.0

stride = 1.0000001

DO r = 1.2,10.2,stride

s = s + r

END DO

REAL :: r, s, stride
INTEGER :: ir
s = 0.0
stride = 1.0000001
r = 1.2
DO ir = 1,9
r = r + stride
s = s + r

END DO

Concept of derived type

Overcome insufficiency
of intrinsic types for description
of abstract concepts

Type components:
can be of intrinsic or derived
type, scalar or array
further options discussed later

Recommendation:
a derived type definition should
be placed in the specification
section of a module.

Reason: it is otherwise not
reusable (simply copying the type
definition creates a second, distinct
type)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 41

MODULE mod_body
:
TYPE :: body

CHARACTER(LEN=4) :: units
REAL :: mass
REAL :: pos(3), vel(3)

END TYPE body
CONTAINS
…

END MODULE

position
velocity

declarations of
type components

Formal type
definition

layered creation of
more complex types

from simple ones

a program unit introduced by Fortran 90

Objects of derived type
Examples:

Structure constructor
permits to give a value to an object of derived type (complete definition)

It has the same name as the type,
and keyword specification inside the constructor is optional.
(you must get the component order right if you omit keywords!)

Default assignment
copies over each type component individually

creates two scalars and an
array with ndim elements of
type(body)
sufficient memory is supplied
for all component subobjects
access to type definition here
is by use association

Structures

© 2015-18 LRZ Modernizing Fortran Legacy Codes 42

USE mod_body
TYPE(body) :: ball, copy
TYPE(body) :: asteroids(ndim)

access type from
outside mod_body

ball = body('MKSA', mass=1.8, pos=[0.0, 0.0, 0.5], &
vel=[0.01, 4.0, 0.0])

copy = ball

Structures as dummy arguments

Implementation of „methods“

declares scalar dummy
argument of type(body)
access to type definition
here is by host association

invocation requires an
actual argument of exactly
that type
( explicit interface required)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 43

MODULE mod_body
:
TYPE :: body
…
CONTAINS
SUBROUTINE kick(this, …)

TYPE(body), intent(inout) :: this
…

END SUBROUTINE
END MODULE

type definition
shown earlier

USE mod_body
TYPE(body) :: ball
TYPE(body) :: asteroids(ndim)
… ! define objects
CALL kick(ball, …)
CALL kick(asteroids(j), …)

Accessing type components

Via selector %

this % vel is an array of type real with 3 elements
this % vel(i) and
this % mass are real scalars

(spaces are optional)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 44

SUBROUTINE kick(this, dp)
TYPE(body), INTENT(inout) :: this
REAL, INTENT(in) :: dp(3)
INTEGER :: i

DO i = 1, 3
this % vel(i) = this % vel(i) + dp(i) / this % mass

END DO
END SUBROUTINE

Remarks on storage layout

Single derived type object
compiler might insert padding between type components

Array element sequence
as for arrays of intrinsic type

© 2015-18 LRZ Modernizing Fortran Legacy Codes 45

TYPE :: d_type
CHARACTER :: c
REAL :: f
CHARACTER :: d

END TYPE %c %funused

TYPE(d_type) :: obj(3) obj(1) obj(2) obj(3)

obj(:)%c

storage layout of a TYPE(d_type)
scalar object could look like

%d

Legacy features and extensions

Sequence types
enforce storage layout in specified order

multiple type declarations with same type name and component names are
permitted

Structures
non-standard syntax for derived types, pre- . Semantics are the same.

Note:
usability of sequence types is
restricted
no type parameters, non-
extensible

© 2015-18 LRZ Modernizing Fortran Legacy Codes 46

TYPE :: s_type
SEQUENCE
REAL :: f
INTEGER :: il(2)

END TYPE

STRUCTURE /body/
REAL mass
REAL pos(3)
REAL vel(3)

END STRUCTURE

! object
RECORD /body/ ball

C-interoperable derived types

BIND(C) types
enforce C struct storage layout:

is interoperable with

© 2015-18 LRZ Modernizing Fortran Legacy Codes 47

USE, INTRINSIC :: iso_c_binding

TYPE, BIND(C) :: c_type
REAL(c_float) :: f
INTEGER(c_int) :: il(2)

END TYPE

typedef struct {
float s;
int i[2];

} Ctype;

Note:
usability of BIND(C) types is
restricted
no type parameters, non-
extensible

Procedures and
their interfaces

Subprogram invocation: Fortran 77 style implicit interface

Simple example: solve 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0

usually stored in a separate file „external procedure“

commonly together with other procedures (solve_linear,
solve_cubic, ...)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 49

SUBROUTINE solve_quadratic (a, b, c, n, x1, x2)

IMPLICIT NONE
REAL a, b, c, x1, x2
INTEGER n

C declare local variables
:

C calculate solutions
:
END SUBROUTINE

dummy argument list

Invoking a procedure with implicit interface

Unsafe legacy usage

Disadvantages:
compiler cannot check on correct use of number, type, kind and rank
of arguments (signature or characteristics of interface)

many features of modern Fortran cannot be used at all (for example,
derived type arguments, or assumed-shape dummy arrays, etc.)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 50

PROGRAM q_implicit
IMPLICIT NONE
REAL a1, a2, a3, x, y
INTEGER nsol
EXTERNAL solve_quadratic

C initialize a1, a2, a3
:
CALL solve_quadratic(a1, a2, a3, nsol, x, y)
WRITE(*, *) nsol, x, y
END PROGRAM actual argument list

Often forgotten.
Most relevant in case

of name collision
with an intrinsic.

Advice: Avoid implicit interfaces …

… by using one of the following cures:

1. Code targeted for future development:
Convert all procedures to module procedures

2. Legacy library code that should not be modified:
Manual or semi-automatic creation of explicit interfaces for external
procedures

a. create include files that contain these interfaces, or
b. create an auxiliary module that contains these interfaces

We‘ll look at each of these in turn on the following slides

© 2015-18 LRZ Modernizing Fortran Legacy Codes 51

1. Best method: Create module procedures

Implies an automatically created explicit interface

© 2015-18 LRZ Modernizing Fortran Legacy Codes 52

MODULE mod_solvers
IMPLICIT NONE

CONTAINS
SUBROUTINE solve_quadratic(a, b, c, n, x1, x2)
REAL :: a, b, c
REAL :: x1, x2
INTEGER :: n
: ! declare local variables
: ! calculate solutions

END SUBROUTINE
:

END MODULE
further procedures

(solve_linear, solve_cubic, ...)

Invoking the module procedure

Access created interface via USE statement

compile-time checking of invocation against accessible interface

© 2015-18 LRZ Modernizing Fortran Legacy Codes 53

PROGRAM q_module
USE mod_solvers
IMPLICIT NONE
REAL :: a1, a2, a3, x, y
INTEGER :: nsol

a1 = 2.0; a2 = 7.4; a3 = 0.2
CALL solve_quadratic(a1, a2, a3, nsol, x, y)
WRITE(*, *) nsol, x, y

END PROGRAM actual argument list

access PUBLIC entities of mod_solvers
by USE association

Invoking procedures with explicit interfaces

Argument association
each dummy argument becomes associated with its corresponding
actual argument

Invocation variants:
1. Positional correspondence

for the above example: a ↔ a1, b ↔ a2, x2 ↔ y etc.
2. Keyword arguments caller may change argument ordering

the Fortran standard does not specify the means of establishing the
association
however, efficiency considerations usually guide the implementation
(avoid data copying wherever possible)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 54

CALL solve_quadratic(a1, a2, a3, x1=x, x2=y, n=nsol)

CALL solve_quadratic(a1, a2, a3, nsol, x, y)

Remember the dependencies ...

Separate compilation

different program units are usually stored in separate source files

Previous example (assuming an intuitive naming convention)

Remember:

module dependencies form a directed acyclical graph

changes in modules force recompilation of dependent program units

module information file: a precompiled header

© 2015-18 LRZ Modernizing Fortran Legacy Codes 55

gfortran -c -o mod_solvers.o mod_solvers.f90

gfortran -c -o q_module.o q_module.f90

gfortran -o main.exe q_module.o mod_solvers.o

compile sources to objects
(binary code, but not executable)

link objects into executable

also creates module information file mod_solvers.mod
→ must compile q_module after mod_solvers

2. Manual declaration of an interface block
(note that this is neither needed nor permitted for module procedures!)

specification syntax that describes the characteristics („signature“)
of the procedure. Provides an explicit interface for an external
procedure

some compilers/tools can generate interface blocks from source of
external procedures via a switch (may be more reliable!)

allows to avoid disadvantages of implicit interfaces if the interface
block is accessible in the program unit that invokes the procedure

© 2015-18 LRZ Modernizing Fortran Legacy Codes 56

INTERFACE

END INTERFACE

SUBROUTINE solve_quadratic(a, b, c, n, x1, x2)
REAL :: a, b, c, x1, x2

INTEGER :: n

END SUBROUTINE

interface
body

no executable
statements

Handling interface blocks (2a.)

Variant a.
place interface block in an include file, say solvers.inc
the file might contain lots of interface blocks, or an interface block with
multiple interface specifications

Usage in calling program unit:

compilation performance issues can arise for large scale use

© 2015-18 LRZ Modernizing Fortran Legacy Codes 57

PROGRAM q_include
IMPLICIT NONE
REAL :: a1, a2, a3, x, y
INTEGER :: nsol
INCLUDE ꞌsolvers.incꞌ

a1 = 2.0; a2 = 7.4; a3 = 0.2
CALL solve_quadratic(a1, a2, a3, nsol, x, y)
WRITE(*, *) nsol, x, y

END PROGRAM

Statement performs textual insertion.
File can be reused from any program unit.

Handling interface blocks (2b.)

Variant b.

Insert into specification part of a „helper“ module:

Access by USE association in the calling program unit
analogous to q_module

formal difference is that an external object must be linked in

© 2015-18 LRZ Modernizing Fortran Legacy Codes 58

MODULE mod_interfaces
IMPLICIT NONE
INTERFACE
SUBROUTINE solve_quadratic(a, b, c, n, x1, x2)

REAL :: a, b, c, x1, x2

INTEGER :: n

END SUBROUTINE
END INTERFACE

END MODULE

Again, you can add further interfaces here

Declaring INTENT for dummy arguments

Inform processor about expected usage

Semantics
effect on both implementation and invocation

© 2015-18 LRZ Modernizing Fortran Legacy Codes 59

SUBROUTINE solve_quadratic(a, b, c, n, x1, x2)
REAL, INTENT(in) :: a, b, c
REAL, INTENT(inout) :: x1, x2
INTEGER, INTENT(out) :: n
:

END SUBROUTINE

specified intent property of dummy argument

in procedure must not modify the argument (or any part of it)

out actual argument must be a variable; it becomes undefined on
entry to the procedure

inout actual argument must be a variable; it retains its definition
status on entry to the procedure

implies the need for
consistent intent specification
(fulfilled for module procedures)

specify additional
attribute

Examples for the effect of INTENT specifications

Compile-time rejection of invalid code
subroutine implementation:

subroutine usage:

Compiler diagnostic (warning) may be issued
e.g. if INTENT(out) argument is not defined in the procedure

Unspecified intent
actual argument determines which object accesses are conforming

© 2015-18 LRZ Modernizing Fortran Legacy Codes 60

REAL, INTENT(in) :: a
:
a = … ! rejected by compiler

CALL solve_quadratic(a, t, s, n, 2.0, x)

rejected by compiler

violations run-time error if you‘re lucky

Passing arguments by value

Use the VALUE attribute
for dummy argument

Example:

a local copy of the actual argument
is generated when the subprogram
is invoked
often needed for C-interoperable
calls

General behaviour / rules
local modifications are only
performed on local copy – they
never propagate back to the
caller

argument-specific side effects
are therefore avoided
 VALUE can be combined with
PURE

argument may not be
INTENT(out) or INTENT(inout)

INTENT(in) is allowed but mostly not
useful

© 2015-18 LRZ Modernizing Fortran Legacy Codes 61

SUBROUTINE foo(a, n)
IMPLICIT NONE
REAL, INTENT(inout) :: a(:)
INTEGER, VALUE :: n
:
n = n – 3
a(1:n) = …

END SUBROUTINE

Functions – a variant of procedure

Example:

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒙𝒙,𝒑𝒑 = 𝟏𝟏 − 𝒙𝒙𝟐𝟐

𝒑𝒑𝟐𝟐
if |x| < |p|

To be used in expressions:

Notes:
function result is not a dummy
variable
no CALL statement is used for
invocation

© 2015-18 LRZ Modernizing Fortran Legacy Codes 62

MODULE mod_functions

IMPLICIT NONE

CONTAINS

REAL FUNCTION wsqrt(x, p)

REAL, INTENT(in) :: x, p

:

wsqrt = …

END FUNCTION wsqrt

END MODULE

calculate function value and
then assign to result variable

USE mod_functions

:

x1 = 3.2; x2 = 2.1; p = 4.7

y = wsqrt(x1,p) + wsqrt(x2,p)**2

IF (wsqrt(3.1,p) < 0.3) THEN

…

END IF
function result declaration

Using a RESULT clause

Alternative syntax for specifying a function result
permits separate declaration of result and its attributes

the invocation syntax of the function is not changed by this
In some circumstances, use of a RESULT clause is obligatory

for example, directly RECURSIVE functions

© 2015-18 LRZ Modernizing Fortran Legacy Codes 63

FUNCTION wsqrt(x, p) RESULT(res)

REAL, INTENT(in) :: x, p

REAL :: res

:

res = …

END FUNCTION wsqrt

Functions declared PURE

Example:

Compiler ensures freedom from side effects, in particular
all dummy arguments have INTENT(IN)
neither global variables nor host associated variables are defined
no I/O operations on external files occur
no STOP statement occurs
…
 compile-time rejection of procedures that violate the rules

Notes:
in contexts where PURE is not needed, an interface not declaring the function as PURE
might be used
in the implementation, obeying the rules becomes programmer's responsibility if PURE
is not specified

© 2015-18 LRZ Modernizing Fortran Legacy Codes 64

troublesome for debugging
 temporarily remove the attribute

PURE FUNCTION wsqrt(x, p) RESULT(res)
REAL, INTENT(in) :: x, p
REAL :: res
:

END FUNCTION wsqrt
certain things not allowed here …

Subroutines declared PURE, etc.

For subroutines declared PURE, the only difference from functions
is:

all dummy arguments must have declared INTENT

Notes on PURE procedures in general:
Use of the PURE property (in contexts where it is required) in an invocation
needs an explicit interface
PURE is needed for invocations in some block constructs, or invocations from
(other) PURE procedures
another motivation for the PURE attribute is the capability to execute multiple
instances of the procedure in parallel without incurring race conditions.
However, it remains the programmer‘s responsibility to exclude race
conditions for the assignment of function values, and for actual arguments
that are updated by PURE subroutines.

© 2015-18 LRZ Modernizing Fortran Legacy Codes 65

Assumed-size arrays: Typical interface design
(for use of legacy or C libraries)

Notes:
leading dimension(s) of array as well as problem dimensions are explicitly
passed
dummy argument does not have a shape and therefore cannot be defined or
referenced as a whole array (sectioning is possible if a last upper bound is specified)

minimum memory requirement is implied by addressing:
LDA*(M-1) + N array elements, where N ≤ LDA
Example: Level 2 and 3 BLAS interfaces (e.g., DGEMV)

Modernizing Fortran Legacy Codes 66

AD

SUBROUTINE slvr(ad, lda, n, m)
INTEGER :: lda, n, m
REAL :: ad(lda, *)
…
DO j=1, m
DO i=1, n

ad(i,j) = …
…

END DO
END DO
…

LDA

N

M

ad(1,1)

contiguous sequence
of array elements

size is assumed
from actual argument

© 2015-18 LRZ

part of array
actually defined
in procedure call

conceptual
layout

of dummy
argument

ad(n,m)

Invocation variants

Pitfalls:
actual argument does not supply sufficient storage area
inconsistency of leading dimension specification
e.g. „off-by-one“ → „staircase effect“

Permissible calls:
actual argument is a ...

complete or assumed-size array
(indexing matches if done correctly)

array of differing rank
(need to set up index mapping)

array element
(work on a subblock, ad(1,1) ↔ aa(i,j))

non-contiguous array section
(copy-in/out to an array temporary must be
done by compiler)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 67

INTEGER, PARAMETER :: lda = …
REAL :: aa(lda, lda), ba(lda*lda)
: ! define m, n, …

CALL slvr(aa, lda, n, m)

CALL slvr(aa(i, j), lda, n, m)

CALL slvr(aa(1:2*n:2,:), n, n, m)

CALL slvr(ba, lda, n, m)

Explicit-shape dummy argument

Array bounds
declared via non-constant
specification expressions

also sometimes used in
legacy interfaces
("adjustable-size array")
in Fortran 77, a value of zero
for n was not permitted

Argument passing
works in the same way as for
an assumed size object
except that the dummy
argument has a shape

(therefore the actual argument must
have at least as many array elements
as the dummy if the whole dummy
array is referenced or defined)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 68

SUBROUTINE slvr_explicit(&
ad, lda, n, m)

INTEGER :: lda, n, m
REAL :: ad(lda, n)
…

Manually created interface for C library calls

Example: C function with prototype

Fortran interface: the BIND(C) attribute

© 2015-18 LRZ Modernizing Fortran Legacy Codes 69

MODULE libm_interfaces
IMPLICIT NONE
INTERFACE

REAL(c_float) FUNCTION lgammaf_r(x, is) BIND(C)
USE, INTRINSIC :: iso_c_binding

REAL(c_float), VALUE :: x
INTEGER(c_int) :: is

END FUNCTION
END INTERFACE
END MODULE

enforce C name mangling

provides kind numbers for interoperating types

C-style value
argument

float lgammaf_r(float x, int *signp);

Note: BIND(C) module
procedures are also permissible

Mixed-case C functions

An additional label is needed

a string constant denoting the case-sensitive C name
C-style arrays

glorified pointers of interoperable type
require assumed size declaration in matching Fortran interface

Implementation may be in C or Fortran
in the latter case, a BIND(C) module procedure can be written

© 2015-18 LRZ Modernizing Fortran Legacy Codes 70

// example C prototype
void Gsub(float x[], int n);

INTERFACE
SUBROUTINE ftn_gsub(x, n) BIND(C, name=′Gsub′)
USE, INTRINSIC :: iso_c_binding
REAL(c_float), dimension(*) :: x
INTEGER(c_int), value :: n

END FUNCTION
END INTERFACE

invocation from Fortran via Fortran name

Assumed shape dummy argument

This is the recommended array argument style

© 2015-18 LRZ Modernizing Fortran Legacy Codes 71

MODULE mod_solver
IMPLICIT NONE

CONTAINS
SUBROUTINE process_array(ad)
REAL, INTENT(inout) :: ad(:,:)
INTEGER :: i, j
:
DO j=1, SIZE(ad,2)
DO i=1, SIZE(ad,1)

ad(i,j) = …
…

END DO
END DO
:

END SUBROUTINE
END MODULE

assumed shape
rank 2 array

Notes
shape/size are implicitly available
lower bounds are 1 (by default), or
are explicitly specified, like

REAL :: ad(0:,0:)

Usage of the procedure

Invocation is straightforward

Actual argument
must have a shape
can be an array section

normally, a descriptor will be
created and passed no
copying of data happens

© 2015-18 LRZ Modernizing Fortran Legacy Codes 72

PROGRAM use_solver
USE mod_solver
IMPLICIT NONE
REAL :: aa(0:1, 3), ab(0:2, 9)

: ! define aa, ab
CALL process_array(aa)
CALL process_array(ab(0::2,1::3))
:

END PROGRAM

access explicit interface
for process_array

consistency of argument‘s
type, kind and rank

with interface specification
is required

Memory layouts for
assumed shape dummy objects

Actual argument is the complete array aa(0:1,3)

Actual argument is an array section (0::2,1::3) of ab(0:2,9)

1

2

3

4

5

6

1 2 3 dim2

indicates array
element sequence

of dummy argument

1

2

3

4

5

6

1 2 3 dim2

all „orange“ storage units
are not part of the dummy
object. They are invisible.

IS_CONTIGUOUS(ad) returns .true.

IS_CONTIGUOUS(ad) returns .false.

© 2015-18 LRZ Modernizing Fortran Legacy Codes 73

remapped lower bound

Note on assumed shape and interoperability

Example Fortran interface Matching C prototype
SUBROUTINE process_array(a) BIND(C)

REAL(c_float) :: a(:,:)

END SUBROUTINE

#include <ISO_Fortran_binding.h>

void process_array(CFI_cdesc_t *a);

For an implementation in C, the header provides access to
type definition of descriptor
macros for type codes, error states etc.
prototypes of library functions that generate or manipulate descriptors

Within a single C source file,
binding is only possible to one given Fortran processor (no binary
compatibility!)

Outside the scope of this course

assumed
shape

Pointer to C descriptor

© 2009-18 LRZ Advanced Fortran Topics - LRZ section 74

Internal procedures (1)

Example:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 75

SUBROUTINE process_expressions(…)
REAL :: x1, x2, x3, x4, y1, y2, y3, y4, z
REAL :: a, b
a = …; b = …
z = slin(x1, y1) / slin(x2, y2) + slin(x3, y3) / slin(x4, y4)
…

CONTAINS
REAL FUNCTION slin(x, y)
REAL, INTENT(in) :: x, y
slin = a * x + b * y

END FUNCTION slin
SUBROUTINE some_other(…)
…
… = slin(p, 2.0)

END SUBROUTINE some_other
END SUBROUTINE process_expressions

host scoping unit
(could be main program or any
kind of procedure, except an

internal procedure)

internal subroutine

invocation within host

a, b accessed from the host
 host association

could be declared locally, or as
dummy arguments

internal function

slin is accessed by host
association

Internal procedures (2)

Rules for use
invocation of an internal procedure is only possible inside the host, or inside
other internal procedure of the same host
an explicit interface is automatically created

Performance aspect
if an internal procedure contains only a few executable statements, it can
often be inlined by the compiler;
this avoids the procedure call overhead and permits further optimizations

Legacy functionality: statement function

should be avoided in new code

© 2015-18 LRZ Modernizing Fortran Legacy Codes 76

SUBROUTINE process_expressions(…)
REAL :: x, y
slin(x, y) = a*x + b*y
…
z = slin(x1, y1) / slin(x2, y2) + slin(x3, y3) / slin(x4, y4)

END SUBROUTINE process_expressions

OBS

SUBROUTINE process_expressions(…)
IMPLICIT NONE
REAL :: x1, x2, x3, x4, y1, y2, y3, y4, z
REAL :: a, b
a = …; b = …
z = slin(x1, y1) / slin(x2, y2) + slin(x3, y3) / slin(x4, y4)
…

CONTAINS
REAL FUNCTION slin(x, y)
IMPORT, ONLY : a, b
REAL, INTENT(in) :: x, y
slin = a * x + b * y

END FUNCTION slin
END SUBROUTINE process_expressions

Controlling access to host

Extension of the IMPORT
statement

assure that only specified
objects from the host are visible
IMPORT, NONE blocks all host
access
avoid unwanted side effects
(both semantics and
optimization) by enforcing the
need to redeclare variables in
internal procedure scope

Note: this is a feature
it is available in the most recent
Intel compiler (19.0)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 77

Subprograms with alternate returns

Purpose:
permit subroutine to control
execution of caller

e.g., for error conditions

(irregular) * form of dummy
argument

Calling program unit
actual arguments refer to
labels defined in calling
unit

© 2015-18 LRZ Modernizing Fortran Legacy Codes 78

SUBROUTINE gam(a, *, *)
REAL :: a
IF (a < -1.0) RETURN 1
IF (a > 1.0) RETURN 2
a = SQRT(1-a*a)
RETURN

END SUBROUTINE

CALL gam(a, *7, *13)
:
STOP 'SUCCESS'

7 WRITE(*,*) 'too small'
STOP 'ERROR'

13 WRITE(*,*) 'too big'
STOP 'ERROR'

OBS

normal termination

Typical error handling scheme in procedure

Use an optional integer status argument

Notes
PRESENT intrinsic returns .TRUE.
if an actual argument is
associated with an OPTIONAL
argument
(explicit interface is needed)
ERROR STOP causes error
termination

© 2015-18 LRZ Modernizing Fortran Legacy Codes 79

SUBROUTINE gam(a, stat)
REAL, INTENT(INOUT) :: a
INTEGER, OPTIONAL, &

INTENT(OUT) :: stat
INTRINSIC :: SQRT
INTEGER :: stloc
stloc = 0
IF (a < -1.0) THEN
stloc = 1

ELSE IF (a > 1.0) THEN
stloc = 2

ELSE
a = SQRT(1-a*a)

END IF

IF (PRESENT(stat)) THEN
stat = stloc

ELSE IF (stloc /= 0) THEN
ERROR STOP 1

END IF
END SUBROUTINE gam

obligatory

convention for
"success"

Possible invocations - Style suggestion
for error handling

Variant 1:

Notes
Variant 2 uses a BLOCK
construct for processing (permits
avoiding GO TO)
error handling happens after that
construct (rather unimaginatively in
this example)

Variant 2:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 80

REAL :: x

x = 0.7
CALL gam(x)
x = 1.5
CALL gam(x)

fine: produces
0.71414

terminates during
procedure execution

INTEGER :: stat
comp : BLOCK
REAL :: x
x = …
CALL gam(x, stat)
IF (stat /= 0) EXIT comp
:

END BLOCK comp
SELECT CASE (stat)
CASE(0)
STOP 0

DEFAULT
WRITE(*,*) 'ERROR:', stat
ERROR STOP 1

END SELECT

can declare
variables here

will never
terminate

allows
replacing "1" by "stat"

Character string dummy arguments

Assumed length string

string length is passed
implicitly

Usage:

produces the output

© 2015-18 LRZ Modernizing Fortran Legacy Codes 81

SUBROUTINE pass_string(c)

INTRINSIC :: LEN

CHARACTER(LEN=*) :: c

WRITE(*,*) LEN(c)

WRITE(*,*) c

END SUBROUTINE

INTRINSIC :: TRIM

CHARACTER(LEN=20) :: str

str = ‘This is a string‘

CALL pass_string(TRIM(str))

CALL pass_string(str(9:16))

16
This is a string
8
a string

keyword spec
can be omitted

Handling of strings that interoperate with C

Remember: character length must be 1 for interoperability
Example: C prototype

matching Fortran interface
declares c_char entity as a rank 1 assumed size array

© 2015-18 LRZ Modernizing Fortran Legacy Codes 82

int atoi(const char *);

INTERFACE
INTEGER(c_int) function atoi(in) BIND(C)
USE, INTRINSIC :: iso_c_binding
CHARACTER(c_char), DIMENSION(*) :: in

END FUNCTION
END INTERFACE

′\0′-terminated
character sequence

Handling of strings that interoperate with C

Invoked by

special exception (makes use of storage association):
actual argument may be a scalar character string

Character constants in ISO_C_BINDING with C-specific meanings

© 2015-18 LRZ Modernizing Fortran Legacy Codes 83

USE, INTRINSIC :: iso_c_binding
CHARACTER(len=:,kind=c_char), ALLOCATABLE :: digits

ALLOCATE(CHARACTER(len=5) :: digits)
digits = c_char_'1234' // c_null_char

i = atoi(digits) ! i gets set to 1234

C string needs
terminator

Name Value in C

c_null_char ′\0′

c_new_line ′\n′

c_carriage_return ′\r′

most relevant subset

Global variables

Global variables - Concept

Typical scenario:
call multiple procedures which need
to work on the same data

Well-known mechanism:
data passed in/out as arguments

Consequences:
need to declare in exactly one calling
program unit → potential call stack
issue
access not needed from any other
program unit (including the calling
one)

Alternative:
define global storage area for
data
accessible from subroutines
without need for the invoker to
provision it

improvement of encapsulation

© 2015-18 LRZ Modernizing Fortran Legacy Codes 85

sr_1(...,a) sr_2(...,b) sr_3(...,c)

x

x

sr_1(...)

x(:) = ...

sr_2(...)

... = x(:)

define reference

x not a dummy here!

Fortran 77 style global data

COMMON block – a set of specification statements
Example:

typical best practice: put this in an include file field_globals.finc
(note: this feature was not in Fortran 77, so a vendor extension)
Usage in each procedure that needs access:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 86

TYPE(field_type) :: f
REAL :: x(ndim), y(ndim, mdim)
INTEGER :: ic, jc, kc

COMMON / field_globals / ic, jc, kc, f, x, y

SUBROUTINE sr_1(...)
INCLUDE ″field_globals.finc″
:
x(:) = ...
...

required to be a
sequence type

modifies storage area represented by „x“
inside the COMMON block

Name of block Variable list

OBS

must be PARAMETERs

Semantics of COMMON

Block name is a global entity
and therefore can be accessed from multiple program units;
it references a sequence of storage units.
Note: one unnamed COMMON block may exist.

List of variables
of intrinsic type (or sequence type)
variables are „embedded“ into storage area in sequence of their
appearance → determines size of storage area
number of storage units used for each variable: depends on its type

Why the „best practice“?
avoid maintenance nightmare when changes are necessary
avoid confusion arising from
(a) varying variable names
(b) partial storage association
avoid ill-defined situations arising from type mismatches

© 2015-18 LRZ Modernizing Fortran Legacy Codes 87

Lifetime of data in COMMON

If a procedure that references field_globals completes
execution

and no other procedure that references it is active, the block becomes
undefined

Prevent this undefinedness by adding

to the include file
Definition status of objects in COMMON block

may become defined after start of execution, or not at all

© 2015-18 LRZ Modernizing Fortran Legacy Codes 88

SAVE / field_globals /

General problems with COMMON:
• Data flow is non-intuitive, especially if very many program units access the

COMMON block.
• Negatively impacts comprehensibility and maintainability of code
• Many restrictions (e.g. no dynamic data) and limitations (e.g. type system)

Initialization of COMMON data

Special program unit

uses a DATA statement to
initialize some or all variables
inside one or more named
COMMON blocks
Multiple BLOCK data units can
exist, but they must avoid
initializing the same block

Assure initialization
is performed at program linkage
time
(Data vs BSS section of memory)

Unnamed BLOCK DATA
one is possible, but then
initialization requires a compiler
switch for linkage.

© 2015-18 LRZ Modernizing Fortran Legacy Codes 89

BLOCK DATA init_field_globals
IMPLICIT NONE
INCLUDE ″field_globals.finc″
DATA x / ndim * 1.0 /
:

END BLOCK DATA
PROGRAM sim_field
IMPLICIT NONE
EXTERNAL :: init_field_globals
...

END PROGRAM

OBS

Conversion to encapsulated module variables

Usage:

Note:
module variables and local
variables of the main program
always have the SAVE attribute

© 2015-18 LRZ Modernizing Fortran Legacy Codes 90

MODULE mod_field_globals
IMPLICIT NONE
PRIVATE
PUBLIC :: setup_field_globals, sr_1
:
REAL :: x(ndim), y(ndim,mdim)
INTEGER :: ic, jc, kc

CONTAINS
SUBROUTINE setup_field_globals(...)
:

END SUBROUTINE
SUBROUTINE sr_1(...)
...
x(:) = ...

END SUBROUTINE sr_1
... ! sr_2, sr_3 etc.

END MODULE

has access to x by host
association

USE access only to
specified procedures PROGRAM sim_field

USE mod_field_globals
IMPLICIT NONE
:
CALL setup_field_globals(...)
:
CALL sr_1(...)
: ! call sr_2, sr_3 etc.

END PROGRAM
initialize x, y

x, y, ...
are inaccessible

Initialization of module variables
(illustrative example)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 91

MODULE mod_field_globals
IMPLICIT NONE
PRIVATE
:
PUBLIC :: f
TYPE :: field_type
PUBLIC
REAL :: x(ndim), y(ndim)

END TYPE
TYPE(field_type) :: f = &

field_type(x=[(0.0,i=1,ndim)], y=[(0.0,i=1,ndim)])
:

END MODULE

PROGRAM sim_field
USE mod_field_globals
IMPLICIT NONE
:
... = f%x(:)

END PROGRAM

Note:
TYPE(field_type) need not be a
sequence type here
Objects existing only once:
Singleton pattern

type is PRIVATE, but object is PUBLIC
→ f is the only object of that type

access to use
associated f permitted

initialization expression

Global data and interoperability

Defining C code:

do not place in include file
reference with external in
other C source files

Mapping Fortran code:

either attribute or statement
form may be used

© 2015-18 LRZ Modernizing Fortran Legacy Codes 92

int ic;
float Rpar[4];

MODULE mod_globals
USE, INTRINSIC :: iso_c_binding

INTEGER(c_int), BIND(c) :: ic
REAL(c_float) :: rpar(4)
BIND(c, name='Rpar') :: rpar

end module

• Global binding can be applied to objects of interoperable type and type parameters.
• Variables with the ALLOCATABLE/POINTER attribute are not permitted in this

context.
• BIND(C) COMMON blocks are permitted, but obsolescent.

Enforcing storage association

EQUIVALENCE statement
use same memory area for two different objects

Example 1: Aliasing

storage layout:

Example 2: Saving memory at cost of type safety
need to avoid using
undefined values
 use in disjoint code

sections

© 2015-18 LRZ Modernizing Fortran Legacy Codes 93

REAL :: x(6), b(2,2), c(5)
EQUIVALENCE (x(3), b, c)

b(
1,

1)

b(
2,

1)

b(
1,

2)

b(
2,

2)

c(
1)

c(
2)

c(
3)

c(
4)

c(
5)

x(
1)

x(
2)

x(
3)

x(
4)

x(
5)

x(
6)

REAL :: y(ndim)
INTEGER :: iy(ndim)
EQUIVALENCE (y, iy)

OBS

same type for all
objects

Replacement mechanisms

Example 1 from previous slide: Use pointers

Example 2 from previous slide:
Use allocatable variables if memory really is an issue

Representation change
Use the TRANSFER intrinsic if really needed

© 2015-18 LRZ Modernizing Fortran Legacy Codes 94

REAL, TARGET :: x(6)
REAL, POINTER :: b(:2,:2) => x(2:),

c(:) => x(2:)

REAL, ALLOCATABLE :: y(:)
INTEGER, ALLOCATABLE :: iy(:)
:
ALLOCATE(y(ndim))
:
DEALLOCATE(y)
ALLOCATE(iy(ndim))
:
DEALLOCATE(iy)

Dynamic memory

Dynamic objects executive summary

Add a suitable attribute to an entity:

Typical life cycle management:

Status checking: (hints at semantic differences!)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 96

REAL, ALLOCATABLE :: x(:) REAL, POINTER :: p(:) => NULL()

initial state is „unallocated“ initial state is "unassociated"

create
ALLOCATE(x(2:n), p(3), stat=my_status)

use
x(:) = ...
p(:) = ...

destroy
DEALLOCATE(x, p)

definitions and references

IF (ALLOCATED(x)) THEN; ... IF (ASSOCIATED(p)) THEN; ...
logical functions

non-default lower bounds are possible
(use LBOUND and UBOUND intrinsics)

use of
heap

memory

rank 1 array with deferred shape

Some remarks about memory organization

Virtual memory
every process uses the same
(formal) memory layout
physical memory is mapped
to the virtual address space
by the OS
protection mechanisms
prevent processes from
interfering with each other's
memory
32 vs. 64 bit address space

executable code (non-writable)

initialized global variables

uninitialized global variables
(„block started by symbol“)

Stack: dynamic data needed
due to generation of new
scope (grows/shrinks automa-
tically as subprograms are invoked
or completed; size limitations apply)

Heap: dynamically allocated
memory (grows/shrinks under
explicit programmer control, may
cause fragmentation)

Modernizing Fortran Legacy Codes 97

high address

low address

Text
D

ata
B

SS
Stack

H
eap

static memory

© 2015-18 LRZ

ALLOCATABLE vs. POINTER

An allocated allocatable entity
is an object in its own right
becomes auto-deallocated once going out of scope

An associated pointer entity
is an alias for another object, its target
all definitions and references are to the target

undefined (third) state should be avoided

© 2015-18 LRZ Modernizing Fortran Legacy Codes 98

except if object has the SAVE attribute
e.g., because it is global

create ALLOCATE(p(3), stat=my_status)

use p(:) = ...

destroy DEALLOCATE(p)

assoc p => tg; p(2) = 2.0

nullify NULLIFY(p) or p => null()

REAL, TARGET :: tg(3) = 0.0

pt

target is anonymous

pt tg 2.0

essential, otherwise an
orphaned target can remain

pt ∅
disassociated

(this state is not undefined!)

pt ∅

explicit pointer assignment

Implications of POINTER aliasing

(anonymous)
target

p1

p2

p3

Multiple pointers may point
to the same target

Avoid dangling pointers

© 2015-18 LRZ Modernizing Fortran Legacy Codes 99

ALLOCATE(p1(n))
p2 => p1; p3 => p2

DEALLOCATE(p2)
NULLIFY(p1, p3)

p2 is associated with
all of the target.

p1 and p3 become undefined

Not permitted: deallocation of allocatable target via a pointer

REAL, ALLOCATABLE, TARGET :: t(:)
REAL, POINTER :: p(:)

ALLOCATE(t(n)); p => t
DEALLOCATE(p)

Features added in

Allocatable entities
Scalars permitted:

LHS auto-(re)allocation on
assignment:

Efficient allocation move:

Pointer entities
rank changing „=>“:

bounds changing „=>“:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 100

Deferred-length strings:

REAL, ALLOCATABLE :: s

x = q(2:m-2)
conformance LHS/RHS guaranteed,

but: additional run-time check

CALL MOVE_ALLOC(from, to)
avoid data movement

CHARACTER(LEN=:), ALLOCATABLE :: var_string

var_string = ꞌString of any lengthꞌ

POINTER also permitted, but
subsequent use is then different

LHS is (re)allocated to correct length

REAL, TARGET :: m(n)
REAL, POINTER :: p(:,:)
p(1:k1,1:k2) => m

rank of target must be 1

q(4:) => m
bounds remapped via

lower bounds spec

Special case: automatic variables

Run-time sizing of local variables

by use of specification expressions

A special-case variant of
dynamic memory

usually placed on the stack
An automatic variable is

brought into existence on entry
deleted on exit from the
procedure

Note:
for many and/or large arrays
creation may fail due to stack
size limitations – processor
dependent methods for dealing
with this issue exist

© 2015-18 LRZ Modernizing Fortran Legacy Codes 101

MODULE mod_proc
INTEGER, PARAMETER :: dm = 3, &

da = 12
CONTAINS

SUBROUTINE proc(a, n)
REAL, INTENT(inout) :: a(*)
INTEGER, INTENT(in) :: n
REAL :: wk1(int(log(real(n))/log(10.)))
REAL :: wk2(sfun(n))
:

END SUBROUTINE proc
PURE INTEGER function sfun(n)

INTEGER, INTENT(in) :: n
sfun = dm * n + da

END FUNCTION sfun
END MODULE mod_proc

Intel ifort: -heap-arrays

ALLOCATABLE dummy argument
(explicit interface required)

Useful for implementation of „factory procedures“
e.g., by reading data from a file

Actual argument
that corresponds to simulation_field must be ALLOCATABLE
(apart from having the same type, kind and rank)

Modernizing Fortran Legacy Codes 102

SUBROUTINE read_simulation_data(simulation_field, file_name)
REAL, ALLOCATABLE, INTENT(out) :: simulation_field(:,:,:)
CHARACTER(LEN=*), INTENT(in) :: file_name
INTEGER :: iu, n1, n2, n3

OPEN(NEWUNIT=iu, FILE=file_name, …)
READ(iu) n1, n2, n3
ALLOCATE(simulation_field(n1,n2,n3))
READ(iu) simulation_field
CLOSE(iu)

END SUBROUTINE read_simulation_data

deferred-shape

© 2015-18 LRZ

storage can be allocated
after determining its size

POINTER dummy argument
(explicit interface required)

POINTER dummy argument
Example 1: for use as the RHS in a pointer assignment

Example 2: for use as the LHS in a pointer assignment

Modernizing Fortran Legacy Codes 103© 2015-18 LRZ

SUBROUTINE process_as_target(…, item)
REAL, POINTER, INTENT(in) :: item(:)
IF (ASSOCIATED(item)) THEN
some_pointer => item
:
some_pointer(j) = …

END IF
END SUBROUTINE

modifies target of item

SUBROUTINE process_as_pointer(…, item)
REAL, POINTER, INTENT(inout) :: item(:)
IF (.NOT. ASSOCIATED(item)) item => some_target(j,:)
:
item(k) = … ! guarantee associatedness at this point

END SUBROUTINE process_as_pointer

deferred-shape

deferred-shape

Invocation of procedures with
POINTER dummy argument

Example 1:

Example 2:

here, the actual argument must have the POINTER attribute

© 2015-18 LRZ Modernizing Fortran Legacy Codes 104

REAL, POINTER :: p(:) => NULL()
REAL, TARGET :: t(ndim)

ALLOCATE(p(ndim))
CALL process_as_target(…, p)

CALL process_as_target(…, t(::2))
Auto-targetting

Permitted for INTENT(in) pointers

REAL, POINTER :: p(:) => NULL()

CALL process_as_pointer(…, p)
:
CALL process_as_pointer(…, p)

unassociated on entry,
set up object in procedure

associated on entry,
continue working on same object

INTENT semantics for dynamic objects

„Becoming undefined“ for objects of derived type:
type components become undefined if they are not default initialized
otherwise they get the default value from the type definition
allocatable type components become deallocated

© 2015-18 LRZ Modernizing Fortran Legacy Codes 105

specified intent allocatable dummy object pointer dummy object

in
procedure must not modify

argument or change its
allocation status

procedure must not change
association status of object

out
argument becomes deallocated

on entry pointer becomes undefined
on entry

inout
retains allocation and definition

status on entry
retains association and definition

status on entry

auto-deallocation of
simulation_field

on earlier slide!

Bounds of deferred-shape objects

Bounds are preserved across procedure invocations and pointer
assignments

Example:

What arrives inside the procedure? Use intrinsics to check ...

this is different from assumed-shape, where bounds are remapped
it applies for both POINTER and ALLOCATABLE dummy objects

© 2015-18 LRZ Modernizing Fortran Legacy Codes 106

REAL, POINTER :: my_item(:) => NULL()

ALLOCATE(my_item(-3:8))
CALL process_as_target(…, my_item)

SUBROUTINE process_as_target(…)
:
some_pointer%item => item

LBOUND(item) has the value [-3]
UBOUND(item) has the value [8]

same applies for LHS after pointer assignment

Opinionated recommendations

Dynamic entities should be used, but sparingly and systematically
performance impact, avoid fragmentation of memory allocate all needed
storage at the beginning, and deallocate at the end of your program; keep
allocations and deallocations properly ordered.

If possible, ALLOCATABLE entities should be used rather than
POINTER entities

avoid memory management issues (dangling pointers and leaks)
especially avoid using functions with pointer result
aliasing via pointers has additional negative performance impact

A few scenarios where pointers may not be avoidable:
information structures → program these in an encapsulated manner (see later
for how to do that): user of the facilities should not see a pointer at all, and
should not need to declare entities targets.
subobject referencing (arrays and derived types) → performance impact (loss
of spatial locality, supression of vectorization)!

© 2015-18 LRZ Modernizing Fortran Legacy Codes 107

Interoperation with C pointer types

Situations not yet covered:
How to write a Fortran type declaration matching the C type

How to write a Fortran interface matching the C prototypes

or

© 2015-18 LRZ Modernizing Fortran Legacy Codes 108

typedef struct vector {
int len;
float *f;

} Vector;

double fun(double x, void *)

float strtof(const char *nptr, char **endptr);

Typeless C pointers in Fortran

Opaque derived type defined in ISO_C_BINDING:
c_ptr: interoperates with a void * C object pointer

Useful named constant:
c_null_ptr: C null pointer

Logical module function that checks pointer
association:
c_associated(c1[,c2])

value is .FALSE. if c1 is a C null pointer or if c2 is present
and points to a different address. Otherwise, .TRUE. is
returned
typical usage:

TYPE(c_ptr) :: res

res = get_my_ptr(…)
IF (c_associated(res)) THEN
: ! do work with res

ELSE
STOP 'NULL pointer produced by get_my_ptr'

END IF

TYPE(c_ptr) :: p = c_null_ptr

© 2015-18 LRZ Modernizing Fortran Legacy Codes 109

Module ISO_C_BINDING provides module procedures

pointer association (blue arrow) is set up as a result of their invocation
(green arrows)

Setting up a mapping between a Fortran object
and a C pointer

Fortran
object (f)

C pointer
(cp)

Fortran
POINTER (fptr)

TYPE(c_ptr) :: cp
cp = c_loc(f)

c_loc() produces C
address of F

CALL c_f_pointer(cp,fptr)

(A) for scalar Fortran object

CALL c_f_pointer(cp,fptr,shape)

(B) for array Fortran object

information must be
separately provided

(integer array)
lower bounds are 1
if an array pointer

same type and
type parameters

must be a
TARGET

© 2015-18 LRZ Modernizing Fortran Legacy Codes 110

Two scenarios are covered

2. Fortran object is a non-
interoperable variable

non-polymorphic
no length type parameters

1. Fortran object is of
interoperable type and type
parameters

© 2015-18 LRZ Modernizing Fortran Legacy Codes 111

in scenario 1, the object might also
have been created within C

(Fortran target then is anonymous).
In any case, the data can be

accessed from C.

nothing can be done with such
an object within C

In both scenarios, the Fortran object must
have either the POINTER or TARGET attribute
be allocated/associated if it is ALLOCATABLE/POINTER
be CONTIGUOUS and of non-zero size if it is an array

Note: some restrictions present in were dropped in

Writing an interoperable Fortran type declaration

The following declarations are for interoperable types:

note that type and component names need not be the same
Further details are left to the exercises

© 2015-18 LRZ Modernizing Fortran Legacy Codes 112

typedef struct vector {
int len;
float *f;

} Vector;

TYPE, BIND(C) :: vector
INTEGER(c_int) :: len
TYPE(c_ptr) :: f

END TYPE

Warning on inappropriate use
of c_loc() and c_f_pointer()

With these functions,
it is possible to subvert the type system (don't do this!)
(push in object of one type, and extract an object of different type)

it is possible to subvert rank consistency (don't do this!)
(push in array of some rank, and generate a pointer of different rank)

Implications:
implementation-dependent behaviour
security risks in executable code

Recommendations:
use with care (testing!)
encapsulate use to well-localized code
don't expose use to clients if avoidable

© 2015-18 LRZ Modernizing Fortran Legacy Codes 113

Cray Pointers: pre- dynamic memory
management

Not part of any Fortran standard
functionality first introduced by Cray as an extension

Declaration

integer pointer ptr is (automatically) of an integer of a kind suitable for
representing a C pointer (system-dependent!)
pointee: entity of any type (usually intrinsic or sequence), scalar or array
the POINTER, ALLOCATABLE or TARGET attributes are not permitted for
the pointee

© 2015-18 LRZ Modernizing Fortran Legacy Codes 114

REAL :: arr(1)
POINTER (ptr, arr)

pointee

Memory management procedures

Dynamic allocation and deallocation
uses non-standard intrinsics:

note that arguments are in units of bytes → you need to know sizes of
storage units
for some compilers, %val must be used on the arguments of malloc and
free
names and semantics of allocation and freeing procedures may differ
between implementations
data are accessed via pointee
pointee array bounds checking will be suspended
explicit deallocation is required to avoid memory leakage

© 2015-18 LRZ Modernizing Fortran Legacy Codes 115

PTR = malloc(nsize * sz_real)
arr(1:nsize) = […]
: ! further processing of arr
CALL free(ptr)

pointee now has
new start address

Aliasing and pointer arithmetic

Arithmetic usually in units of bytes:

i.e., x(:) is aliased with arr(3:) via pnew
some systems may use units of multi-byte words instead of bytes
Incrementing ptr itself is possible, but may result in a memory leak

Performance impact
will happen in the scope where the pointer is declared because of
potential aliasing
programmer's responsibility to avoid aliasing in other scopes!

© 2015-18 LRZ Modernizing Fortran Legacy Codes 116

REAL :: x
POINTER(pnew, x(1))
: ! define ptr as in previous slide
pnew = ptr + sz_real * 2
WRITE(*,*) x(2) ! value is that of arr(4)

Re-pointing a Cray pointer

Example: re-pointing at a global variable

multiple pointees of different type → use the correct one!

darr is aliased with arr_static after execution of pseudo-intrinsic
loc

© 2015-18 LRZ Modernizing Fortran Legacy Codes 117

MODULE mod_global
DOUBLE PRECISION, SAVE :: arr_static(8) = […]

END MODULE
PROGRAM global
USE mod_global
REAL :: arr(1)
DOUBLE PRECISION :: darr(1)
POINTER (ptr, arr), (ptr, darr)
: ! use ptr via arr as shown previously

ptr = loc(arr_static)
WRITE(*,*) darr(2)

END PROGRAM

might be in a COMMON block
if older code base is used

Example code:
examples/cray_ptr/cray_pointers.f90

accesses to arr would produce
undefined results

Additional notes

Some compilers require additional switches / libraries:
gfortran: -fcray-pointer

xlf: -qalias=intptr -qddim … -lhm

 please study your compiler documentation

Some compilers also support pointing at procedures
not really portable – was not supported by original Cray concept

„real“ procedure pointers are supported in

© 2015-18 LRZ Modernizing Fortran Legacy Codes 118

Moving to standard-conforming code

Option 1: Use ALLOCATABLE entities
this conversion is easy to do if only the dynamic memory facility
(malloc/free) is used (no aliasing!)

Option 2: Use POINTER entities
this conversion is moderately easy to do; pointer arithmetic must be
converted to pointer array indexing

© 2015-18 LRZ Modernizing Fortran Legacy Codes 119

Example code that nearly matches semantics:
examples/cray_ptr/ftn_alloc.f90

Example code that nearly matches semantics:
examples/cray_ptr/ftn_pointers.f90

The above two use pure and typically require larger-scale
rewriting, even though not necessarily difficult.

Moving to standard-conforming code (cont‘d)

Option 3: Use C interoperability from
this conversion allows for a more direct mapping of existing source code

especially relevant if targeted compiler does not support Cray pointers

Use the c_ptr type from iso_c_binding

an object of that type can be used in place of a Cray pointer

© 2015-18 LRZ Modernizing Fortran Legacy Codes 120

REAL :: arr(1)
POINTER (ptr, arr)

USE, INTRINSIC :: iso_c_binding
:
REAL, POINTER :: arr(:)
TYPE(c_ptr) :: ptr

at this point, no relationship
exists yet between ptr and arr

Memory management

It is possible to make direct use of libc facilities
Fortran interface declaration for required functions:

With the declaration change from the previous slide, the statement

to allocate the needed memory can therefore be retained!

© 2015-18 LRZ Modernizing Fortran Legacy Codes 121

INTERFACE
TYPE(c_ptr) FUNCTION malloc(size) BIND(C)
IMPORT :: c_ptr, c_size_t
INTEGER(c_size_t), VALUE :: size

END FUNCTION
SUBROUTINE free(ptr) BIND(C)
IMPORT :: c_ptr
TYPE(c_ptr), VALUE :: ptr

END SUBROUTINE
END INTERFACE

ptr = malloc(nsize*sz_real) units are bytes here!

Mapping the C pointer to Fortran objects

Construct Fortran POINTER
by using the intrinsic module procedure c_f_pointer,
the memory part of which is identical with that pointed at by the c_ptr object

Re-pointing to a global variable
Use c_loc to produce an address to be stored in a c_ptr object from a
Fortran object (re-pointing scenario):

The Fortran object is obliged to have the TARGET attribute, because
c_f_pointer is likely to be subsequently applied to ptr

© 2015-18 LRZ Modernizing Fortran Legacy Codes 122

ptr = malloc(nsize*sz_real)
CALL c_f_pointer(ptr, arr, [nsize])

rank-1 array pointer arr
needs one upper bound

ptr = c_loc(arr_stat(4:))ptr = loc(arr_stat(4:))

Cray pointer C interop

Wrapping up ...

Pointer arithmetic
can be implemented with suitable operator overloading

Before C interop was available, Cray pointers were essential for
some programming tasks

e.g., use of the one-sided MPI calls

© 2015-18 LRZ Modernizing Fortran Legacy Codes 123

Example code that fully matches Cray pointer semantics:
examples/cray_ptr/c_interop.f90

Program
configuration control

© 2015-18 LRZ Modernizing Fortran Legacy Codes 124

Metadata for program execution

Examples:
Problem classes and sizes
Parameter settings
Names of input/output files

Small amounts of data!
avoid encoding these into the
program
use dynamic allocation wrt
problem sizes

Data format
usually key-value pairs

Implementation methods
environment variables
 intrinsic procedure
GET_ENVIRONMENT_VARIABLE

command line arguments
 intrinsic procedures exist
 prefer to use a getopt-like

abstraction layer
NAMELIST files and variables
 defined in the standard
JSON
 a language-independent API for
structured processing of nested key-
value pairs
 Fortran implementation at
https://github.com/jacobwilliams/json-fortran
 Illustration of use at
https://github.com/jacobwilliams/json-
fortran/wiki/Example-Usage

© 2015-18 LRZ Modernizing Fortran Legacy Codes 125

https://github.com/jacobwilliams/json-fortran
https://github.com/jacobwilliams/json-fortran/wiki/Example-Usage

Namelist processing (1)

Purpose:
handling of key-value pairs
association of keys and
values is defined in a file
a set of key value-pairs is
assigned a name and called a
namelist group

Example file:

contains two namelist groups
first non-blank item: &
terminated by slash

Required specifications

Reading the namelist

NML specifier instead of FMT
multiple namelists require same
order of reading as specified in
file

© 2015-18 LRZ Modernizing Fortran Legacy Codes 126

&groceries flour=0.2,
breadcrumbs=0.3, salt=0.01 /

&fruit apples=4, pears=1,
apples=7 /

file
my_nml.dat

REAL :: flour, breadcrumbs, &
salt, pepper

INTEGER :: apples, pears
NAMELIST /groceries/ flour, &

breadcrumbs, salt, pepper
NAMELIST / fruit / pears, apples

OPEN(12, FILE='my_nml.dat', &
FORM='formatted', ACTION='read')

READ(12, NML=groceries)
! pepper is undefined
READ(12, NML=fruit)final value relevant

Namelist processing (2)

Arrays
namelist file can contain array
values in a manner similar to list-
directed input
declaration may be longer (but not
shorter) than input list – remaining
values are undefined on input
I/O is performed in array element
order

Strings
output requires DELIM
specification

otherwise not reusable for name-
list input in case blanks inside
string („too many items in input“)
input requires quotes or
apostrophes around strings

Derived types
form of namelist file (output):

Output
generally uses large caps for
identifiers

© 2015-18 LRZ Modernizing Fortran Legacy Codes 127

CHARACTER(LEN=80) :: name
NAMELIST /pers_nm/ name
name='John Smith'
OPEN(17, DELIM='quote', …)
WRITE(17, NML=pers_nm)

&PERSON
ME%AGE=45,
ME%NAME=“R. Bader“,
YOU%AGE=33,
YOU%NAME=“F. Smith“
/

all Fortran objects
must support the
specified type
components

Command line processing
via a user-friendly wrapper

FTN_Getopt
module for handling command
arguments of intrinsic type
supported specifications are:

Sequence of processing
1. invoke optinit() to create one or

more options (scalar or array of
type opt_t)

2. invoke optarg() to extract the
option(s) from the command line

3. invoke optval() to obtain the
result object

Example:

last statement will transfer the value
42 to nopt if the program is invoked
with the argument
--nopt 42

nopt will remain unchanged if no
such option is encountered

Error handling
type mismatches etc. cause abort
unless stat arguments are specified

© 2015-18 LRZ Modernizing Fortran Legacy Codes 128

--switch for a logical option (has value
.TRUE. if option appears)

--switch <value> or
--switch=<value> for an otherwise

typed option

USE ftn_getopt
TYPE(opt_t) :: option
INTEGER :: nopt
option = optinit('nopt', 'integer')
CALL optarg(option)
CALL optval(option, nopt)

see https://www.lrz.de/services/software/programmierung/fortran90/courses/basic/doc_ftn_getopt/index.html

https://www.lrz.de/services/software/programmierung/fortran90/courses/basic/doc_ftn_getopt/index.html

The Environment Problem

Unsolved problems with global variables

Problems appear in the context of parallel programming
especially shared memory parallelism (OpenMP)

Variant 1:
global variable needs to exist once for all thread context (a shared
variable)
then, all updates and references must be via mutual exclusion
(atomic, critical, or by locking/unlocking)

Variant 2:
global variables exist, but need to be multiplexed to have one
instance per thread context (threadprivate variables)
an elaborate scenario is supplied on the following slides

Both cases
involve additional programming complexity

© 2015-18 LRZ Modernizing Fortran Legacy Codes 130

Setting the stage

Calculation of

where
f(x,p) is a real-valued function of a real variable x and a variable p of some
undetermined type
a, b are real values

Tasks to be done:
procedure with algorithm for establishing the integral  depends on the
properties of f(x,p) (does it have singularities? etc.)

function that evaluates f(x,p)
Case study provides a simple example of very common
programming tasks with similar structure in scientific computing.

© 2015-18 LRZ Modernizing Fortran Legacy Codes 131

𝐼𝐼 = �
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑥𝑥,𝑝𝑝 𝑑𝑑𝑑𝑑

𝐼𝐼 ≈ �
𝑖𝑖=1

𝑛𝑛

𝑤𝑤𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑝𝑝)

Using a canned routine: D01AHF
(Patterson algorithm in NAG library)

Interface:

uses a function argument

(user-provided function)
Invocation:

Mass-production of integrals
may want to parallelize

need to check library
documentation: thread-safeness
of d01ahf

© 2015-18 LRZ Modernizing Fortran Legacy Codes 132

DOUBLE PRECISION FUNCTION d01ahf (a, b, epsr, npts, relerr, f, nlimit, ifail)
INTEGER :: npts, nlimit, ifail
DOUBLE PRECISION :: a, b,eprs, relerr, f
EXTERNAL :: f

DOUBLE PRECISION FUNCTION f (x)
DOUBLE PRECISION :: x

requested precision

:
res = d01ahf(a, b, 1.0e-11, &
npts, relerr, my_fun, -1, is)

define a, b

!$omp parallel do
DO i=istart, iend
: ! prepare
res(i) = d01ahf(…, my_fun, …)

END DO
!$omp end parallel do

Mismatch of user procedure implementation

User function may look like this:

parameter „p“ is actually the tuple (n, a)  no language mechanism available for this

or like this

Neither can be used as an actual argument in an
invocation of d01ahf

© 2015-18 LRZ Modernizing Fortran Legacy Codes 133

SUBROUTINE user_proc(x, n, a, result)
REAL(dk), INTENT(in) :: x, a
INTEGER, INTENT(in) :: n
REAL(dk), INTENT(out) :: result

END SUBROUTINE

REAL(dk) FUNCTION user_fun(x, p)
REAL(dk), INTENT(in) :: x
TYPE(p_type), INTENT(in) :: p

END FUNCTION

Compiler would accept
this one due to the

implicit interface for it,
but it is likely to bomb at run-time

Solution 1: Wrapper with global variables

Usage:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 134

MODULE mod_user_fun
DOUBLE PRECISION :: par
INTEGER :: n

CONTAINS
FUNCTION arg_fun(x) result(r)

DOUBLE PRECISION :: r, x
CALL user_proc(x, n, par, r)

END FUNCTION arg_fun
:

END MODULE mod_user_fun

has suitable
interface for use

with d01ahf

further procedures, e.g. user_proc itself

USE mod_user_fun

par = … ; n = …
res = d01ahf(…, arg_fun, …)

global variables
(implies SAVE attribute)

supply values
for global variables

Disadvantages of Solution 1

Additional function call overhead
is usually not a big issue (nowaday‘s implementations are quite efficient,
especially if no stack-resident variables must be created).

Solution is not thread-safe (even if d01ahf itself is)
expect differing values for par and n in concurrent calls:

results in unsynchronized access to the shared variables par and n from
different threads race condition does not conform to the OpenMP
standard  wrong results (at least some of the time ...)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 135

!$omp parallel do
DO i=istart, iend
par = …; n = …
res(i) = d01ahf(…, arg_fun, …)

END DO
!$omp end parallel do

tim
e

fork:
T0 T1par

join

shared

par

Making Solution 1 thread-safe

Threadprivate storage

Usage may require additional care as well

© 2015-18 LRZ Modernizing Fortran Legacy Codes 136

MODULE mod_user_fun
DOUBLE PRECISION :: par
INTEGER :: n

!$omp threadprivate (par, n)
…

par = …
!$omp parallel do copyin(par)
DO i = istart, iend
n = …
… = d01ahf(…, arg_fun, …)
IF (…) par = …

END DO
!$omp end parallel do

broadcast from master copy
needed for par

thread-individual copies
are created in parallel regions

A bit cumbersome:
non-local programming
style required

tim
e

fork: T0 T1

par

join

par par

T0 reads par
T1 reads
and then
writes par

master writes par

Solution 2: Reverse communication

Change design of integration interface:
instead of a function interface, provider requests a function value
provider provides an argument for evaluation, and an exit condition

© 2015-18 LRZ Modernizing Fortran Legacy Codes 137

preparation step:
set baseline

parameters (a, b, p)
produce first argument x

calculate f(x,p)
for requested x

solution iteration step:
feed in function value

obtain intermediate result,
next argument x, and state

check
state complete

done

unfinished

Solution 2: Typical example interface

Uses two routines:

first is called once to initialize an integration process

second will be called repeatedly, asking the client to perform further function
evaluations

final result may be taken once stat has the value stat_continue

© 2015-18 LRZ Modernizing Fortran Legacy Codes 138

SUBROUTINE initialize_integration(a, b, eps, x)
REAL(dk), INTENT(in) :: a, b, eps
REAL(dk), INTENT(out) :: x

END SUBROUTINE
SUBROUTINE integrate(fval, x, result, stat)
REAL(dk), INTENT(in) :: fval
REAL(dk), INTENT(out) :: x
REAL(dk), INTENT(inout) :: result
INTEGER, INTENT(out) :: stat

END SUBROUTINE

result shall not be modified by caller
while calculation iterates

Solution 2: Using the reverse
communication interface

avoids the need for interface adaptation and global variables
some possible issues will be discussed in an exercise

© 2015-18 LRZ Modernizing Fortran Legacy Codes 139

PROGRAM integrate
:
REAL(dk), PARAMETER :: a = 0.0_dk, b = 1.0_dk, eps = 1.0e-6_dk
REAL(dk) :: x, result, fval, par
INTEGER :: n, stat
n = …; par = …
CALL initialize_integration(a, b, eps, x)
DO
CALL user_proc(x, n, par, fval)
CALL integrate(fval, x, result, stat)
IF (stat /= stat_continue) EXIT

END DO
WRITE (*, '(''Result: '',E13.5,'' Status: '',I0)') result, stat

CONTAINS
SUBROUTINE user_proc(…)
:

END SUBROUTINE user_proc
END PROGRAM

Taking Solution 2 a step further

Disadvantage:
iteration routine completes
execution while algorithm still
executes
this may cause a big memory
allocation/deallocation overhead
if it uses many (large) stack (or
heap) variables with local scope

Note: giving such variables the
SAVE attribute causes the
iteration routine to lose thread-
safeness

Concept of „coroutine“
type of procedure that can
interrupt execution without
deleting its local variables
co-routine may return (i.e.
complete execution), or suspend
invocation may call, or resume
the coroutine
(implies rules about invocation
sequence)
no language-level support for this
exists in Fortran
however, it can be emulated
using OpenMP

© 2015-18 LRZ Modernizing Fortran Legacy Codes 140

Coroutine emulation via OpenMP tasking

Separate tasks are started for
supplier, and for
consumer of function values

Explicit synchronization
needed

between supplier and
consumer
functional (vs. performance)
threading
involved objects: x, fval
use an integer flag for
synchronization

© 2015-18 LRZ Modernizing Fortran Legacy Codes 141

:
n = …; par = …; a = …; b = …; eps = …
flag = flag_need_iter

!$omp parallel num_threads(2) proc_bind(master)
!$omp single
!$omp task …

DO
:
CALL user_proc(x, n, par, fval)
:

END DO
!$omp end task
!$omp task

CALL integrate_c(a, b, eps, fval, x, &
result, flag)

!$omp end task
!$omp end single
!$omp end parallel
:

continues executing until
the algorithm has completed

produce x
and set flag :=1

block
until flag==1

t1 t2

calculate f(x, …)
and set flag := 0 block

until flag==0

consume f(x,…)

task t1

task t2

Synchronization code

Look at task block „t1“ from previous slide in more detail:

A mirror image of this is done inside integrate_c()
Grey area with respect to Fortran conformance (aliasing rules)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 142

!$omp task private(flag_local)
!$omp taskyield

iter: DO
spin: DO

!$omp atomic read
flag_local = flag
IF (flag_local == flag_need_fval) EXIT spin
IF (flag_local > 1) EXIT iter

END DO spin
!$omp flush(x)

CALL user_proc(x, n, par, fval)
!$omp flush (fval)
!$omp atomic write

flag = flag_need_iter
!$omp taskyield

END DO iter
!$omp end task

the TARGET attribute
might help

Solution 3: Object oriented design

Assume that parameter p in f(x, p) is passed to integration routine

Observation:
integrator never makes explicit use of p
it is only passed to the invocation of the function argument

Idea:
p should be a handle that can hold any data
we need to have a mechanism for accessing data implemented inside the
procedure used as actual argument and associated with fun

© 2015-18 LRZ Modernizing Fortran Legacy Codes 143

SUBROUTINE integrate_o(a, b, eps, fun, p, result, stat)
:

:
… = fun(x, p)

:
END SUBROUTINE

function
dummy argument parameters

declarations
given later

Object oriented features
and their use

© 2015-18 LRZ Modernizing Fortran Legacy Codes 144

Type extension

Example:

Inheritance mechanism:

single inheritance only

UML-like representation

© 2015-18 LRZ Modernizing Fortran Legacy Codes 145

TYPE, EXTENDS(body) :: charged_body
REAL :: charge

END TYPE charged_body

TYPE(charged_body) :: electron
:
electron % mass = ...
electron % charge = ...
:
WRITE(*,*) electron % body

inherited component

parent component

charged_body

charge

symbol for
extension

body

mass
pos(3)
vel(3)

Polymorphism

New capability of an object:
permit change of type at run time

declared type is body
dynamic type can be declared
type or any extension of it

Properties of object:
access to its data is by default possible only to
components in declared type
an object of base type is type compatible with an
object of extended type (but not vice versa)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 146

CLASS(body) :: particle

Data item can be
1. a dummy data object

2. a pointer or allocatable variable

3. both of the above

interface polymorphism

data polymorphism →
a new kind of dynamic memory

Abstract type

Separate concerns in our integration example:

no actual object of the abstract type can exist
(even though type components are permitted)
typical inheritance structure: flat tree

© 2015-18 LRZ Modernizing Fortran Legacy Codes 147

MODULE mod_u1
USE mod_integration
:
TYPE, EXTENDS(p_type) :: p_u1
INTEGER :: n
REAL(dk) :: par

END TYPE
:

END MODULE mod_u1

MODULE mod_integration
:
TYPE, ABSTRACT :: p_type
END TYPE
:

END MODULE mod_integration

u
framework component elaborated details

p_u1 p_u2 p_u3 ...

p_type

Completing the integrator framework

© 2015-18 LRZ Modernizing Fortran Legacy Codes 148

MODULE mod_integration
:
ABSTRACT INTERFACE
FUNCTION fp(x, p) RESULT(r)

IMPORT :: dk, p_type
REAL(dk), INTENT(in) :: x
CLASS(p_type), INTENT(in) :: p
REAL(dk) :: r

END FUNCTION fp
END INTERFACE

CONTAINS
SUBROUTINE integrate_o(a, b, eps, fun, p, result, stat)
REAL(dk), INTENT(in) :: a, b, eps
PROCEDURE(fp) :: fun
CLASS(p_type), INTENT(in) :: p
REAL(dk), INTENT(out) :: result
INTEGER, INTENT(inout), OPTIONAL :: stat
:

… = fun(x, p)
:

END SUBROUTINE
END MODULE mod_integration

Describes signature of a function
that is not yet implemented

Enable access to host

must be polymorphic,
because p_type is abstract

Accessing data via type identification

Specific integrand function
implementation

needs access to data stored in
parameter object

SELECT TYPE
block construct

at most one block is executed
permits run time type
identification (RTTI)
inside a TYPE IS guard,
object is non-polymorphic and
of the type specified in the
guard
CLASS IS guards are also
possible ("lift" declared type of
a polymorphic object)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 149

MODULE mod_u1
:

CONTAINS
FUNCTION u1_fun(x, p) RESULT(r)

REAL(dk), INTENT(in) :: x
CLASS(p_type), INTENT(in) :: p
REAL(dk) :: r

SELECT TYPE (p)
TYPE IS (p_u1)

r = p%par * cos(p%n * x)
CLASS default

stop ‘u1_fun: wrong type.’
END SELECT

END FUNCTION u1_fun
END MODULE mod_u1

must exactly match
abstract interface

(future use as actual argument!)

error handling

Calling the integrator

Main program

© 2015-18 LRZ Modernizing Fortran Legacy Codes 150

PROGRAM integration
USE mod_u1
IMPLICIT NONE

TYPE(p_u1) :: p
REAL(dk) :: a, b, eps, …
p%n = 4
p%par = 3.4_dk
a = …; b = …; …

CALL integrate_o(a, b, eps, u1_fun, p, result, stat)

WRITE(*,*) ‘Result of integration: ‘, result
END PROGRAM integration

Acceptable as actual argument matching
class(p_type) dummy because p_type

is type compatible with p_u1

Remaining weaknesses

Weak spot 1: RTTI
witness the need to do error handling in u1_fun
would be avoided if the argument could be declared

which is however not possible due to interface consistency constraints
Weak spot 2: Dependency tree of program units

main program depends on specific implementation of type extension
→ needs rewrite+recompile to use a different parametrization scheme
desirable: full dependency inversion

© 2015-18 LRZ Modernizing Fortran Legacy Codes 151

CLASS(p_u1), INTENT(in) :: p

mod_integration

p_type

integrate_o()

mod_u1

p_u1

u1_fun()

integration

??? Type of object p and
invocation of u1_fun()

Binding procedures to types

Example:
bind the kick() procedure to
the type body

Invocation:
through object

argument the object is passed at
depends on PASS specification
default is first one
NOPASS: object is not passed
only really interesting if actual
argument is polymorphic

© 2015-18 LRZ Modernizing Fortran Legacy Codes 152

MODULE mod_body
:
TYPE :: body

:
CONTAINS

PROCEDURE, PASS(this) :: kick
END TYPE body
CONTAINS
SUBROUTINE kick(this, dp)
CLASS(body) :: this
:

END MODULE

TYPE(body) :: particle
:
CALL particle % kick (dp)

same as call kick(particle, dp)

must be polymorphic

Overriding type-bound procedures

Deferred type-bound
procedure

purpose is to force all type
extensions to define an
overriding type-bound procedure
(and inform objects of declared
base type that it exists)
the existing abstract interface fp
is referenced

Override for type extension

signature of overriding procedure
must be identical with that of fp,
except for passed object

© 2015-18 LRZ Modernizing Fortran Legacy Codes 153

MODULE mod_integration
:
TYPE, ABSTRACT :: p_type
CONTAINS
PROCEDURE(fp), PASS(p), &

DEFERRED :: fun
END TYPE
:

END MODULE mod_integration

MODULE mod_u1
USE mod_integration
:
TYPE, EXTENDS(p_type) :: p_u1

INTEGER :: n
REAL(dk) :: par

CONTAINS
PROCEDURE, PASS(p) :: &

fun => u1_fun
END TYPE
:

END MODULE mod_u1

Implementation and invocation

Changes to u1_fun()

must replace CLASS(p_type) by
CLASS(p_u1)
RTTI not needed any more!
implements dynamic dispatch
(OO terminology: a virtual method)

Changes to integrator
Function argument can be
removed because function is
now bound to the type

© 2015-18 LRZ Modernizing Fortran Legacy Codes 154

SUBROUTINE integrate_o(a, b, eps, &
p, result, stat)

REAL(dk), INTENT(in) :: a, b, eps
CLASS(p_type) :: p
REAL(dk), INTENT(out) :: result
INTEGER, INTENT(inout), &

OPTIONAL :: stat
:

… = p % fun(x)
:

END SUBROUTINEinvoked function is the one
bound to the dynamic type of p

FUNCTION u1_fun(x, p) RESULT(r)
REAL(dk), INTENT(in) :: x
CLASS(p_u1), INTENT(in) :: p
REAL(dk) :: r

r = p%par * cos(p%n * x)
END FUNCTION u1_fun

Weakness 1 is hereby resolved

Addendum: binding procedures to objects

Use a procedure pointer
declaration as type component

pr references an abstract
interface or an existing
procedure

Example usage
select print method for each
object individually

invocation requires pointer
components to be associated
PASS attribute works as for type-
bound procedures

© 2015-18 LRZ Modernizing Fortran Legacy Codes 155

MODULE mod_body
:
TYPE :: body

PROCEDURE(pr), POINTER :: &
print => null

CONTAINS
:

END TYPE body
CONTAINS
SUBROUTINE print_fmt(this)

CLASS(body) :: this
:

END MODULE

TYPE(body) :: a, b

a%print => print_fmt
b%print => print_bin

CALL a%print() ! calls print_fmt
CALL b%print() ! calls print_bin

Adressing weakness 2

Returning to the main program

here, the dependency structure is now OK, but the devil is
in the details ...

© 2015-18 LRZ Modernizing Fortran Legacy Codes 156

PROGRAM integration
USE mod_integration

CLASS(p_type), ALLOCATABLE :: p
:
fname = 'integration.dat'
CALL p_class_create(p, fname)
:
CALL integrate_o(a, b, eps, p, result, stat)

WRITE(*,*) 'Result of integration: ', result
END PROGRAM integration

type p_u1 is not available
via mod_integrator ...

this needs to return an
allocated p of extended type

Polymorphic factory method

Uses sourced allocation to construct object

© 2015-18 LRZ Modernizing Fortran Legacy Codes 157

:
USE mod_u1

CONTAINS
SUBROUTINE p_class_create (p, fname)

CLASS(p_type), ALLOCATABLE, INTENT(out) :: p
CHARACTER(len=*), INTENT(in) :: fname
CHARACTER(len=strmx) :: type_string
: ! open fname and read type_string
SELECT CASE (type_string)
CASE('p_u1')

READ(…) n, par
ALLOCATE(p, SOURCE=p_u1 (n, par))

CASE default
ERROR STOP 'type not supported'

END SELECT
END SUBROUTINE

:

access definition of p_u1

use structure constructor for p_u1
to create a clone stored in p

Addendum: additional allocation mechanisms

Typed allocation

Molded allocation

Note:
sourced and molded allocation also
transfer array bounds

allocate p to be of dynamic
type p_u1, but no value is
provided

allocate p to be of dynamic
type p_u2 (assuming p_u2 is
an extension of p_type), but
does not copy over the value

© 2015-18 LRZ Modernizing Fortran Legacy Codes 158

CLASS(p_type), ALLOCATABLE :: p
:
ALLOCATE(p_u1 :: p)

TYPE(p_u2) :: q
CLASS(p_type), ALLOCATABLE :: p
:
ALLOCATE(p, MOLD=q)

... and here's the catch

We can't have p_class_create() as a module procedure in
mod_integration

because this would create a circular module dependency:

On the other hand,
its interface must be accessible via mod_integration

However,
the interface's signature does not depend on mod_u1, ...

© 2015-18 LRZ Modernizing Fortran Legacy Codes 159

mod_integration

p_type
p_class_create()
integrate_o()

mod_u1

p_u1

u1_fun()

u

u

Submodules

A new kind of program unit

© 2015-18 LRZ Modernizing Fortran Legacy Codes 160

Problems with Modules

Tendency towards monster modules for large projects
e.g., type component privatization prevents programmer from breaking up
modules where needed

Recompilation cascade effect
changes to module procedures forces recompilation of all code that use
associates that module, even if specifications and interfaces are unchanged

workarounds are available, but somewhat clunky

Object oriented programming
more situations with potential circular module dependencies are possible

type definitions referencing each other may also occur in object-based
programming

© 2015-18 LRZ Modernizing Fortran Legacy Codes 161

Solution: Submodules

Split off implementations (module procedures) into separate files

© 2015-18 LRZ Modernizing Fortran Legacy Codes 162

mymod

procedure()

mymod

procedure()

submodule (mymod) smod_1

procedure()

h

access is by host association
(i.e. also to private entities)

procedure implementation

procedure
interface

Submodule program units

Syntax

applies recursively: a
descendant of smod_1 is

sibling submodules are
permitted (but avoid duplicates
for accessible procedures)

Symbolic representation

© 2015-18 LRZ Modernizing Fortran Legacy Codes 163

SUBMODULE (mymod) smod_1
: ! specifications

CONTAINS
: ! implementations

END SUBMODULE

SUBMODULE (mymod:smod_1) smod_2
:

END SUBMODULE

mymod

smod_1

smod_2

h

h

ancestor
module

immediate
ancestor submodule

Submodule specification part

Like that of a module, except
no PRIVATE or PUBLIC statement or attribute can appear

Reason: all entities are private
and only visible inside the submodule and its descendants

SUBMODULE (mymod) smod_1
TYPE, EXTENDS(t) :: ts
:

END TYPE
REAL, ALLOCATABLE :: x(:,:)

:
END SUBMODULE

MODULE mymod
IMPLICIT NONE
TYPE :: t

:
END TYPE

:
END MODULE

© 2015-18 LRZ Modernizing Fortran Legacy Codes 164

effectively
private

Separate module procedure interface

Returning to our integration example:
specification part of ancestor module mod_integration

Notes:
the IMPORT statement is not permitted in separate module procedure
interfaces (auto-import is done)
for functions, the syntax is MODULE FUNCTION

MODULE mod_integration
:
INTERFACE

MODULE SUBROUTINE p_class_create (p, fname)
CLASS(p_type), ALLOCATABLE, INTENT(out) :: p
CHARACTER(len=*), INTENT(in) :: fname

END SUBROUTINE
END INTERFACE

END MODULE

syntax indication that the
implementation is contained

in a submodule

© 2015-18 LRZ Modernizing Fortran Legacy Codes 165

Separate module procedure implementation

Syntax variant 1:
complete interface (including argument keywords) is taken from module
dummy argument and function result declarations are not needed

SUBMODULE (mod_integration) create
USE mod_u1, ONLY : p_u1

CONTAINS
MODULE PROCEDURE p_class_create
CHARACTER(len=strmx) :: type_string
: ! open fname and read type_string
SELECT CASE (type_string)
CASE('p_u1')

READ(…) n, par
ALLOCATE(p, SOURCE=p_u1(n, par))

CASE default
ERROR STOP 'type not supported'

END SELECT
END PROCEDURE

END SUBMODULE

© 2015-18 LRZ Modernizing Fortran Legacy Codes 166

Separate module procedure implementation

Syntax variant 2:
interface is replicated in the submodule
must be consistent with ancestor specification

for functions, the syntax again is MODULE FUNCTION

© 2015-18 LRZ Modernizing Fortran Legacy Codes 167

SUBMODULE (mod_integration) create
USE mod_u1, ONLY : p_u1

CONTAINS
MODULE SUBROUTINE p_class_create(p, fname)
CLASS(p_type), ALLOCATABLE, INTENT(out) :: p
CHARACTER, INTENT(in) :: fname
: ! implementation as on previous slide

END PROCEDURE
END SUBMODULE

Weakness 2 is hereby resolved

Final dependency structure

Notes:
the standard permits use access (which usually is indirect) from a submodule
to its ancestor module
since use association overrides host association, putting an ONLY option on
USE statements inside submodules is recommended to avoid side effects
resulting from encapsulation

© 2015-18 LRZ Modernizing Fortran Legacy Codes 168

mod_integration

p_type
p_class_create()
integrate_o()

mod_u1

p_u1

u1_fun()

u

create

p_class_create()

h

integration

class(p_type) :: p

u

this procedure decides at
run time what p's type is

one of many
extensions

Array Processing
and its performance

© 2015-18 LRZ Modernizing Fortran Legacy Codes 169

Processor architecture

Performance Characteristics
determined by memory
hierarchy

Impact on Application
performance: depends on
where data are located

temporal locality: reuse of
data stored in cache allows
higher performance
no temporal locality:
reloading data from memory
(or high level cache) reduces
performance

For multi-core CPUs,
available bandwidth may
need to be shared between
multiple cores

© 2015-18 LRZ Modernizing Fortran Legacy Codes 170

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

Bandwidth:
determines how
fast application
data can be
brought to
computational
units on CPU

high
bandwidth
available

low
bandwidth
available  shared caches and memory

data start out
residing here

Using synthetic loop kernels
for performance evaluation

Characteristics
known operation count, load/store count

some variants of interest:

run repeated iterations for varying vector lengths (working set sizes)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 171

132Vector Triadai = bi * ci + di

122Linked Triad (Stream)ai = bi * s + ci

012Normn2 = n2 + ai * ai

022Scalar Products = s + ai * bi

StoresLoadsFlopsNameKernel

Synthetic benchmark: bandwidths of „raw“ architecture, looped version
for a single core

Vector Triad D(:) = A(:) + B(:) * C(:)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 172

L1D – 32kB
< 112 GB/s

L2 – 256 kB
< 62 GB/s

L3 – 20 MB
~ 33 GB/s

Memory
~ 14.7 GB/s

measured „effective“ BW:
3 LD+1ST

16 Bytes / Flop, repeated execution
(actually issued: 4 LD+1ST in L2 and higher)

Vectorization (256 Bit registers)
provides performance boost

mostly in L1/L2 cache

Performance by type and kind

© 2015-18 LRZ Modernizing Fortran Legacy Codes 173

~ 60 MFlop/s

2x

2x

2x

uses SSE 4.1 VEX

working set size is
different for same

vector length

Microprocessor Architecture continued

Loads and Stores
apply to cache lines

size: fixed by architecture
(64, 128 or more Bytes)

Pre-fetch
avoid latencies when
streaming data

pre-fetches are usually done
in hardware

decision is made according to
memory access pattern

Pre-Requisite:
spatial locality

violation of spatial locality:

if only part of a cache line is
used → effective reduction in
bandwidth observed

© 2015-18 LRZ Modernizing Fortran Legacy Codes 174

execution time

LD W1 W2 W3 W4 W5 W6 W7 W8

TLatency

cache line 1

execution time

PF

cache line 2PF

cache line 3PF

Performance of strided triad on Sandy Bridge
(loss of spatial locality)

ca. 40 MFlop/s
(remains constant
for strides > ~25)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 175

Notes:
 stride known at

compile time
 serial compiler

optimizations may
compensate perfor-
mance losses in
real-life code

D(::stride) = A(::stride) + B(::stride)*C(::stride)
Example: stride 3

partial cache line use

loss of vectorization

Avoid loss of spatial locality

Avoid incorrect loop ordering

Accessing type components

Correct:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 176

REAL :: a(ndim, mdim)

DO i=1, n
DO j=1, m

a(i, j) = …
END DO

END DO

REAL :: a(ndim, mdim)

DO j=1, m
DO i=1, n

a(i, j) = …
END DO

END DOjumps through in
strides of ndim

innermost loop
corresponds to
leftmost array index

TYPE(body) :: a(ndim)

DO i=1, n
… = a(i)%vel(3)

END DO
DO i=1, n
… = a(i)%pos(3)

END DO

TYPE(body) :: a(ndim)

DO i=1, n
… = a(i)%mass
… = a(i)%pos(:)
… = a(i)%vel(:)

END DO

effectively
stride 8 uses 7/8 of

cache line

Array of structures

Structures of Arrays

Improve vectorizability by
assuring use of contiguous storage sequences of numeric intrinsic type inside
objects

In general, this requires moving
from arrays of structures to structures of arrays

Options in Fortran:
1. "container" type (with

allocatable or
pointer
components):

2. parameterized
derived type:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 177

TYPE :: mbody
REAL, ALLOCATABLE :: mass(:), &

pos(:,:), vel(:,:)
END TYPE

TYPE :: mbody_pdt(k,l)
INTEGER, KIND :: k = KIND(1.0)
INTEGER, LEN :: l
REAL(KIND=k) :: mass(l), &

pos(3,l), vel(3,l)
END TYPE

component size in first
dimension is fixed

compile-time

usually run-time

Scattered object

vectorization for each component
individually

Compact object

both vectorization and memory
streaming for arrays of PDT can be
efficiently performed (in theory)

asteroids_pdt

Memory Layout

Establishing an object

for mbody, always on the heap

for mbody_pdt, complete object
could also reside on the stack

© 2015-18 LRZ Modernizing Fortran Legacy Codes 178

TYPE(mbody) :: asteroids
na = ... ! number of asteroids
ALLOCATE(asteroids%mass(na), &

asteroids%pos(3,na), ...)
: ! process asteroids

TYPE(mbody_pdt(l=:)), &
ALLOCATABLE :: asteroids_pdt

na = ... ! number of asteroids
ALLOCATE(mbody_pdt(l=na) :: &

asteroids_pdt)
: ! process asteroids_pdt

deferred type parameter

asteroids
%mass

%pos

%vel

%mass %pos %vel

The CONTIGUOUS attribute

Avoid non-contiguous access for assumed-shape arrays:

Expected effect at invocation:
with a contiguous actual argument passed as usual
(actual argument: a whole array, a contiguous section of a whole array, or an object
with the CONTIGUOUS attribute, …)

with a non-contiguous actual argument copy-in / copy-out
(performance tradeoff for creating the compactified temporary array depends on
problem size and number of calls)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 179

MODULE mod_solver
IMPLICIT NONE

CONTAINS
SUBROUTINE process_array_contig(ad)
REAL, INTENT(inout), CONTIGUOUS :: ad (:,:)
:

END SUBROUTINE
END MODULE

assures contiguity
of dummy argument

CONTIGUOUS pointers

Difference to assumed-shape array
programmer is responsible for guaranteeing the contiguity of the target in a
pointer assignment

Examples:

first pointer assignment is legitimate because whole allocated array storage
is contiguous
if contiguity of target is not known, need to check via intrinsic:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 180

REAL, POINTER, CONTIGUOUS :: matrix(:,:)
REAL, ALLOCATABLE :: storage(:)
:
ALLOCATE(storage(n*n))
matrix(lb:ub,lb:ub) => storage
diagonal => storage(::n+1)

IF (is_contiguous(other_storage)) THEN
matrix(lb:ub,lb:ub) => other_storage

ELSE
…

with possibly new values
for lb, ub

Fortran language features targetting performance

Language design was from the beginning such that
processor's optimizer not inhibited

loop iteration variable is not permitted to be modified inside loop body
→ enables register optimization (provided a local variable is used)

aliasing rules (no overlap between dummy argument and some other
accessible variable if at least one is modified)
→ enables optimization of array operations (based on dependency analysis)

With modern Fortran
extension of the existing aliasing rules for POINTER and ALLOCATABLE
objects , and for coarrays

Other languages have caught up
e.g. beginning with C99, C has the restrict keyword for pointers
→ similar aliasing rules as for Fortran

© 2015-18 LRZ Modernizing Fortran Legacy Codes 181

ELEMENTAL procedures

Declaration:
ELEMENTAL prefix

all dummy arguments (and function result if a function) must be
scalars
an interface block is required for an external procedure
elemental procedures are also PURE

introduces an IMPURE attribute for cases where PURE is
inappropriate

© 2015-18 LRZ Modernizing Fortran Legacy Codes 182

MODULE elem_stuff
CONTAINS
ELEMENTAL subroutine swap(x, y)
REAL, INTENT(inout) :: x, y
REAL :: wk
wk = x; x = y; y = wk

END SUBROUTINE swap
END MODULE

Invoking an ELEMENTAL procedure

Actual arguments (and possibly function result)
can be all scalars or all conformable arrays

execution of subroutine applies for every array element
Further notes:

vectorization potential (maybe using OpenMP SIMD construct)
many intrinsics are elemental
some array constructs: subprogram calls in body may need to be
elemental

© 2015-18 LRZ Modernizing Fortran Legacy Codes 183

USE elem_stuff
REAL :: x(10), y(10), z, zz(2)
: ! define all variables
CALL swap(x, y) ! OK
CALL swap(zz, x(2:3)) ! OK
CALL swap(z, zz) ! invalid

WHERE statement and construct
(„masked operations“)

Execute array operations
only for a subset of elements

defined by a logical array
expression e.g.,

general form:

wherein x must be a logical array
expression with the same shape
as y.
x is evaluated first, and the
evaluation of the assignment is
only performed for all index
values for which x is true.

Multiple assignment
statements

can be processed with a
construct

same mask applies for every
assignment
y4 is assigned for all elements
with .not. x .and. z

© 2015-18 LRZ Modernizing Fortran Legacy Codes 184

WHERE (a > 0.0) a = 1.0/a

WHERE (x) y = expr

WHERE (x)
y1 = …
y2 = …
y3 = …

[ELSEWHERE [(z)]
y4 = …]

END WHERE

optional only for final
elsewhere block

Assignment and expression
in a WHERE statement or construct

Assignment may be
a defined assignment (introduced later) if it is elemental

Right hand side
may contain an elemental function reference. Then, masking extends
to that reference
may contain a non-elemental function reference. Masking does not
extend to the argument of that reference

array-valued non-elemental references are also fully evaluated before
masking is applied

© 2015-18 LRZ Modernizing Fortran Legacy Codes 185

WHERE (a > 0.0) &
a = SQRT(a)

sqrt() is an elemental intrinsic

WHERE (a > 0.0) &
a = a / SUM(LOG(a))

sum() is an non-elemental intrinsic
→ all elements must be evaluated in log()

FORALL statement

Parallel semantics
of array element assignment

expression can be evaluated in any order, and assigned in any order
of the index values
conditional array element assignment

more powerful than array syntax – a larger class of expressions is
implicitly permitted

© 2015-18 LRZ Modernizing Fortran Legacy Codes 186

FORALL (i=1:n, j=5:m:2) a(i, j) = b(i) + c(j)

FORALL (i=1:n, c(i) /= 0.0) b(i) = b(i)/c(i)

FORALL (i=1:n) a(i,i) = b(i)*c(i)

FORALL construct

Multiple statements to be executed
can be enclosed inside a construct

Semantics: each statement is executed for all index values before
the next statement is initiated
in the example, the third statement is conforming if a(:,m) was defined prior to the
FORALL construct; the other values of a are determined by the first statement.

this limits parallelism to each individual statement inside the block

© 2015-18 LRZ Modernizing Fortran Legacy Codes 187

FORALL (i=1:n, j=1:m-1)

a(i,j) = real(i+j)

where (d(i,:,j) > 0) a(i,j) = a(i,j) + d(i,:,j)

b(i,j) = a(i,j+1)

END FORALL

Flow
dependency
for array a

effectively, an array assignment

Further notes on FORALL

Permitted statement types
inside a FORALL statement
or construct

array assignments
(may be defined assignment)
calls to PURE procedures
WHERE statement or construct
FORALL statement or
construct
pointer assignments
(discussed later)

Issues with FORALL:
implementations often (need to)
generate many array temporaries
statements are usually not
parallelized anyway
performance often worse than
that of normal DO loop

→ Recommendation:
do not use FORALL in
performance critical code
sections

flags FORALL obsolescent

© 2015-18 LRZ Modernizing Fortran Legacy Codes 188

The DO CONCURRENT construct

Improved parallel semantics
requirement on program: statements must not contain dependencies that
inhibit parallelization
syntax: an extension of the standard DO construct

constraints prevent introducing dependencies: checked by compiler.
Impermissible: CYCLE or EXIT statements that exit the construct, impure
procedure calls

Permission / Request to compiler for
parallelizing loop iterations, and/or
vectorizing / pipelining loop iterations

© 2015-18 LRZ Modernizing Fortran Legacy Codes 189

DO CONCURRENT (i=1:n, j=1:m, i<=j)

a(i, j) = a(i, j) + alpha * b(i, j)

END DO

optional logical mask that
curtails the iteration space

Example: Intel Fortran will perform multi-threading if the -parallel option is specified

Examples

Incorrect usage

flow dependencies for real
scalar x and b make correct
parallelization impossible
note that x is updated by
iterations different from those
doing references

Correct usage

performance is implementation-
dependent

© 2015-18 LRZ Modernizing Fortran Legacy Codes 190

DO CONCURRENT (i=1:n, j=1:m)

x = a(i, j) + …

b(i, j) = x * c(j, i)

if (j > 1) a(i, j) = b(i, j-1)

END DO

DO CONCURRENT (i=1:n, j=1:m)

BLOCK

REAL :: x

x = a(i, j) + …

b(i, j) = x * c(j, i)

END BLOCK

END DO

DO CONCURRENT (j=2:m)

a(:, j) = b(:, j-1)

END DO

per-iteration variable
is created

extensions

Clauses for locality specification

guarantees that per-iteration
variable x is created

Table of locality specifications

© 2015-18 LRZ Modernizing Fortran Legacy Codes 191

REAL :: x

:

DO CONCURRENT (i=1:n, j=1:m) &

LOCAL(x) SHARED(a, b, c)

x = a(i, j) + …

b(i, j) = x * c(j, i)

END DO

DO CONCURRENT (j=2:m)

a(:, j) = b(:, j-1)

END DO

clause semantics
LOCAL create per-iteration

copy of variable inside
construct

LOCAL_INIT same as local, but
value from variable
prior to execution is
copied in

SHARED references and
definitions are to
original variable

DEFAULT(NONE) force declaration of
locality spec for all
entities in construct

Some I/O extensions

Derived type I/O

Statements like

will work if obj is statically typed and has static type components
They will not work in following situations:

the type has POINTER or ALLOCATABLE type components, or
the object is polymorphic.

In both cases, the I/O transfer statements are rejected at compile time
Therapy:

overload I/O statements with user-defined routines

© 2015-18 LRZ Modernizing Fortran Legacy Codes 193

TYPE(...) :: obj
:
WRITE(iu) obj
WRITE(iu, FMT=...) obj

I/O procedure interfaces

Two signatures exist:

dtv
scalar of derived type
polymorphic iff type is extensible
INTENT depends on semantics

unit
INTEGER, INTENT(in) –
describes I/O unit or is negative
for internal I/O

iotype (formatted only)
CHARACTER, INTENT(in) - with
values 'LISTDIRECTED',
'NAMELIST' or 'DT'//string
(see DT edit descriptor)

v_list (formatted only)
INTEGER, INTENT(in) -
assumed shape array
(see DT edit descriptor)

iostat
INTEGER, INTENT(out) –
scalar, describes error condition
(iostat_end / iostat_eor / zero
if all OK)

iomsg
CHARACTER(*), INTENT(inout)
- explanation for failure if iostat
nonzero

© 2015-18 LRZ Modernizing Fortran Legacy Codes 194

SUBROUTINE formatted_dtio (dtv,unit,iotype,v_list,iostat,iomsg)
SUBROUTINE unformatted_dtio (dtv,unit, iostat,iomsg)

i.e. READ or WRITE

these are formal interfaces only

Bind procedure to type

Assume you have implemented following procedures:
write_fmt_mbody(...) for formatted writing
read_unfmt_mbody(...) for unformatted reading

with the interfaces given on the previous slide
Generic type-bound procedures:

Notes:
inside a formatted I/O procedure, only non-advancing transfers are done
no record termination is done, and the REC= and POS= specifiers are not permitted
you can override the TBPs for an extension of mbody

© 2015-18 LRZ Modernizing Fortran Legacy Codes 195

TYPE :: mbody
: ! allocatable components

CONTAINS
PROCEDURE :: write_fmt_mbody, read_unfmt_mbody
GENERIC :: READ(UNFORMATTED) => read_unfmt_mbody
GENERIC :: WRITE(FORMATTED) => write_fmt_mbody

END TYPE

Invoke through I/O statements

Implicit invocation

Both iotype and v_list are available to the programmer of the I/O
subroutine

they determine further parameters of I/O as programmer sees fit

© 2015-18 LRZ Modernizing Fortran Legacy Codes 196

TYPE(mbody) :: asteroids
: ! connect files to units ir, iw
READ(ir) asteroids

WRITE(iw, FMT=ꞌ(DT ″Mbody″ (12,5))ꞌ, IOSTAT=stat) asteroids

dispatches to read_unfmt_mbody()

dispatches to write_fmt_mbody()

Available in iotype
Empty string if omitted

Available in v_list
Empty array if omitted

Asynchronous processing

An idea for performance tuning:
overlap computation with independent data transfers

Assumption:
additional resources are available for processing the extra activity or even
multiple activities (without incurring significant overhead)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 197

compute a

compute b,
maybe using a

dump a

update a

wait

saved time

Completion:
prevent race of dumping

affector (a) against
its subsequent update

Initiation:
start a second,
independent

instruction sequence

The ASYNCHRONOUS attribute:
Contractual obligations between initiation and completion

Programmer:
if affector is dumped, do not
redefine it
if affector is loaded, do not
reference or define it
analogous for changing the
association state of a pointer,
or the allocation state of an
allocatable

Syntax:

here: for an assumed-shape
array dummy argument
sometimes also implicit

Processor:
do not perform code motion
of references and definitions
of affector across initiation or
completion procedure
if one of them is not
identifiable, code motion
across procedure calls is
generally prohibited, even if
the affector is not involved in
any of them

Constraints for dummy
arguments

assure that no copy-in/out
can happen to affectors

© 2015-18 LRZ Modernizing Fortran Legacy Codes 198

REAL(rk), ASYNCHRONOUS :: x(:,:)

Scenario 1: asynchronous I/O

Example: non-blocking READ

Actual asynchronous
execution

is at processors discretion
likely most advantageous for
large, unformatted transfers

Ordering requirements
apply for a sequence of data
transfer statements on the
same I/O unit

but not for data transfers to
different units

ID specifier
allows to assign each
individual statement a tag for
subsequent use
if omitted, WAIT blocks until
all outstanding I/O transfers
have completed

INQUIRE
permits non-blocking query of
outstanding transfers via
PENDING option

© 2015-18 LRZ Modernizing Fortran Legacy Codes 199

REAL, DIMENSION(ndim), ASYNCHRONOUS :: a
INTEGER :: tag
OPEN(NEW_UNIT=iu,...,ASYNCHRONOUS='yes')
...
READ(iu, ASYNCHRONOUS='yes', ID=tag) a
: ! do work on something else
WAIT(iu, ID=tag, IOSTAT=io_stat)
! do work with a
... = a(i)

no prefetches
on a here

Scenario 2: non-blocking MPI calls

Non-blocking receive - equivalent to a READ operation

Likely a good idea to avoid call stacks with affector arguments
violations of contract or missing attribute can cause quite subtle bugs that
surface rarely

© 2015-18 LRZ Modernizing Fortran Legacy Codes 200

REAL :: buf(100,100)
TYPE(MPI_Request) :: req
TYPE(MPI_Status) :: status
... ! Code that involves buf
BLOCK
ASYNCHRONOUS :: buf
CALL MPI_Irecv(buf, size(buf), MPI_REAL, src, tag, &

MPI_COMM_WORLD, req)
... ! Overlapped computation that does not involve buf
CALL MPI_Wait(req, status)
... ! Code that involves buf

END BLOCK

asynchronous execution
is limited to BLOCK

permitted, but may perform
better outside the BLOCK

Unit testing
Code coverage
Documentation

© 2015-18 LRZ Modernizing Fortran Legacy Codes 201

Definition of the term

“A unit test is an automated piece of code that invokes a unit of
work in the system and then checks a single assumption about the
behavior of that unit of work.”

-- The Art of Unit Testing

In the Fortran context, a unit of work is a Fortran procedure

Unit testing framework discussed here:
pFUnit by Tom Clune (NASA)
http://sourceforge.net/projects/pfunit/
a full-featured framework (written mostly in Fortran)
slides presented here are strongly influenced by his tutorial material

© 2015-18 LRZ Modernizing Fortran Legacy Codes 202

http://sourceforge.net/projects/pfunit/

Desired properties of tests

Narrow/specific
failure of a test localizes defect to small section of code

Orthogonal to other tests
each defect causes failure in one or only a few tests

Complete
all functionality is covered by at least one test
any defect is detectable

Independent - No side effects
no STDOUT; temp files deleted; etc
order of tests has no consequence
failing test does not terminate execution

Frugal
execute quickly
minimal resource usage

© 2015-18 LRZ Modernizing Fortran Legacy Codes 203

Unit testing procedure

General scheme Example:
real quadratic solver

© 2015-18 LRZ Modernizing Fortran Legacy Codes 204

Set Preconditions

Execute unit of work

Check Postconditions

Success
?

Send
alert

Release Resources

Yes

No

𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0

input data
a := 2; b := 2; c := -1.5

call solve_quadratic(&
a, b, c, n, x1, x2)

call assertEqual (2, n)
call assertEqual(-1.5, x1)
call assertEqual(0.5, x2)

invoke procedure

against known
correct result

if necessary
(here:stack variables)

Framework attends to this

Testing framework

Architecture: assertEqual is part of the
framework
Test procedures are usually
written using macros

not standard-conforming Fortran
must be preprocessed:

will be expanded to

© 2015-18 LRZ Modernizing Fortran Legacy Codes 205

Driver

Services

Tests
Application

(library code to
be tested)

Test
procedures

Parser

@assertEqual (2, n)

call assertEqual (2, n , location = SourceLocation ('testQuadratic.pf', 5))
if (anyExceptions()) return
line 6 “testQuadratic.pf" source file name

and line information
is added

Complete example test procedure

File testQuadratic.pf

binds together application and
framework code

pFUnit driver
requires additional include file
that registers tests with the driver
file testSuites.inc:

one suite is generated per file or
module
naming convention for test
suites:

1. If the test procedure is a module,
<module_name>_suite

2. Explicitly determined by
@suite=<name> in test procedure

3. Otherwise, <file_name>_suite

© 2015-18 LRZ Modernizing Fortran Legacy Codes 206

@test
subroutine testQuadratic ()
use pFUnit_mod
use mod_quadratic
real :: a, b, c, x1, x2
integer :: n
a = 2; b = 2; c = -1.5
call solve_quadratic(&

a, b, c, n, x1, x2)
@assertEqual (2, n)
@assertEqual (-1.5, x1)
@assertEqual (0.5, x2)

end subroutine testQuadratic

! other active lines may exist
ADD_TEST_SUITE(testQuadratic_suite)

case sensitive!

obligatory

Building a testing executable

Makefile rules

© 2015-18 LRZ Modernizing Fortran Legacy Codes 207

.PHONY: tests clean
%.F90 : %.pf

$(PFUNIT)/bin/pFUnitParser.py $< $@ -I.
TESTS = $(wildcard *.pf)

%.o : %.F90
$(FC) -c $< -I $(PFUNIT)/mod

SRCS = $(wildcard *.F90)
OBJS = $(SRCS:.F90=.o) $(TESTS:.pf=.o)
DRIVER = $(PFUNIT)/include/driver.F90

tests.x : $(DRIVER) $(OBJS)
$(FC) -o $@ -I$(PFUNIT)/mod $^ -L$(PFUNIT)/lib -lpfunit -I.

tests : tests.x
./tests.x

clean :
$(RM) *.o *.mod *.x *~

PFUNIT must be set to pFUnit installation path

this is the parser run on *.pf files

Some further remarks

The pFUnit parser imposes following limitations:
each annotation must be on a single line
no end-of-line comment characters
comment at beginning of line deactivates an annotation

Some restrictions on syntax for intermingled Fortran:
only supports free-format
(fixed-format application code is OK.)

Test procedure declarations must be on one line

Multiple tests in a single file are possible
each subroutine must be prepended by @test macro

© 2015-18 LRZ Modernizing Fortran Legacy Codes 208

@test
subroutine &
testQuadratic ()

not permitted

Code coverage

How can I assure testing is complete?
Intel compilers support code coverage analysis

© 2015-18 LRZ Modernizing Fortran Legacy Codes 209

build with option
-prof-gen=srcpos

run application
(possibly multiple times with

different inputs)

run the profmerge
command

creates .dyn file
for every run

creates .dpi

creates .spi

run the codecov
command (with appropriate

arguments)

creates .html
for inspection

Example output (1)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 210

codecov -prj testQuadratic -spi ../pgopti.spi -dpi pgopti.dpi

.spi file for library code,
not the framework code

Example output (2)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 211

code blocks that were
not executed

are marked yellow

Generation of documentation (1)

Step 1: Generate template

Step 2: Edit the file my_doxy.conf
following settings are of interest:

Step 3: Run tool

subdirectories html and latex are
created (documentation formats)

Basic idea:

documentation should be
directly generated from
source code

annotations by programmer

reduce maintenance effort

increase chance of
documentation being
consistent with
implementation

One possible tool: Doxygen

has support for many
languages, including Fortran

© LRZ 2009-15 Introduction to the Fortran programming language 212

doxygen -g my_doxy.conf

PROJECT_NAME (your choice)
OPTIMIZE_FOR_FORTRAN (set to YES)
EXTRACT_ALL
EXTRACT_PRIVATE
EXTRACT_STATIC
INPUT (other source directories)
FILE_PATTERNS
HAVE_DOT (set to YES)
CALL_GRAPH (set to YES)
CALLER_GRAPH (set to YES if you want)

doxygen my_doxy.conf

Generation of documentation (2)

Annotation of source code
special tags indicate what
kind of entities are described
bulleted lists
LaTeX style formulas
(requires a LaTeX
installation)
many special commands to
change default generation
mechanisms (or work
around bugs)

Output formats
HTML and LaTeX (→ PDF)
by default
others are possible

Example
see the examples/doxygen
folder for demonstration
code

Web page / Documentation

Alternative
FORD

more specifically designed
for Fortran
similar in spirit, though

© LRZ 2009-15 Introduction to the Fortran programming language 213

https://github.com/cmacmackin/ford

http://www.stack.nl/~dimitri/doxygen/

https://github.com/cmacmackin/ford
http://www.stack.nl/%7Edimitri/doxygen/

Coarrays

Partitioned Global Address Space

© 2015-18 LRZ Modernizing Fortran Legacy Codes 214

Fortran and Parallelism

Design target for PGAS extensions:

add only a few new rules to the language
provide mechanisms to allow

Standardization efforts:
basic coarray features
significant extension of parallel semantics

© 2015-18 LRZ Modernizing Fortran Legacy Codes 215

smallest changes required to convert Fortran
into a robust and efficient parallel language

explicitly parallel execution: SPMD style programming model

data distribution: partitioned memory model

synchronization against race conditions

memory management for dynamic shared entities

gfortran implements a small subset

Execution model: concept of image

Going from serial to parallel
execution

CAF - images:

image counts between 1 and
number of images

Replicate single program a
fixed number of times

set number of replicates at
compile time or at execution
time

asynchronous execution –
loose coupling unless program-
control-led synchronization
occurs

Separate set of entities on
each replicate

program-controlled exchange of
data

necessitates synchronization

© 2015-18 LRZ Modernizing Fortran Legacy Codes 216

1
2
3
4

execution
sequence

Comparison with other parallelization methods

MPI OpenMP Coarrays UPC
Portability yes yes yes yes
Interoperability (C/C++) yes yes no yes
Scalability 4 2 1-4 1-4
Performance 4 2 2-4 2-4

Ease of Use 1 4 2.5 3

Data parallelism no partial partial partial
Distributed memory yes no yes yes
Data model fragmented global fragmented global
Type system integrated no yes yes yes
Hybrid parallelism yes partial (no) (no)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 217

ratings: 1-low 2-moderate 3-good 4-excellent

Coarray Fortran (and PGAS in general):
good scalability for fine-grain parallelism in distributed memory systems will require
use of special interconnect hardware features

Interoperation with MPI

Nothing is formally standardized
Existing practice:

each MPI task is identical with a coarray image

0 1 2 3
1 2 3 4

this_image()

execution
sequence

result of calling
MPI_Comm_rank()

PROGRAM with_mpi
USE mpi_f08
: ! further declarations, including coarrays
IF (.not. initialized) CALL MPI_Init()
: ! code with both MPI calls and
: ! coarray communication / synchronization
CALL MPI_Finalize()

END PROGRAM

obtained from call to
MPI_Initialized()

implementation may
either want this or

not like this

no guarantee on
ordering, though

© 2015-18 LRZ Modernizing Fortran Legacy Codes 218

Simplest possible program

Intrinsic functions for image management

num_images()

returns number of images (set by environment) - default integer

this_image()

generic intrinsic. The form without arguments returns a number between

1 and num_images() - default integer

Implications
define data distribution / implement trivially parallel algorithms

© 2015-18 LRZ Modernizing Fortran Legacy Codes 219

PROGRAM hello
IMPLICIT NONE
WRITE(*, '(''Hello from image '',i0, '' of '',i0)') &

this_image(), num_images()
END PROGRAM

between 1 and
num_images() non-repeatably unsorted output

if multiple images are used

A more elaborate example: Matrix-Vector
Multiplication

Basic building block for
many algorithms

independent collection of
scalar products

© 2015-18 LRZ Modernizing Fortran Legacy Codes 220

i

n

j
jij bvM =⋅∑

=1

Serial calculation
typically uses an optimized BLAS
routine (SGEMV)

INTEGER, PARAMETER :: N = …
REAL :: Mat(N, N), V(N)
REAL :: B(N) ! result

DO icol=1,N
DO irow=1,N
Mat(irow,icol) = &

matval(irow,icol)
END DO
V(icol) = vecval(icol)

END DO
CALL sgemv(‘n‘,N,N,1.0,

Mat,N,V,1,0.0,B,1)

initialize matrix
and vector

Data decomposition

Block row distribution:
calculate only a block of B on
each image (but that completely)

the shading indicates the
assignment of data to images

blue: data are replicated on all
images

© 2015-18 LRZ Modernizing Fortran Legacy Codes 221

Bl
oc

k
siz

e
M

B

Alternatives exist:
cyclic, block-cyclic
column, row and column

Memory requirement:
(n2 + n) / <no. of images> + n
words per image/thread
load balanced (same compu-
tational load on each task)

Modified declarations:
REAL :: Mat(MB, N), V(N)
REAL :: B(MB)

Assumption: MB == N / (no. of images)
dynamic allocation more flexible
if mod(N, no. of images) > 0,
conditioning is required

on image 1

on image 2

on image 3

Work sharing the initialization and
the M*v processing

"Fragmented data" model
need to calculate global row index from local iteration variable (or vice
versa)

degenerates into serial version of code for 1 image

generalization needed for other decomposition scenarios

© 2015-18 LRZ Modernizing Fortran Legacy Codes 222

DO icol=1,N
DO i=1,MB
irow = (this_image() - 1) * MB + i
Mat(i,icol) = matval(irow,icol)

END DO
V(icol) = vecval(icol)
END DO

CALL sgemv(‘n‘,MB,N,1.0,Mat,MB,V,1,0.0,B,1)

i is image-local index;
need to calculate global index irow

each image:
works on its own, private
instances of Mat, V, B

Ilustrating the need for communication

Open issue:
iterative solvers require repeated evaluation of matrix-vector
product

but the result we received is distributed across the images

Therefore, a method is needed
to transfer each B to the appropriate portion of V on all images

B on 1

B on 2

B on 3

V on 1 V on 2 V on 3
© 2015-18 LRZ Modernizing Fortran Legacy Codes 223

physical
memory on
core execu-
ting image 4

PGAS data and memory model

© 2015-18 LRZ Modernizing Fortran Legacy Codes 224

s1 s2 s3 s4

global memory
address (e.g. ,128 bit)

global entities

x x x x

per-image address

local entities

execute on any image

execute on image where
„right“ x is located impossible

the term „shared“:
 slightly different

semantics than
in OpenMP

not explicitly shown:
purely local accesses
(fastest)

All entities belong to one of two classes:

local (private) entities: only accessible to the image/thread
which „owns“ them  this is what we get from
conventional language semantics

global (shared) entities in partitioned global memory:
objects declared on and physically assigned to one
image/thread may be accessed by any other one

allows implementation for distributed memory systems

Declaration of coarrays / shared entities
(simplest case)

Coarray declaration
symmetric objects

Execute with 4 images

one-to-one mapping of
coindex to image index

Explicit attribute
equivalent declaration:

a scalar coarray:

© 2015-18 LRZ Modernizing Fortran Legacy Codes 225

INTEGER :: b(3)
INTEGER :: a(3)[*]

A(1)[1]
A(2)[1]
A(3)[1]

A(1)[2]
A(2)[2]
A(3)[2]

A(1)[3]
A(2)[3]
A(3)[3]

A(1)[4]
A(2)[4]
A(3)[4]

Image 1 2 3 4

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

address space

simplest
case

INTEGER, CODIMENSION[*] :: a(3)

INTEGER, CODIMENSION[*] :: s

Difference between
A and B?

Inter-image communication: coindexed access

Pull (Get)

one-sided communication between images p and q

Push (Put)
IF (this_image() == p) &

b = a(:)[q]
a coindexed

reference

Aq

p

execution sequence

B
address

space

statement
executed on p

IF (this_image() == p) &
a(:)[q] = b

a coindexed
definition

Aq

p

execution sequence

B

address
space

statement
executed on p

assumption: p and q have the same value on all images, respectively
sectioning is

obligatory

© 2015-18 LRZ Modernizing Fortran Legacy Codes 226

Local accesses to coarrays

Design aim for non-coindexed accesses:
should be optimizable as if they were local entities

Explicit coindexing:
indicates to programmer that communication is happening
distinguish: coarray (a) ↔ coindexed entity (a[p])
cosubscripts must be scalars of type integer

INTEGER :: a(3)[*]
INTEGER :: i
a(:) = (/ … /)
:
i = a(3) + …
:
CALL my_proc(a, …)

a(:)[this_image()] = (/ … /)

same meaning, but likely
slower execution speed

permitted: interface of my_proc declares
dummy argument corresponding to a as

REAL :: x(:) (not a coarray)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 227

Synchronization requirements

Asynchronous execution

causes race condition violates
language rules

Image control statement

enforce segment ordering:
q1 before p2, p1 before q2

qj and pj are unordered

© 2015-18 LRZ Modernizing Fortran Legacy Codes 228

a = …
IF (this_image() == p) &

b = a(:)[q]

a = …
SYNC ALL
IF (this_image() == p) &

b = a(:)[q]

programmer‘s
responsibility

Aq

p

execution sequence

B

address
space

local variable

q1 q2

p1 p2

global barrier

A
q

p

execution sequence

B

address
space

local
variable

statement executed
on q … but when?

statement executed
on q … but when?

statement executed
on q … but when?

Semantics of SYNC ALL

All images synchronize:
SYNC ALL provides a global barrier over all images

segments preceding the barrier on any image will be ordered
before segments after the barrier on any other image  implies
ordering of statement execution

If SYNC ALL is not executed by all images,
the program will discontinue execution indefinitely (deadlock)

however, it is allowed to execute the synchronization via two
different SYNC ALL statements
(for example in two different subprograms)

For large image count or sparse communication patterns,
exclusively using SYNC ALL may be too expensive

limits scalability, depending on algorithm (load imbalance!)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 229

General synchronization rules

Synchronization is required

between segments on any
two different images P, Q

which both access the same
entity (may be local to P or
Q or another image)

(1) P writes and Q writes, or

(2) P writes and Q reads, or

(3) P reads and Q writes.

Status of dynamic entities
replace „P writes“ by „P
allocates“ or „P associates“

will be discussed later
(additional constraints exist on
who is allowed to allocate)

Synchronization is not
required

for concurrent reads

for entities that are defined
or referenced via atomic
procedures

© 2015-18 LRZ Modernizing Fortran Legacy Codes 230

Completing the M*v:
Broadcast results to all images

Using "Pull" implementation variant
modified declaration

first suggestion for communication code:

Assumption: must update V on each task with values from B

REAL :: Mat(MB, N), V(N)
REAL :: B(MB)

REAL :: Mat(MB, N), V(N)
REAL :: B(MB)[*]

CALL sgemv(…)
SYNC ALL ! assure remote B is available

DO m=1, num_images()
V((m-1)*MB+1:m*MB) = B(:)[m]

END DO
: ! use V again

Formally, a correct
solution ...

but what about
performance?

only B needs to be
accessible across images

© 2015-18 LRZ Modernizing Fortran Legacy Codes 231

n
==

 n
um

_i
m

ag
es

()
Analyzing the communication pattern

In m-th loop iteration:

effectively, a collectively
executed scatter operation

note that each image
concurrently executes a
communication statement

Slowest communication
path

might be a network link between
two images, with bandwidth BW
in units of GBytes/s
subscription factor is n
estimate for transfer duration of
each loop iteration is

(latency Tlat included)
this is unfavourable
(an n2 effect when all loop
iterations are accounted)

1

m
m+1

n
execution sequence

B

(shared)

Vm

(private)

𝑇𝑇 = 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 +
𝑀𝑀𝑀𝑀 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝒏𝒏

𝐵𝐵𝐵𝐵

© 2015-18 LRZ Modernizing Fortran Legacy Codes 232

Improved communication pattern

Introduce a per-image shift of source image
efficient pipelining of data transfer

balanced use of network links:

CALL sgemv(…)
SYNC ALL ! assure remote B

! is available
do m=1, num_images()
img = m + this_image() - 1
if (img > num_images()) &

img = img - num_images()
V((img-1)*MB+1:img*MB) = B(:)[img]

END DO
: ! use V again

1
2

m
m+1

n-m+1
n-m+2

n
execution sequence

B Vimg

In m-th loop iteration

𝑇𝑇 ≤ 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 +
𝑀𝑀𝑀𝑀 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒑𝒑𝒑𝒑𝒑𝒑 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏)

𝐵𝐵𝐵𝐵
© 2015-18 LRZ Modernizing Fortran Legacy Codes 233

Weak scaling results: N(1 image) = 20000

0,10

1,00

10,00

1 4 16 64 256 1024

Se
co

nd
s(

SG
ES

V
+

Co
m

m
un

ic
at

io
n)

Number of images

Intel (simple) Intel (optimized) Gfortran (simple) Gfortran (optimized) Ideal

N → N * 2

© 2015-18 LRZ Modernizing Fortran Legacy Codes 234

8 images share one
memory channel

on Sandy Bridge
with FDR 10

Latency effects increase
with image count

MB = 625

Allocatable coarrays

Symmetric memory

For addressing efficiency, there is an advantage
in using symmetric memory for coarrays (i.e. on each image, same local
part of start address for a given object): no need to obtain a remote
address for accessing remote elements

carry this property over to dynamic memory: symmetric heap

… = a(2)[3]

lo
ca

lp
ar

to
fa

dd
re

ss

a[1] a[2] a[3] a[4]

executed on image 1:
it is sufficient to calculate addresses locally

© 2015-18 LRZ Modernizing Fortran Legacy Codes 236

Declaration

Allocatable object

Allocatable component
part of type declaration

objects of such a type must be scalars

and are not permitted to have the ALLOCATABLE or POINTER attribute,
or to themselves be coarrays

INTEGER, ALLOCATABLE :: id(:)[:]
TYPE(body), ALLOCATABLE :: pavement(:,:)[:]

both shape and coshape
are deferred

intrinsic type

derived type

TYPE :: co_vector
REAL, ALLOCATABLE :: v(:)[:]

END TYPE

TYPE(co_vector) :: a_co_vector

component is an
allocatable array

a coarray cannot have
the POINTER attribute

© 2015-18 LRZ Modernizing Fortran Legacy Codes 237

Allocatable coarrays: Executing the allocation

Symmetric and collective:

the same ALLOCATE statement must be executed on all images
in unordered segments

Semantics:

1. each image performs allocation of its local (equally large)
portion of the coarray

2. if successful, all images implicitly synchronize against each
other

ALLOCATE (id(n)[0:*], pavement(n,10)[p,*], STAT=my_stat)

ALLOCATE (a_co_vector % v(m)[*])

same bounds and cobounds
(as well as type and type parameters)

must be specified on all images

subsequent references or definitions are
race-free against the allocation

permits an implementation to make use of a symmetric heap

© 2015-18 LRZ Modernizing Fortran Legacy Codes 238

Deallocation of allocatable coarrays

Symmetric and collective:
the same DEALLOCATE statement must be executed on all
images in unordered segments

for objects without the SAVE attribute, DEALLOCATE will be
executed implicitly when the object’s scope is left

Semantics:
1. all images synchronize against each other
2. each image performs deallocation of its local portion of the

coarray

DEALLOCATE(id, pavement, a_co_vector % v)

preceding references or definitions are
race-free against the allocation

© 2015-18 LRZ Modernizing Fortran Legacy Codes 239

Collective Procedures
Note:

Currently, these are not yet generally
supported in compilers

Motivation

Common pattern in serial code:
use of reduction intrinsics, for example:
SUM for evaluation of global system properties

Coarray code:
on each image, an image-dependent partial sum is evaluated
i. e. the intrinsic is not image-aware

Variables that need to have the same value across all images
e.g. global problem sizes
values are initially often only known on one image

REAL :: mass(ndim,ndim), velocity(ndim,ndim)
REAL :: e_kin
:
e_kin = 0.5 * sum(mass * velocity**2)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 241

Quiz: what problem
might arise here?

Sum reduction

Arguments:
a may be a scalar or array of
numeric type
result_image is an optional
integer with value between 1
and num_images()

without result_image, the
result is broadcast to a on all
images, otherwise only to a on
the specified image

+su
m

execution sequence

1

2

3

4

REAL :: a(2)
:
CALL co_sum(a, result_image=2)

a becomes undefined
on images ≠ 2

+su
m

execution sequence

1

2

3

4

REAL :: a(2)
:
CALL co_sum(a)

a becomes defined
on all images

must execute on
all images

© 2015-18 LRZ Modernizing Fortran Legacy Codes 242

Further reduction procedures

CO_MAX

CO_MIN

CO_REDUCE
general facility
permits specifying a user-defined function that operates on derived
type arguments

© 2015-18 LRZ Modernizing Fortran Legacy Codes 243

Data redistribution with CO_BROADCAST

Arguments:
a may be a scalar or array of any type. it must have the same type
and shape on all images. It is overwritten with its value on
source_image on all other images
source_image is an integer with value between 1 and
num_images()

TYPE(matrix) :: xm
:
CALL co_broadcast(a=xm, source_image=2)

br
oa

dc
as

t

execution sequence

1

2

3

4
as

ifby intrinsic
assignm

ent

© 2015-18 LRZ Modernizing Fortran Legacy Codes 244

Further comments on collective subroutines

All collectives are "in-place"
programmer needs to copy data argument if original value is still
needed

Data arguments need not be coarrays
however if a coarray is supplied, it must be the same (ultimate)
coarray on all images

No segment ordering is implied by execution of a collective
Collectives must be invoked by all images

and from unordered segments, to avoid deadlocks

For coarrays, all collectives could of course be implemented by the programmer.
However it is expected that collective subroutines will perform better, apart from

being more generic in semantics.

© 2015-18 LRZ Modernizing Fortran Legacy Codes 245

Minimal synchronization
with Events

© 2015-18 LRZ Modernizing Fortran Legacy Codes 246

Weaknesses of previously treated
synchronization constructs

Symmetric synchronization
is overkill

the ordering of p1 before q2 is
often not needed
image q therefore might
continue without waiting

Therapy:
TS 18508 introduces a
lightweight, one-sided
synchronization mechanism –
Events

Recall semantics of
SYNC ALL

enforces segment ordering:
q1 before p2, p1 before q2

qj and pj are unordered

Aq

p

execution sequence

B

address
space

local variable

q1 q2

p1 p2

global barrier

USE, INTRINSIC :: iso_fortran_env

TYPE(event_type) :: ev[*]

special opaque derived type;
all its objects must be coarrays

© 2015-18 LRZ Modernizing Fortran Legacy Codes 247

One-sided synchronization with Events

Image q executes

and continues without blocking

Image p executes

the WAIT statement blocks until
the POST has been received.
Both are image control
statements.

One sided segment ordering

q1 ordered before p2

no other ordering implied
no other images involved

© 2015-18 LRZ Modernizing Fortran Legacy Codes 248

a = …
EVENT POST (ev[p])

EVENT WAIT (ev)
b = a(:)[q]

no coindex permitted
on event argument here

Aq

p

execution sequence

B

address
space

local variable

q1 q2

p1 p2

POST (+1)

WAIT (-1)

an event variable has an internal counter
with default value zero; its updates are
exempt from the segment ordering rules
(„atomic updates“)

The dangers of over-posting

Scenario:
Image p executes

Image q executes

Image r executes

Question:
what synchronization effect
results?

Answer: 3 possible outcomes
which one happens is
indeterminate

Case 1: p1 ordered before q2

Case 2: r1 ordered before q2

Case 3: ordering as given on
next slide

© 2015-18 LRZ Modernizing Fortran Legacy Codes 249

EVENT POST (ev[q])

EVENT WAIT (ev)

EVENT POST (ev[q])

POST (+1)
p p1 p2

WAIT (-1)
q q1 q2

POST (+1)
r r1 r2

POST (+1)p p1 p2

WAIT (-1)
q q1 q2

POST (+1)
r r1 r2

Avoid over-posting from multiple images!

Multiple posting done correctly

Why multiple posting?
Example: halo update

Correct execution:
Image p executes

Image r executes

Image q executes

p1 and r1 ordered before q2

© 2015-18 LRZ Modernizing Fortran Legacy Codes 250

qp = q-1 r = q+1

FM

fm(:,1)[q] = …
EVENT POST (ev[q])

fm(:,n)[q] = …
EVENT POST (ev[q])

EVENT WAIT (ev, UNTIL_COUNT = 2)
… = fm(:,:)

POST (+1)
p p1 p2

WAIT (-2)
q q1 q2

POST (+1)
r r1 r2

This case is enforced by using
an UNTIL_COUNT

number of posts needed

The EVENT_QUERY intrinsic

Permits to inquire the state of an event variable

the event argument cannot be coindexed

the current count of the event variable is returned

the facility can be used to implement non-blocking execution on
the WAIT side of event processing

invocation has no synchronizing effect

CALL event_query(event = ev, count = my_count)

© 2015-18 LRZ Modernizing Fortran Legacy Codes 251

Finis:
Best wishes for your future scientific

programming efforts

I hope you enjoyed the event!

© 2015-18 LRZ Modernizing Fortran Legacy Codes 252

	Fortran code modernization
	Workshop's aims
	How can the aims be achieved?
	Assumptions on Audience
	Assumptions on pre-existing code
	History of Fortran
	Conventions and Flags used in these talks
	Why Fortran?
	When not to use Fortran
	Some references
	References cont'd
	Dealing with�legacy language features
	Legacy code: Fixed source form
	Technical reason for fixed source form …
	Legacy code: Fixed source form
	Legacy code: Fixed source form
	The new way: Rules for free source form
	Tooling options
	Implicit and explicit typing of variables (1)
	Implicit and explicit typing of variables (2)
	Legacy notations for intrinsic types
	Intrinsic numeric types – KIND parameterization
	Models for integer and real data
	Inquiry intrinsics for model parameters
	Inquiry intrinsics for model numbers
	IEEE facilities
	Inquiry intrinsics for real and integer types�(courtesy Geert Jan Bex, using Intel Fortran)
	Notation for operators
	Non-numeric intrinsic types
	C-interoperable intrinsic types�(relative to companion C processor)
	Complex types
	Legacy control flow:�Branching via the GO TO statement
	Conditional execution of statements (1)
	Conditional execution of statements (2)
	Arrays
	Attributes
	Array storage layout
	Legacy versions of looping (1)
	Modern DO Loop Construct�(with fine-grain execution control)
	Legacy versions of looping (2)
	Concept of derived type
	Structures
	Structures as dummy arguments
	Accessing type components
	Remarks on storage layout
	Legacy features and extensions
	C-interoperable derived types
	Procedures and �their interfaces
	Subprogram invocation: Fortran 77 style implicit interface
	Invoking a procedure with implicit interface
	Advice: Avoid implicit interfaces …
	1. Best method: Create module procedures
	Invoking the module procedure
	Invoking procedures with explicit interfaces
	Remember the dependencies ...
	2. Manual declaration of an interface block�(note that this is neither needed nor permitted for module procedures!)
	Handling interface blocks (2a.)
	Handling interface blocks (2b.)
	Declaring INTENT for dummy arguments
	Examples for the effect of INTENT specifications
	Passing arguments by value
	Functions – a variant of procedure
	Using a RESULT clause
	Functions declared PURE
	Subroutines declared PURE, etc.
	Assumed-size arrays: Typical interface design�(for use of legacy or C libraries)
	Invocation variants
	Explicit-shape dummy argument
	Manually created interface for C library calls
	Mixed-case C functions
	Assumed shape dummy argument
	Usage of the procedure
	Memory layouts for �assumed shape dummy objects
	Foliennummer 74
	Internal procedures (1)
	Internal procedures (2)
	Controlling access to host
	Subprograms with alternate returns
	Typical error handling scheme in procedure
	Possible invocations - Style suggestion �for error handling
	Character string dummy arguments
	Handling of strings that interoperate with C
	Handling of strings that interoperate with C
	Global variables
	Global variables - Concept
	Fortran 77 style global data
	Semantics of COMMON
	Lifetime of data in COMMON
	Initialization of COMMON data
	Conversion to encapsulated module variables
	Initialization of module variables�(illustrative example)
	Global data and interoperability
	Enforcing storage association
	Replacement mechanisms
	Dynamic memory
	Dynamic objects executive summary
	Some remarks about memory organization
	ALLOCATABLE vs. POINTER
	Implications of POINTER aliasing
	Features added in
	Special case: automatic variables
	ALLOCATABLE dummy argument�(explicit interface required)
	POINTER dummy argument�(explicit interface required)
	Invocation of procedures with �POINTER dummy argument
	INTENT semantics for dynamic objects
	Bounds of deferred-shape objects
	Opinionated recommendations
	Interoperation with C pointer types
	Typeless C pointers in Fortran
	Setting up a mapping between a Fortran object �and a C pointer
	Two scenarios are covered
	Writing an interoperable Fortran type declaration
	Warning on inappropriate use �of c_loc() and c_f_pointer()
	Cray Pointers: pre- dynamic memory management
	Memory management procedures
	Aliasing and pointer arithmetic
	Re-pointing a Cray pointer
	Additional notes
	Moving to standard-conforming code
	Moving to standard-conforming code (cont‘d)
	Memory management
	Mapping the C pointer to Fortran objects
	Wrapping up ...
	Program �configuration control
	Metadata for program execution
	Namelist processing (1)
	Namelist processing (2)
	Command line processing�via a user-friendly wrapper
	The Environment Problem
	Unsolved problems with global variables
	Setting the stage
	Using a canned routine: D01AHF�(Patterson algorithm in NAG library)
	Mismatch of user procedure implementation
	Solution 1: Wrapper with global variables
	Disadvantages of Solution 1
	Making Solution 1 thread-safe
	Solution 2: Reverse communication
	Solution 2: Typical example interface
	Solution 2: Using the reverse �communication interface
	Taking Solution 2 a step further
	Coroutine emulation via OpenMP tasking
	Synchronization code
	Solution 3: Object oriented design
	Object oriented features�and their use
	Type extension
	Polymorphism
	Abstract type
	Completing the integrator framework
	Accessing data via type identification
	Calling the integrator
	Remaining weaknesses
	Binding procedures to types
	Overriding type-bound procedures
	Implementation and invocation
	Addendum: binding procedures to objects
	Adressing weakness 2
	Polymorphic factory method
	Addendum: additional allocation mechanisms
	... and here's the catch
	Submodules��A new kind of program unit
	Problems with Modules
	Solution: Submodules
	Submodule program units
	Submodule specification part
	Separate module procedure interface
	Separate module procedure implementation
	Separate module procedure implementation
	Final dependency structure
	Array Processing�and its performance
	Processor architecture
	Using synthetic loop kernels�for performance evaluation
	Vector Triad D(:) = A(:) + B(:) * C(:)
	Performance by type and kind
	Microprocessor Architecture continued
	Performance of strided triad on Sandy Bridge �(loss of spatial locality)
	Avoid loss of spatial locality
	Structures of Arrays
	Memory Layout
	The CONTIGUOUS attribute
	CONTIGUOUS pointers
	Fortran language features targetting performance
	ELEMENTAL procedures
	Invoking an ELEMENTAL procedure
	WHERE statement and construct�(„masked operations“)
	Assignment and expression �in a WHERE statement or construct
	FORALL statement
	FORALL construct
	Further notes on FORALL
	The DO CONCURRENT construct
	Examples
	extensions
	Some I/O extensions
	Derived type I/O
	I/O procedure interfaces
	Bind procedure to type
	Invoke through I/O statements
	Asynchronous processing
	The ASYNCHRONOUS attribute:�Contractual obligations between initiation and completion
	Scenario 1: asynchronous I/O
	Scenario 2: non-blocking MPI calls
	Unit testing�Code coverage�Documentation
	Definition of the term
	Desired properties of tests
	Unit testing procedure
	Testing framework
	Complete example test procedure
	Building a testing executable
	Some further remarks
	Code coverage
	Example output (1)
	Example output (2)
	Generation of documentation (1)
	Generation of documentation (2)
	Coarrays��Partitioned Global Address Space
	Fortran and Parallelism
	Execution model: concept of image
	Comparison with other parallelization methods
	Interoperation with MPI
	Simplest possible program
	A more elaborate example: Matrix-Vector Multiplication
	Data decomposition
	Work sharing the initialization and �the M*v processing
	Ilustrating the need for communication
	PGAS data and memory model
	Declaration of coarrays / shared entities�(simplest case)
	Inter-image communication: coindexed access
	Local accesses to coarrays
	Synchronization requirements
	Semantics of SYNC ALL
	General synchronization rules
	Completing the M*v:�Broadcast results to all images
	Analyzing the communication pattern
	Improved communication pattern
	Weak scaling results: N(1 image) = 20000
	Allocatable coarrays
	Symmetric memory
	Declaration
	Allocatable coarrays: Executing the allocation
	Deallocation of allocatable coarrays
	Collective Procedures
	Motivation
	Sum reduction
	Further reduction procedures
	Data redistribution with CO_BROADCAST
	Further comments on collective subroutines
	Minimal synchronization �with Events
	Weaknesses of previously treated �synchronization constructs
	One-sided synchronization with Events
	The dangers of over-posting
	Multiple posting done correctly
	The EVENT_QUERY intrinsic
	Finis:�Best wishes for your future scientific programming efforts

