
Exercises for “Fortran code modernization”

This work is licensed under the Creative Commons Attribution Non-Commercial 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/
When attributing this work, please use the following text block:
 Fortran code modernization, Leibniz Supercomputing Centre, 2018.
 Available under a Creative Commons Attribution Non-Commercial 3.0 Unported License.

Schedule

Time Day 1 Day 2

9:00 – 9:30
Introduction.

Source form, Data and type declarations,
Execution control, Arrays

Dependency Inversion and Submodules

9:30 – 10:00
Exercise Session 4

10:00 – 10:30

10:30 – 11:00
Exercise Session 1

Array processing and performance

issues

11:00 – 11:30

11:30 – 12:00 Procedures and their interfaces (1) Exercise Session 5

12:00 – 12:45 Lunch Break

Lunch Break

12:45 – 13:00 Procedures and their interfaces (2)
Global variables

Exercise Session 5 continued

13:00 – 13:30 Extensions to I/O
Unit Testing, code coverage,

documentation

13:30 – 14:00
Exercise Session 2

14:00 – 14:30
Exercise Session 6

14:30 – 15:00 Dynamic memory
Program configuration control

15:00 – 15:30
Parallel Models: Coarray Basics

15:30 – 16:00 Exercise Session 3

16:00 – 16:30 The Environment Problem
The Object-Oriented Paradigm

Exercise Session 7

16:30 – 17:00

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Getting started & general remarks
Preparing the working environment (15 minutes)
1. Please log in to the front end machine with the command

ssh vsc40000@login.hpc.ugent.be
Note: replace vsc40000 with your own VSC user ID, see https://account.vscentrum.be

2. Please follow the instructions for setting up and connecting to a VNC session that are available at
http://hpc.ugent.be/userwiki/index.php/User:VNC (requires login).

Once you have the VNC session running, you can do any of the following:

• Open a terminal
• Use the nano, vi or emacs editors to edit program text
• Load a compiler module:

module load intel/2018a # Intel compilers
module load GCC/7.3.0-2.30 # GCC compilers
module load NAGfor/6.2 # NAG compiler (Fortran only)

• Load a tools module:

module load Inspector/2018_update2 # Intel inspector
module load Vtune/2018_update2 # Intel amplifier
module load Valgrind/3.13.0-intel-2018a # Valgrind
module load likwid/4.3.2-GCCcore-6.4.0 # LIKWID tool

• Execute a batch job on a dedicated node (only needed for reliable performance measurements):

qsub -I -l nodes=1:ppn=4 -l walltime=2:0:0 –W x=FLAGS:ADVRES:modern_fortran.16

once the shell prompt returns, all commands are run on a worker node, until the session is exited. It is a
good idea to use a separate terminal from that used for compiling programs. The above command will work
on the first day only. On the second day, please replace modern_fortran.16 in the above submission
command line by modern_fortran.17.

The exercises folder for this course is

export EXERCISES=/apps/gent/tutorials/fortran/2018

Please copy the exercise templates, tools and examples to your HOME directory with

cp -a $EXERCISES/skeletons $HOME
cp -a $EXERCISES/tools $HOME
cp -a $EXERCISES/examples $HOME

The solutions will be made available after each exercise in the directory $EXERCISES/solutions.

https://account.vscentrum.be/
http://hpc.ugent.be/userwiki/index.php/User:VNC

Updating Fortran Legacy Code – Hands-On Sessions

The next step is to build some tools (the Intel compiler ifort must be accessible for this):

cd tools
make
make install

Note that the last command above installs the binaries into the $HOME/bin folder. In order to execute these,
you may need to augment your PATH as follows:

export PATH=$HOME/bin:$PATH

Fortran standard document
A draft of the Fortran 2008 standard is available in PDF format at

http://www.j3-fortran.org/doc/year/10/10-007.pdf

It is recommended to use this document for reference, e.g., looking up standard intrinsic procedure (these are in
section 13.7) as well as syntax definitions. As far as the general language rules are concerned, the document may
turn out to be rather hard to read and therefore unsuitable as a guide for learning the language quickly.

http://www.j3-fortran.org/doc/year/10/10-007.pdf

Updating Fortran Legacy Code – Hands-On Sessions

Exercise session 1

Step 1: Building and running a program from TOMS (15 min)
The folder skeletons/toms_612 contains a Makefile and the fixed-source Fortran files
toms_612.f and toms_612_externals.f. Compile and run these programs with the Intel
compiler (you can also use the NAG compiler, but it will need the –dusty option to raise its
tolerance level), and check the results. Then, correct the observed problems:

• the function D1MACH contains platform-dependent machine constants. Select the appropriate
ones for the architecture you are running on. What do you need to do to fix the compilation
error?
Hint: search for an EQUIVALENCE statement – this causes overlapping of the memory for the
specified objects and is here used in a non-conforming manner.

• where is the output of the program written to? Is this standard-conforming? Add a suitable I/O
statement so the output is written to a file toms_612.res.

The solution for this exercise will be made available as solutions/toms_612_1.

Step 2: Conversion to free source form (25 min)
Use one of the following programs to convert the fixed version of toms_612.f as well as
toms_612_externals.f to free source form:

(a) convert.exe
(b) to_f90.exe
(c) nagfor (the NAG compiler)

convert.exe and to_f90.exe read the necessary information from standard input, while the NAG
compiler requires using the =polish or the =epolish option, with additional suboptions. Check how
the source looks after conversion and put it into a separate folder. Then, after making appropriate
changes to the Makefile rules, attempt to build. Finally, check whether the rebuilt TOMS program
still produces the correct results.

Note: the source code of convert and to_f90 has some additional documentation on how to use
these programs. It cannot be claimed that these tools work perfectly i.e., usually some manual
tweaking is needed. This is where commercial products like the NAG compiler often have an edge.
Documentation for the NAG compiler is available at https://www.nag.co.uk/nag-compiler#tab-
357.

The solution for this exercise will be made available as solutions/toms_612_2. You can
specifically look at the run_*.sh scripts that drive the various tools to see what specific options
were used.

https://www.nag.co.uk/nag-compiler#tab-357
https://www.nag.co.uk/nag-compiler#tab-357

Updating Fortran Legacy Code – Hands-On Sessions

Exercise session 2

Step 3: Replacing obsolescent syntax in TOMS 612 (25 min)
What happens if a compiler switch is added that requests full standard conformance? For Intel
Fortran, you can use the following switches:

-standard-semantics –stand f08 –warn errors

For the NAG compiler, you can use the –f2003 switch. Fix the flagged obsolescent features.

Some hints:

• Hollerith descriptors can be trivially converted to character edit descriptors. Some are also
handed to subroutines, or appear in DATA statements; these need to be changed to
appropriately sized strings.

• After an item has been changed, you may want to temporarily revert to compiling without the
switches to check whether the results are still correct.

• Avoid slogging through the changes in toms_612_externals.f90. Instead, try to get rid of
the dependency on it by replacing calls to D1MACH by modern Fortran intrinsics.

Once your code runs, please also execute the compilation on the toms_612.f90 source file with
the
–gen-interfaces switch of Intel Fortran and/or the =interfaces option of the NAG compiler,
and inspect the newly generated source files that contain explicit interfaces for all procedures.
What disadvantages do you observe?

The solution for this exercise will be made available as solutions/toms_612_3.

Step 4: Modularizing the code (25 min)
The following should be performed for toms_612.f90:

• Put all procedures into a module stored in mod_toms_612.f90. Only the main program and
the test integrand function should remain in the original source file.

• Enforce strong typing for all program units. At most three IMPLICIT statements should be
needed.

• Convert all COMMON blocks to global variables.
• Replace the use of specific intrinsic functions by their generic names.
• Specify the INTENT at least for all dummy arguments of the module procedure TRIEX.
• Which entity of the module needs to be visible from other program units? Introduce

encapsulation statements.

As usual, check whether the correct results are still obtained. Finally, check the generated object
file for the symbol names, and compare these with the symbol names for the non-modular object
file obtained in step 3. The command

nm mod_toms_612.o

can be used for this purpose.

The solution for this exercise will be made available as solutions/toms_612_4.

Updating Fortran Legacy Code – Hands-On Sessions

Exercises Session 3

Heat conduction (30 minutes)
Consider a unit square made of a metal, as indicated by the left hand side of the drawing below:

At the edges of the square, it is clamped to heat sources that keep the temperature constant at 0
on the north edge, at some fixed value Φ > 0 at the south edge, and a linear interpolation between
0 and T on the east and west edges, at all times. At time 0, the inside of the square is assumed to
have the temperature Φ=0. The temporal change of the temperature field Φ(x, y, t) is described by
the partial differential equation

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

which over time converges to a stationary solution i.e., one for which the left hand side of the
differential equation is equal to zero, as illustrated in the right part of the above figure. The right
hand side is also often written as ∇2𝜕𝜕.

An example program that simulates the above problem can be found in the files
mod_heat_static.f90 and heat_static.f90 in the skeletons/heat folder. The
temperature field is simulated by discretizing it along the x and y directions, which requires
introducing two nx by ny arrays that store the temperature values and their updates. The
temperature values for time t + δt is obtained from those for time t via incrementation by the
temperature differential

𝛿𝛿𝜕𝜕 = 𝛿𝛿𝜕𝜕 ∙ �∇2Φ�𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗�� 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜕𝜕𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑

1. The main program invokes the iteration procedure repeatedly, until the calculation has
converged. Build the executable by running make, using a problem size of 200 x 200, and
measure the performance. Note that for a small problem size, printout can be generated that
permits debugging.

2. Make changes to the source files that allow you to determine the problem size (i.e., the array
dimensions nx and ny) at run time. The following steps will be needed to accomplish this:
a. Make the necessary changes to the declarations of the fields phi and phinew. What else

is needed to assure the fields are set up correctly?

Updating Fortran Legacy Code – Hands-On Sessions

b. The x and y directions now may be differently discretized, and the space differentials must
also be set up at run time. Use the ftn_getopt module discussed in the lecture to enable
command line arguments, e.g.
./heat_dynamic.exe --nx 50 --ny 100
for a problem size 50 x 100.

3. Re-do the performance measurement for the problem size 200 x 200.

The solution for this exercise will be in the files
examples/solutions/heat/[mod_heat_dynamic.f90, heat_dynamic.f90].

Updating Fortran Legacy Code – Hands-On Sessions

Exercise Session 4

Returning to TOMS 612
Using the result from Step 4 of the first exercise session (or the provided solution) as a starting
point, we note that the argument function f(x,y) used by the main driver subroutine still has an
implicit interface. Furthermore, the integrand functions use additional parameters. Make the
necessary changes for an object-oriented design for this function argument along the lines
described in the slides, including introduction of a submodule for the procedure implementation.
This will also require making the interface of f(x,y) explicit.

Exercises Session 5

Some performance tunings for the heat example
Return to the heat conduction example from session 3 and do some performance evaluations.

a. first, add the TARGET attribute to the phi and phinew arrays and observe the impact on
performance for nx = ny = 200.

b. Due to copying of phinew to phi, a factor of two more memory accesses are needed than
would be the case if the fields had the POINTER attribute and the pointers are simply
switched between iterations. Make a copy of the module within which just that is done and
check the performance (possibly for different compilers).

c. Does adding the CONTIGUOUS attribute to the pointer fields improve performance? If not,
consider possibilities to eliminate the POINTER attribute for the duration of the
calculations.

The solution for this exercise will be in the folder solutions/heat, in the files
mod_heat_ptr.f90 and heat_ptr.f90.

Using interoperability features
The folder skeletons/interop contains Fortran and C code that makes use of the
interoperability features.

1. Write an interoperable Fortran function that corresponds to the C prototype
double fun(double x, void *);
and call that function (instead of the one provided in the C code) from a C main program. Hint:
The Intel compiler requires use of the –nofor-main switch in this situation.

2. Write an interface block that corresponds to the C library call
float strtof(const char *nptr, char **endptr);
and call that function from the Fortran main program, printing out the result. Which other
function from the C library will be needed?

The solution for this exercise will be in the folder solutions/interop.

Updating Fortran Legacy Code – Hands-On Sessions

Exercises Session 6

Using asynchronous I/O
The folder skeletons/aio contains source code for a ray tracer. This code performs I/O of the
complete picture array at the end of the calculation. The resulting file can be viewed with the
display command. Convert this program to use asynchronous I/O by putting the data transfer
statements inside the outer loop that processes the tiles in the picture. You can reduce the
needed amount of storage from size**2 to size*nbuf, where nbuf is the number of I/O
buffers available for asynchronous I/O. For which picture size do you observe a performance
advantage? For good I/O performance it is recommended to use a parallel file system and execute
the program there.

Notes: For the Intel Compiler, the -threads option must be used to activate asynchronous I/O.
The current release versions of gfortran compile the programs, but do not actually perform the I/O
transfers asynchronously.

The solution will be contained in solutions/aio.

Using pFUnit
The folder skeletons contains a subfolder pfunit_example, which should be copied as a
whole. This is the example used in the slides. Add a subfolder tests and produce a suite of unit
tests including the build system that fully covers the provided functionality.

Updating Fortran Legacy Code – Hands-On Sessions

Exercise Session 7

Extend the Matrix-Vector Multiplication
The folder skeletons/mv_caf contains source code for the parallel matrix-vector
multiplication. Compile and run the basic version with the gfortran compiler (via the caf wrapper)
for the case of 1 (nexp=0) and 4 (nexp=1) images. Note that the matrix dimension varies with 2nexp,
so the computational load for 4 images is 4 times as large as for 1 image (“weak scaling”).

1. To enable execution of the code for arbitrary image count and arbitrary problem size,
introduce allocatable variables instead of the static ones used in the skeleton code. Some
conditioning will be required. Remeasure the performance of the code for the cases already
treated in the skeleton code.

2. Write a second program that performs the same calculations without using coarrays. Hint: use
a suitable collective.

The solution will be contained in solutions/mv_caf.

	Exercises for “Fortran code modernization”
	Schedule

	Getting started & general remarks
	Preparing the working environment (15 minutes)
	Fortran standard document

	Exercise session 1
	Step 1: Building and running a program from TOMS (15 min)
	Step 2: Conversion to free source form (25 min)

	Exercise session 2
	Step 3: Replacing obsolescent syntax in TOMS 612 (25 min)
	Step 4: Modularizing the code (25 min)

	Exercises Session 3
	Heat conduction (30 minutes)

	Exercise Session 4
	Returning to TOMS 612

	Exercises Session 5
	Some performance tunings for the heat example
	Using interoperability features

	Exercises Session 6
	Using asynchronous I/O
	Using pFUnit

	Exercise Session 7
	Extend the Matrix-Vector Multiplication

