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LLNL is a multidisciplinary national 
security laboratory

§ Established in 1952

§ Approximately 6,000 employees

§ 1 square mile, 684 facilities

§ Annual federal budget: ~ $1.42B

Experimental Test Site
(11 miles2 near Tracy, CA) 
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LLNL is focused on solving global 
security challenges for the nation
Multidisciplinary science, technology, and engineering – R&D that 
the private sector either can’t do or won’t do 
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Domestic and 
International Security

Applied Science Engineering

Nuclear Security Energy and
Environmental Security

Computing
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We combine world class experiments with large 
scale simulations

National Ignition Facility
explores the extremes of energy, temperature, and pressure that occur in 

stars, supernovae, and nuclear explosions.

Experimental challenge 
and validation 

High-performance co|mputing,
modeling, and simulation 
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High-Performance Computing (HPC) is part
of the Laboratory’s DNA
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Throughout its history, LLNL has been at the forefront 
of enabling both the hardware and software of HPC.
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§ Over 30 clusters

§ Over 2,000,000 total cores (1.5M from Sequoia)

§ 2 tracks:
— Advanced Technology Systems (Blue Gene/L, Blue Gene/Q, Sierra Power9/Volta, etc.)
— Commodity Technology Systems (Linux Clusters)

The Livermore Computing Complex is massive

B453: 48,000 sqft B654: 6,000 sqft (expandable)

Sequoia (16 PF) Sierra (125 PF)

https://hpc.llnl.gov/hardware/platforms
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To optimize the Livermore Computing Complex, 
we need answers to several key questions

1. What is the workload?

2. How well should we expect a given application to perform on our machines?

3. How can we optimize the latency of a single application run?

4. How can we optimize the throughput of all jobs?

5. What machines should we purchase to handle our future workloads?
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§ Problems:
— System variability complicates performance modeling
— Runtime of two identical runs of the same code may differ by a 

factor of 2
— Applications and workload change constantly

§ Many causes contribute to variability:
— System level:
• Shared resources (Network, file system, memory bus)
• Processor manufacturing variability 

— Application level:
• Nondeterminism in applications
• Data-dependent algorithms (input decks, multi-material, etc.)

Answering performance questions is becoming 
increasingly complex

It is increasingly hard to assess the characteristics of a “normal” run of an HPC application
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We must enable automated analysis to understand 
the performance of our compute center

Data Management

Sonar Data Cluster (ISCP/ATDM)
Continuous monitoring from LC resources.
Applications contribute job data.
User-level security enables a shared database.

ScrubJay (ASCR / ATDM / ECRP)
Query/analysis system for Sonar data
Allows all users to access data

Data Analysis

Job Performance Prediction (ECRP / ASC)
Use monitoring data to predict job runtimes.
Feed back data to resource managers.

Apollo AMR auto-tuning (ECRP / ASC)
Performance portability for data-dependent apps
Select runtime strategies based on input

ECRP ASCR Early Career Research Program
ASCR ASCR XStack2 PIPER Project
ASC NNSA Advanced Simulation & Computing

ATDM NNSA Advanced Tech. Dev. & Mitigation
ISCP LLNL Institutional Sci. Capability Portfolio

LLNL offers a unique environment where we can bring together research and programmatic work

Sonar Prediction Apollo ScrubJay
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Network contention can lead to severe 
performance degradation

Slow	run	of	pf3d	on	Cray	XE6	system.	 25%	faster	messaging	rate	without	conges?on.	
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Performance	variability	over	?me	with	and	without	network	conges?on.		Blue	Gene	systems	(Mira	&	
Intrepid)	have	isolated	per-job	network	par??ons,	while	Cray	XE6	systems	use	a	shared	network.	

§ We ran pF3D on BG/Q, BG/P, and 
Cray systems with I/O disabled
— One run per day for 2 months

§ Communication performance on 
Cray is affected by other jobs
— Up to 2x slowdown

§ Future machines will not have 
isolated networks like BlueGene
— I/O performance is not isolated on 

BG/Q
— Network is not the only source of 

nondeterminism.

Sonar Prediction Apollo ScrubJay
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§ Lustre traffic over 4 months on a 1,296-
node  Sandy Bridge cluster (cab) at LLNL
— Aggregate writes and reads to Lustre on LLNL 

clusters vary considerably over time.
— Surprisingly, workload is very read-intensive

§ Understanding a job’s I/O performance 
depends on other jobs and other clusters
— Particularly pronounced at LC, where file 

systems are shared

File system load is also highly variable

Student: Ryan McKenna, University of Delaware 
Forecasting Storms in Parallel File Systems 

Motivation Goals 

Background 

Results 
•  Large-scale scientific applications rely on the parallel file 

system (PFS) to store checkpoints and outputs 
•  The PFS is a shared resource, and many applications need 

to read and write to it concurrently, but the performance 
degrades as more applications read/write more data 

•  These types of PFS ‘storms’ could be avoided if the 
scheduler was aware of the IO workload of jobs before they 
start 

•  Parse job scripts and build a feature set 
•  For text based features such as job-name, split word along 

alphanumeric boundaries to extract keywords 
•  Build a regression model using available job history 

•  Regression models are specialized to handle continuous valued 
output, such as runtime and bytes read/written 

•  We investigate three regression models: decision trees, random 
forests, and k-nearest neighbors 

•  Use regression model to predict runtime statistics for upcoming 
jobs 

•  Mitigate PFS resource contention by identifying IO-intensive 
jobs before they start 

•  Predict the per-job runtime statistics and IO counters using 
historical data 

•  Forecast PFS ‘weather’ using IO and runtime predictions for 
upcoming jobs 

Build Run Extend Optimize 

This work performed under the auspices of the U.S. Department of Energy and an appointment to the Office of Science, Science Undergraduate Laboratory Internship (SULI) Program at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.   

•  We accurately predict the runtime 
(within 10 mins) of 80% of jobs – a 65% 
improvement over the user requests 

•  Requested wall time, job name, and 
submit time are the strongest 
predictors of actual runtime 

Time 

N
od

es
 

User: doe99 
Job Name: multigrid16 
Requested Time: 12:00 
Requested Nodes: 64 
Submit Day: Monday 
Submit Time: 8:00 AM 

Run Time: 9:37 
Bytes Read: 1 GB 

Bytes Written: 2.5 GB 

User: doe99 
Job Name: multigrid17 
Requested Time: 12:00 
Requested Nodes: 64 
Submit Day: Tuesday 
Submit Time: 1:00 PM 

Run Time: 9:37? 
Bytes Read: 1 GB? 

Bytes Written: 2.5 GB? 

Input Data 
Observed Data 

Input Data 

N
od

es
 

Time 
2 TB 

100 GB 

300 GB 

File System Capacity: 60%  

•  With both runtime predictions and IO workload 
predictions, we can simulate the queue to determine 
which IO-intensive jobs run at the same time 

This figure shows how many terabytes the 
PFS handles over time.  Spikes in the graph 
correlate with poor file system performance. 

Predict 

Build  Model 

Build Model Predict 

Predict 

•  With a window size of five days, 79.8% of 
predictions are accurate to within 10 
minutes – only 0.2% below the accuracy 
attained from using all available history  

•  We accurately predict the file system 
traffic by application for the majority 
of jobs 

Conclusion 
•  Training machine learning models on job scripts is a viable solution 

to predict application IO patterns 
•  These results can help schedulers avoid PFS resource contention 
•  For future work, we would like to: 

•  Build a model that predicts IO patterns over the course of a job 
•  Extract more features from the job script to allow the regression models to 

detect more correlations 

Methodology 
•  A PFS is a file system that can efficiently handle big data and 

concurrent requests by distributing data across many storage 
nodes 

•  The majority of file system use comes from simulation 
checkpoints: jobs save their state every few hours so they can 
be restarted from a stable state in the event of a failure 

Error User
Requested

Decision
Tree

Random
Forest

K
Neighbors

< 10 Mins 14.7% 80.0% 76.1% 78.9%
< 20 Mins 16.9% 82.0% 78.9% 81.5%
< 30 Mins 25.0% 83.2% 80.5% 83.1%
< 40 Mins 27.1% 84.1% 81.6% 84.2%
< 50 Mins 76.4% 85.6% 83.1% 85.5%
< 60 Mins 76.8% 86.2% 83.9% 86.4%
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Error Bytes Written Bytes Read
< 1 MB 74.9% 63.7%
< 16 MB 79.8% 68.6%
< 256 MB 86.6% 82.7%
< 4 GB 92.0% 90.0%
< 64 GB 97.4% 97.0%
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•  Scientists are predictable – they often run many versions of the 
same code 

•  It’s likely that these different versions share runtime statistics 
(amount of data read/written, runtime, etc.) 

Job Data 

•  A scheduler is a program that determines how to allocate 
resources (nodes in a cluster) to jobs 
•  Schedulers make decisions based on the size of the job (number of 

nodes + requested time) 

•  Our data comes from two sources: 
•  Job logs contain user-submitted information (job-scripts) and 

summary statistics about the job 
•  IO reports summarize calls to the file system over the course of the 

jobs 

The input features are derived from the 
job script and the output features are 
reported at job completion.  We focus on 
predicting the boxed output features. 

•  Job scripts contain a wealth 
of data for understanding the 
behavior of jobs  

•  Jobs with similar input 
features often have similar 
output features 

•  Sometimes the scheduler 
allocates resources for multiple 
IO-intensive jobs at once 
•  In these situations, the PFS 

becomes overloaded and 
potentially unresponsive 

This diagram shows the design process for building scientific applications   

Build  Model 

By only training on the most recent history, we save time and 
space by building a smaller model and storing less data 

National Science Foundation CCF #1318445 

Advisors: Todd Gamblin, Lawrence Livermore National Laboratory 
Michela Taufer, University of Delaware 

Predicted Data 

Input Features Output Features

workdir act time exitcode
jobid send bytes alloc-inode

submit time create rename
req time duration endtime
machine mkdir mknod
user mmap rmdir
group mdt cancel mdt grant
account osc read count osc read

jobname write count write bytes

req tasks osc write count osc write
req nodes osc cancel ost grant
submitdir recv count recv bytes

outfile read count read bytes

1

Historical IO patterns (behind red bar) are used to predict future IO patterns 
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Network

Core
FLOPs
Instructions
Cache Misses

Rack

Temperature
Humidity

Facility

Power 
Consumption
Cooling UnitsNode Bandwidth

Data Traffic

Sonar collects data from the HPC Center and applications, 
allowing users to access it with secure permissions

Inputs

Application OS/
Runtime

Nodes Processors
Job

Job allocations
Runtimes

Message-
Passing

Message 
size/contents
Message routing
Communication rates

Data-
Sharing

Data accessed
Access rate
Data motion

Application Phases/Iterations
Memory Allocations

HPC Center Data Application Data

Sonar enables all LC users to research into the root causes of performance variation

LC Security Infrastructure

Sonar Data Cluster
Provides storage and compute for performance analysis.

2 clusters: CZ, RZ (SCF TBD)

Jupyter

ScrubJay
Spark

Cassandra

Sonar Prediction Apollo ScrubJay
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Sonar allows users to access data previously 
available only to facility administrators

§ Some data at Livermore Computing is sensitive
— Path names, users, groups, detailed job 

information, etc.
— Data about ECI, UCNI, and other sensitive codes

§ Access to this data was previously all-or-nothing

§ Sonar now integrates with LC’s user/group 
permissions
— Allows scientists in LLNL’s research divisions to 

access data for the first time
— Users can manage their own permissions in the 

system
— Each table can have its own users, groups, and 

delegated management.

§ Permissions will allow us to federate and 
manage a much larger volume of data, with 
more people using the system.

Sonar Prediction Apollo ScrubJay

LC Security Infrastructure

Sonar Data Cluster
Provides storage and compute for performance analysis.

2 clusters: CZ, RZ (SCF TBD)

Jupyter

ScrubJay
Spark

Cassandra

Sonar will allow us to create open data sets for HPC facility performance
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How can we use Sonar data to understand 
facility performance?

Sonar Prediction Apollo ScrubJay



LLNL-PRES-745859
15

§ CNN prediction:
— Takes only job scripts and queue data as input

— Leverage unstructured information (coding style, job scripts)

— No preprocessing of job scripts required; fully automated

§ Queue simulation:
— Use predicted runtimes to simulate future job schedule

§ We can predict many I/O bursts.
— Some bursts can’t be predicted b/c jobs enter the queue and 

run immediately

— There may be periodicity or other patterns to these bursts

§ We are investigating additional modeling techniques 

to predict bursts that cannot be simulated

We combine neural networks with queue 
simulation to predict resource utilizationStudent: Michael Wyatt1 

Anticipating IO Load for HPC Systems 

Challenges in HPC 

This work performed under the auspices of the U.S. Department of Energy and an appointment to the Office of Science, Science Undergraduate Laboratory Internship (SULI) Program at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.   

Workflow 

•  Regular Expressions and simple machine learning algorithms can only 
extract and utilize information embedded in regular patterns 

•  Fail to utilize features embedded in irregular patterns 
•  A Neural Network (NN) is necessary to extract all features from a job 

submission script 

National Science Foundation CCF #1318445 

Advisors: Todd Gamblin2, Adam Moody2, Michela Taufer1 
1University of Delaware, 2Lawrence Livermore National Laboratory 

Testing data is selected in batches.  Training data must have completed before 
the first job in the testing data batch was submitted 

IM #: LLNL-POST-675538 

Time 

Jo
bs

 

Submit Time Complete Time 

Testing Data Training Data 

Limits of Current Techniques 

Results 

Users submit 
job scripts 

Job Script 

#!/bin/bash	
#PBS	-q	pbatch	
#PBS	–l	nodes=8	

�	
#run_mpirun()	
#{	
mpirun	–np	8	main.py	
#}	

Moab	Scheduler	

Moab places the job in 
a queue and collects 
additional information 
about the job 

error_file=“$HOME/”	
work_dir=“/sc16/...”	
submit_dir=“/py/...”	

�	

Submission Strings 

Long strings from the 
job submission are 
reported by Moab 

Scripts are interpreted as 
2D gray scale images 

user=“smith1”	
group=“performance”	
account=“casc”	

�	

Submission Data 

Data which cannot be 
interpreted as “sentences” 
are reported by Moab 

(OST) (MDS) 

•  Application performance is reliant on the cluster, other running jobs, 
and availability of shared resources 

•  The Lustre File System is a shared resource which may become 
unresponsive if several IO-intensive jobs are running simultaneously  

 

•  Knowing the number of metadata operations an application will use 
during its runtime allows for smarter scheduling 

•  Metadata operations can be predicted using machine learning 

The Lustre File System contains a 
Meta-Data Server (MDS) which 
contains information about object 
locations on the Object Storage 
Targets (OST).  The single MDS can 
being unresponsive when too many IO 
operations are requested by the 
compute servers.   

Computer Server 

Bottle neck of the 
Lustre File System 

Simulated 

#!/bin/bash	
#PBS	-S	/bin/bash	
#PBS	-l	partition=cab	
#PBS	-W	x=partition:cab	
#PBS	-N	WD_sput	
##	
#PBS	-q	pbatch	
#PBS	-e	run.err	
	
#PBS	-A	mixedmat	
#PBS	-l	nodes=1:ppn=8	
	
#PBS	-l	walltime=02:55:00	
	
###pdebug	
	
PBS_PWD="$(pwd)"	
cd	"${PBS_O_WORKDIR}"	
	
#run_mpirun()	
#{	
	
.	/usr/local/tools/dotkit/init.sh	
use	openmpi-intel	
mpirun	-np	8	/g/g92/frolov2/bin/lmp_mpi_misc	<	big_hybrid.in	
>>	lammps.out	
	
#}	

#!/bin/bash	
#PSUB	-r	GT6-3I-R8	
#PSUB	-eo	
#PSUB	-o	psub.out	
#PSUB	-ro	
#PSUB	-d	0	
#PSUB	-tM	9h	
#PSUB	-ln	12	
#PSUB	-b	gsmisc	
#PSUB	-c	cab	
#PSUB	-me			#	send	email	when	job	completes	
#PSUB	-x			#	pass-through	environment	variables	
#PSUB		#	no	more	embedded	options	
	
echo	LCRM	job	ID	=	$PSUB_JOBID	
date	
echo	
set	echo	
	
#cd	/p/lscratche/kweon1/CdTe_dislocations/8core_Cd/chg+0	
cp	INCAR1	INCAR	
srun	-N12	-n192	/usr/gapps/qsg/VASP/bin/vasp_dev_ansel5	
cp	INCAR2	INCAR	
/usr/gapps/qsg/VASP/VASP_scripts/continue_vasp	-d	#-check	
srun	-N12	-n192	/usr/gapps/qsg/VASP/bin/vasp_dev_ansel5	
	
wait	
exit	

Two job submission scripts.  There exist regular (top half) and irregular (lower half) 
patterns in the scripts.  The irregular patterns cannot be reliably parsed with regular 
expressions. 

User job scripts are interpreted as gray scale images and 
processed with a 2D convolution NN.  The convolution 
NN is able to learn from the irregular patterns of the job 
script.  Long strings are split into words and processed 
with an embedding NN.  The embedding layer converts 
words into vectors, where distance between two vectors 
indicates word similarity.  Short strings and numerical data 
from the job submission are also considered.  These three 
sources of data are merged into a single deep NN.  The 
predictions from the NN are then utilized by the 
scheduler to make metadata operation aware scheduling. 

For testing purposes, the submission 
of jobs, scheduler, and cluster are all 
simulated 

An embedding layer 
transforms words to 
vectors based on word 
similarity 

A 2D convolution network 
processes job scripts 

Data is added to 
an input layer 

Three layers are merged 
and then processed with 
a deep neural network 
before the output layer 
provides a prediction 
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•  Neural Networks are able to reliably utilize all 
features available from a job submission script 

•  2D convolution networks capture irregular 
patterns 

•  Word embedding captures string features 
•  Limitation:  Noisy data with performance 

variability will prevent achieving 100% accuracy 
•  Future work: 

•  Use convolution networks to analyze the 
application code to improve prediction of 
application performance 

The output of a word embedding layer.  
Similar words are placed in close proximity. 

Accuracy and training time increase 
linearly with the amount of training data. 

Unstructured Data Analytics for
Next-generation HPC Schedulers: Supercomputing’17, November 2017, Denver, Colorado USA
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Figure 13: Average ratio of the prediction error from real
turnaround times over the user estimate from the same
turnaround times using CNNwith unstructured data as well
as using kNN, RF, and DF with structured data. Blue dots
show the 95th percentile for the ratio. Once again CNN
with unstructured data predicts jobs’ turnaround times with
higher accuracy.

on the other hand, shows that the predictions from unstructured
data are both under and over predicted. In other words, they are
not biased to overprediction. The density along the diagonal in the
two �gures represents a perfect prediction; the density is higher
in Figure 14.b. This supports the claim that the turnaround time
predictions from unstructured data are more accurate than the
user-based turnaround time predictions.

6 RELATEDWORK
Many HPC job feature prediction methods have been proposed.
Previous methods have involved a variety of machine learning
methods, familiar and novel. A variety of data sources are used to
obtain information about jobs, including log �les, job scripts, and
job traces. The common attribute of each method is the extraction
of structured data from these sources for use with machine learning
methods.

Most of the previous e�orts for job feature prediction has focused
on runtime predictions and derivatives of runtime predictions, like
turnaround time and wait time. Smith, Foster, and Taylor used
historical structured HPC job data to predict runtime in [17, 18].
Runtime predictions are based on a similarity measure with
historical jobs and are used to infer job queue times. The structured
data �elds used to compute job similarity are the among those
listed in Table 1. Krishnaswamy, Loke, and Zaslavsky developed a
prediction method similar to that of Smith, Foster, and Taylor in[6].
Cunha et al. use a kNN model to predict runtime and turaround
time for HPC jobs in [2]. This work utilizes structured data from
job scripts augmented with structured data from the scheduler,
such as number of jobs in the queue at job submission time. Tsafrir,

(a)
‘

(b)

Figure 14: Heatmap showing turnaround time predicted
using user estimates of runtime (a) and heatmap showing
turnaround time predicted using unstructured data and
CNN estimates of runtimes (b). Higher dot density along the
diagonal (b) indicate a better prediction with unstructured
data.

Etsion, and Feitelson predict job runtimes based on a user-centric
model in [19]. They average users’ previous job runtimes and use
this as an estimation for the runtime of the next job submitted by
a user. Downey developed a statistical model for predicting the
queue time of a job based on jobs already running on an HPC
system in [3]. Similarly, in the work of Nurmi, Brevik, and Wolksi a
statistics based method is developed, QBETS, to predict wait times

User Estimate CNN prediction

Unstructured Data Analytics for
Next-generation HPC Schedulers: Supercomputing’17, November 2017, Denver, Colorado USA
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methods, familiar and novel. A variety of data sources are used to
obtain information about jobs, including log �les, job scripts, and
job traces. The common attribute of each method is the extraction
of structured data from these sources for use with machine learning
methods.

Most of the previous e�orts for job feature prediction has focused
on runtime predictions and derivatives of runtime predictions, like
turnaround time and wait time. Smith, Foster, and Taylor used
historical structured HPC job data to predict runtime in [17, 18].
Runtime predictions are based on a similarity measure with
historical jobs and are used to infer job queue times. The structured
data �elds used to compute job similarity are the among those
listed in Table 1. Krishnaswamy, Loke, and Zaslavsky developed a
prediction method similar to that of Smith, Foster, and Taylor in[6].
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time for HPC jobs in [2]. This work utilizes structured data from
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Figure 14: Heatmap showing turnaround time predicted
using user estimates of runtime (a) and heatmap showing
turnaround time predicted using unstructured data and
CNN estimates of runtimes (b). Higher dot density along the
diagonal (b) indicate a better prediction with unstructured
data.

Etsion, and Feitelson predict job runtimes based on a user-centric
model in [19]. They average users’ previous job runtimes and use
this as an estimation for the runtime of the next job submitted by
a user. Downey developed a statistical model for predicting the
queue time of a job based on jobs already running on an HPC
system in [3]. Similarly, in the work of Nurmi, Brevik, and Wolksi a
statistics based method is developed, QBETS, to predict wait times

Convolutional Neural Networks Job Runtime

University  of Delaware

Methodology: Flux Simulator

45

Queue

Now Now + 1 Hour Now Now + 1 Hour

400 MB/s

10 MB/s

15 MB/s

50 MB/s

25 MB/s

0 MB/s

300 MB/s

Now Now + 1 Hour

400 + 0 + 25 + 10+ 15 + 300 + 50 = 800 MB/s 

• Use the bandwidth predictions for each job that is expected to be running, and sum 

them up over all running jobs to get a predicted aggregate bandwidth. 

finding better models and tuning the parameters, as well as
characterizing and investigating mispredictions. Second, our
predictions support system administrators in determining how
much is too much (i.e., identify and summarize situations
when the file system is down due to too much concurrent traffic
a priori). Finally, one may incorporate such predictions into an
IO-aware scheduling policy, and determine how IO contention
is impacted. In particular, next-generation schedulers such as
Flux are designed to schedule based on parameters like IO
and power requirements. The results in this work provide a
starting point to limit the burden on the file system, and it is
an important step to minimizing the downtime of parallel file
systems due to over-utilization.
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These results will provide input for resource-aware scheduling on the Flux project
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How can we use Sonar data to understand 
application performance?
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§ Performance of the same RAJA loop can vary 
depending on its execution model 
— CUDA, OpenMP, sequential, thread counts, etc.

§ Fastest execution model depends on the data
— Orders of magnitude difference bt/w best and worst 

§ We would like to select the best execution 
policy each time a kernel is invoked
— Requires detailed knowledge of code performance and 

size of the arrays processed by each kernel
— Execution policy is set statically to get better compiler 

optimization, but we want to switch dynamically

The right execution policy for a RAJA kernel 
depends on the data

Runtimes of key hydro kernels vary by input
and by programming model

Execution policy: scheduling, execution, 
OpenMP/CUDA/ other programming models

IndexSet: iteration space partition, ordering, 
dependencies, data placement, etc.

forall<exec_policy> (index_set , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min( y[i] );

});

RAJA-style loop

Sonar Prediction Apollo ScrubJay
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Apollo is a RAJA extension for fast auto-tuning 
of the execution policy

§ RAJA provides performance tunability but 
doesn’t guarantee portability
— i.e., across different input decks/kernel invocations

§ Apollo allows us to train decision models that 
can pick an execution model online
— Generates code to pick among different template 

instantiations (code variants)
— Templates are chosen on-line, but we retain benefits 

of static optimization (inlining, etc.)

§ Decision models in Apollo are fast
— Can pick an execution policy for every patch in an 

AMR loop within a single time step

§ Apollo decision trees are lightweight
— Traditional auto-tuners choose parameters on-line 

based on a costly runtime search
— Apollo requires offline training, but its model 

chooses an execution model direction (no runtime 
test executions required)

if num_indices
less than
103938

if num_indices 
less than 

19965

if num_indices
less than 
2382100

OpenMP OpenMPSequential OpenMP

Training

Lightweight 
decision model

Application

RAJA

Apollo Auto-tuning

Sonar Prediction Apollo ScrubJay
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Scaling CleverLeaf and ARES with Apollo

— Up to 4.8x speedup for CleverLeaf AMR mini-application
— 8-15% speedup of ARES (with only Lagrange converted to RAJA)
— Speedup increases with strong scaling due to increasingly fine granularity

• For ARES & Cleverleaf Sedov, highest speedup was for the largest run (256 cores)

CleverLeaf AMR Mini-application ARES

Sonar Prediction Apollo ScrubJay



LLNL-PRES-745859
20Sonar Prediction Apollo ScrubJay

How can we use Sonar data to understand 
interaction between applications and the facility?
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Raw

Data

Analyzing performance data requires tedious 
data scrubbing and transformation

Job x TimeRange x Nodelist Node x Rack Rack x Time x Temperature

Node  x Job x Time 

Rack x Node  x Job x Time 

Rack x Joblist x Time

Rack x Joblist x Time x Heat

Job Queue Output Node à Rack mapping Cab temperature data

Heat = (Hot aisle - Cold aisle)

Rack x Time x Heat

This analysis required ~6hrs of running, debugging, and validating data

§ Which applications (jobs) are correlated with hot racks over time?
— We collected job queue, machine configuration, and temperature sensor data
— Stored data exactly as it came from different data sources, but need to project to analyze

Sonar Prediction Apollo ScrubJay
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1. Store semantics (types, units, data domain) of data sources

Job Data Source
Encodes a unique identifier JOBID for every job, the start time of the 

job, as a human-readable timestamp, as START…

Job Data Source

Job X NodeList

Node X Job X TimeRange

Transformations

Job Data Source Node FLOPs

Job X NodeList X FLOPList

Combinations (Joins, incl. Interpolative Joins)

2.   Define transformations and combinations of sources based on semantics

3. Satisfy queries by automatically transforming/combining data sources
• Finding valid paths of joins and transformations is a constraint-solving problem

§ Users do not know all the relationships necessary to piece together facility-wide analysis

§ ScrubJay allows users to leverage expert knowledge
— Experts (admins, developers, HPC architects) tell system the possible transformations in advance
— Users include these transformations in their own analysis

ScrubJay automates the analysis of HPC performance data

Sonar Prediction Apollo ScrubJay
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Rack 17

Time
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ScrubJay will allow end users to understand how 
their jobs interact with the HPC facility 

AMG

§ ScrubJay uses a constraint solve to 
deduce necessary transformations 
given an arbitrary query
— Users do not need to understand raw data 

formats
— Users query only a logical data taxonomy 

§ Projections are parallelized using 
Spark
— Users can run Spark jobs through 

dashboards such as Jupyter Notebook

§ ScrubJay allows users to easily run 
analysis on data from applications 
and facility data

Which applications (jobs) are correlated with 
hot racks over time?

Sonar Prediction Apollo ScrubJay
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Sonar and ScrubJay will evolve beyond 
Livermore Computing

§ Sonar and ScrubJay are currently services for Livermore 
Computing users.

§ We plan to release ScrubJay as open source
— Has general applicability to scientific/industry data
— We plan to develop a strategy to build a community around it
— ScrubJay could become a commonplace addition to Spark environments

§ Caliper is already open source and has a growing community
— We’ve striven at LLNL to make it easy for Sonar to ingest Caliper data

§ Sharing Sonar stack with other centers requires more thought
— Implementation and security are tied to LC infrastructure in some ways
— Platforms like Kubernetes + Containers seem promising
— Good ways to share distributed services like these with other sites.
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We have implemented end-to-end SSL security for JupyterHub,
so that it can be used securely at HPC centers

§ JupyterHub allows users to write interactive analysis 
scripts in a Python “notebook” server

— Out of the box, server is insecure and allows anyone to 
connect

§ We have added security features:
— Spawn notebooks on LC machines
— Jupyter proxy certificate authority (CA) manages unique 

certificates for each notebooks

§ Our additions ensure that user identity is preserved 
from the client, through the proxy, to the 
notebooks.

— We are contributing this upstream

§ LLNL Next-generation code team (MARBL) will be 
using Jupyter Notebooks as the steering interface 
for their code.

We added SSL here

We rolled this out to our first network zone on Tuesday
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§ Performance analysis is becoming more data intensive!
— Parallel performance analysis IS big data analysis.
— We need better tools to analyze and mine data about our facilities.

§ LLNL is expanding the scope of data it is collecting in order to 
tune the entire HPC center
1. Understand the real production workload
2. Focus more on job throughput and quantifiable improvement
3. Look at training tuning models based on historical performance data
4. Allow users to explore data for the entire center (no more anecdotes)

Our infrastructure and analysis techniques will 
enable center-wide HPC performance analysis

Sonar Prediction Apollo ScrubJay




