
Introduction to OpenMP

R. Bader (LRZ)

G. Hager (RRZE)

V. Weinberg (LRZ)

© 2010-19 LRZ/RRZE Introduction to OpenMP

How to build faster computers – a survey

1. Increase performance / throughput of CPU core
a) Reduce cycle time, i.e. increase clock speed (Moore)
b) Increase throughput, i.e. superscalar + SIMD

2. Improve data access time
a) Increase cache size
b) Improve main memory access (bandwidth & latency)

3. Use parallel computing (shared memory)
a) Requires shared-memory parallel programming
b) Shared/separate caches
c) Possible memory access bottlenecks

4. Use parallel computing (distributed memory)
“Cluster” of computers tightly connected
a) Almost unlimited scaling of memory and performance
b) Distributed-memory

parallel programming

CPU
Cache

Memory

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

2

How to build faster computers (cont‘d)

5. Use an accelerator with your compute node
a) Requires offload of program regions as well as data

(semantics may be limited)

b) Host and accelerator memory are connected, but separate

(Improvements are under way)

c) Programming complexity is higher than for shared memory systems
(„heterogeneous parallel computing“)

© 2010-19 LRZ/RRZE Introduction to OpenMP 3

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory

Accelerator
Device #1

Accelerator
Device #2

PC
I

Accelerator memory
is very fast,

but limited in size

© 2010-19 LRZ/RRZE Introduction to OpenMP

Multi-core processor

MS

arithmetic
unit

Main Memory

FP
registers

L1 cache

L2 cache

„DRAM Gap“

P
ro

ces
so

r ch
ip

FP
registers

L1 cache

arithmetic
unitIn

te
l X

e
on

 (
W

o
od

cr
e

st
)

It is not a faster CPU – it is a parallel computer on a chip.

Put multiple processors (“cores”) on a chip which share resources
(example shows a dual core that shares L2 cache and memory bandwidth)

Efficient use of all cores for a single application  programmer

4

… the party is over!

 Option 1 a) is not feasible any more, option 2 only in small increments

© 2010-19 LRZ/RRZE Introduction to OpenMP 5

Over-clocked
(+20%)

1.00x

1.73x

1.13x

Max Frequency

Power

Performance

Dual-core
(-20%)

1.02x

1.73x
Dual-Core

By courtesy of D. Vrsalovic, Intel

Paradigms supported by OpenMP –
three faces of parallelism

Node
Architecture

Threaded
Parallelism

(multi-core, shared
memory)

Vectorized
execution

(SIMD)

Offloaded
execution

(accelerators)

© 2010-19 LRZ/RRZE Introduction to OpenMP 6

Focus of this course

Also discussed in
this course

Not covered in
this course

OpenMP and portability

 Syntactic portability
• Directives / pragmas

• Conditional compilation permits
to mask API calls

 Semantic portability
• Standardized across platforms
 safe-to-use interface

• Unsupported/unavailable
hardware features  irrelevant
directives will be ignored
(you might need a special compiler
for your devices …)

 Performance portability
• Unfortunately, performance is not

necessarily portable

• Has traditionally been a problem
(partly due to differences in
hardware/architectural properties)

• Becoming worse with recent
hardware generations

© 2010-19 LRZ/RRZE Introduction to OpenMP 7

Compatibility with Sequential Execution

Are semantics for sequential execution retained?

Do memory accesses occur in the same order?

Are the same numeric results obtained for parallel execution?

• yes, due to directive concept

• programmer may choose not to

• no, due to relaxed memory
consistency (performance feature!)

• no associativity for model number
operations

• parallel execution might reorder
operations
(programmer may need to enforce ordering
for reproducibility and/or numeric stability)

© 2010-19 LRZ/RRZE Introduction to OpenMP 8

OpenMP Standard

 Responsible body: OpenMP Architecture Review Board

• Published OpenMP 5.0 in November 2018

 Base languages
• Fortran (up to 2008)

• C, C++
• (Java is not a base language)

 Resources:
• http://www.openmp.org (including standard documents)

• http://www.compunity.org

 Note:

• LRZ has become a member of the OpenMP ARB in March, 2019

© 2010-19 LRZ/RRZE Introduction to OpenMP 9

Fortran and C examples
will be displayed

History of OpenMP
starts in 1997

OpenMP history
(courtesy Intel „The Parallel Universe“, issue 18)

© 2010-19 LRZ/RRZE Introduction to OpenMP 10

Note the increase in
the standard's size
(OpenMP 5.0 has

666 pages)

Course Target:

Learn the most useful and
therefore most commonly
used features of OpenMP

© 2010-19 LRZ/RRZE

OpenMP Architecture

11Introduction to OpenMP

Application

Compiler
Directives

User

Environment
Variables

Runtime Library

Threads in OS
CPUs in Hardware

Comment lines
in source code

Some library routines
are exposed

to the programmer

Determine resource
allocation and
assignment,

scheduling strategies,
etc.

Your program …

OS threads are
executed

concurrently on
HW cores

A simple application

© 2010-19 LRZ/RRZE Introduction to OpenMP 12

program

use m

implicit none

call f()

end program

module m

implicit none

contains

subroutine f()

print *, 'Hello'

end subroutine

end module

Fortran

#include <stdio.h>

int main() {

f();

return 0;

}

void f() {

printf("Hello\n");

}

C

Aim is to execute
multiple instances of

f() concurrently

Parallel execution model

 fork-join sequence
• can repeat, with differing thread counts

© 2010-19 LRZ/RRZE Introduction to OpenMP 13

fork

f() f() f() f() f()

join

Program start: only
master thread runs

(serial execution)

Parallel region entry: team of
worker threads is generated

worker threads
execute concurrently

ex
ec

ut
io

n
se

qu
en

ce

Parallel region exit: all threads
of team synchronize

Serial region:
only master thread executes

(workers usually persist, but are inactive)

Adding a parallel region

© 2010-19 LRZ/RRZE Introduction to OpenMP 14

program

use m

implicit none

!$omp parallel

call f()

!$omp end parallel

end program

Fortran

#include <stdio.h>

int main() {

#pragma omp parallel

{

f();

}

return 0;

}

C

enclosed
lexical block

 General form of directives:

• clauses, if present, modify a directive‘s semantics

• multiple clauses per directive are possible

• continuation lines are supported for long directives: & \

!$omp <directive> [<clause>]

enclosed
lexical block

#pragma omp <directive> [<clause>]

sentinel sentinel

Fortran C

OpenMP structured block rules

• statements between a beginning
and ending directive pair

• GOTO into block is prohibited

• GOTO, RETURN, EXIT outside
block are prohibited

• STOP, ERROR STOP

• delineated by braces following a
directive

• setjmp() into block is prohibited

• longjmp() and throw() outside
block are prohibited

• exit()

© 2010-19 LRZ/RRZE Introduction to OpenMP 15

Fortran C / C++

single point of entry

single point of exit

permitted: program termination

Using library calls

© 2010-19 LRZ/RRZE Introduction to OpenMP 16

subroutine f()

!$ use omp_lib

integer :: me

me = 0

!$ me = omp_get_thread_num()

print *, 'Hello from thread ', me

end subroutine

Fo
rt

ra
n

#include <stdio.h>

#include <omp.h>

void f() {

int me = 0;

#ifdef _OPENMP

me = omp_get_thread_num();

#endif

printf("Hello from thread %i\n",me);

}

C

!$ indicates statement should
be compiled conditionally

OpenMP module:
explicit interfaces for API

returns an integer
(avoid implicit typing!)

OpenMP include file:
prototypes for API

OpenMP-specific macro for
conditional compilation

Independent execution contexts

 As many independent function calls as there are threads

 Thread-individual memory management within function call
• local variables (e.g., "me") are created in the

thread-specific stack

• malloc() or ALLOCATE create memory in
the heap separately for each thread

 Private variables
• associated with a particular thread are

inaccessible by any other thread

• pro: safe to use

• con: communication is not possible
(it is needed by many parallel algorithms),
unnecessary replication of objects may happen.

 Thread-individual stack limit
• control via environment variable

(example: 100 MByte)

© 2010-19 LRZ/RRZE Introduction to OpenMP 17

private

T0

T2

T1

private

private

T3

private

export OMP_STACKSIZE=100M

OpenMP API

 Classes of routines:
• Execution environment (36), Locking (12), Timing (2), Device Memory (7)

Name Result type Purpose

omp_set_num_threads
(int num_threads)

none number of threads to be created for
subsequent parallel region

omp_get_num_threads() int number of threads in currently executing
region

omp_get_max_threads() int maximum number of threads that can be
created for a subsequent parallel region

omp_get_thread_num() int thread number of calling thread (zero
based) in currently executing region

omp_get_num_procs() int number of processors available

omp_get_wtime() double return wall clock time in seconds since
some (fixed) time in the past

omp_get_wtick() double resolution of timer in seconds

© 2010-19 LRZ/RRZE Introduction to OpenMP 18

m
os

tc
om

m
on

ly
us

ed
su

bs
et

Compiling and Running

 Compilation:

 Switch for OpenMP
• specific spelling is compiler-dependent

• toggles both directives and conditional compilation

• generates threaded code and links against OpenMP run time

 Execution:

 Output for example
program:

© 2010-19 LRZ/RRZE Introduction to OpenMP 19

export OMP_NUM_THREADS=4

./hello.exe

f90 –fopenmp –o hello.exe hello.f90Fortran

C cc –fopenmp –o hello.exe hello.c

by default, parallel regions
generate a team with 4 threads

Hello from 1

Hello from 3

Hello from 0

Hello from 2

ordering will vary between runs
(asynchronous execution)

serial compilation may
require stub library

Now: First exercise session

generic instructions ...

Simple work sharing,
Scoping of Data,

and Synchronization

Questions that now arise ...

 We know how to set up threading, but

• how can a large work item be divided up among threads?
(using the API for this works in principle, but is tedious)

• what happens with objects that already exist before the parallel region
starts?

 Example:

• matrix-vector multiplication r = M ∙ x i.e.

© 2010-19 LRZ/RRZE Introduction to OpenMP 21

M x r

௜ ௜௝ ௝

௡

௝ୀଵ

A bunch of scalar
products

Concept of work sharing

 The idea is to split the work among threads

 Note that
• all elements of x must be available to all threads

• Matrix-Vector is often deployed iteratively  r becomes x in the next iteration
 copying of data must be possible

 Consequence:
• need for variables that are accessible to all threads
 "data sharing" is often a prerequisite for "work sharing"
 a natural concept for a shared memory programming model

© 2010-19 LRZ/RRZE Introduction to OpenMP 22

M x r

Thread 0

Thread 1

Thread 2

Thread 3

Sharing variables across threads

 The „shared“ clause
• implies that scalar s and array a both are accessible to all threads

 Rules for concurrent accesses to a single object
• reads/writes or writes/writes by different threads are not permitted („data races“)

© 2010-19 LRZ/RRZE Introduction to OpenMP 23

e
xe

cu
tio

n
se

q
ue

nc
e

real :: s, a(200)

s = …

!$omp parallel shared(s,a)

select case (me)

case (0)

a(1:100) = … * s

case (1)

a(101:200) = … * (-s)

end select

!$omp end parallel

s fork: T0 T1

s

s

join

a

thread ID

a

read
write

disjoint
parts of a
disjoint

parts of a

synchronization
guarantees

availability of a

Note: updates to array a are OK because disjoint parts of object are updated

shared
variables

Fortran

Data dependencies that prevent parallelization

 Flow dependency ("read after write", RAW):

 Anti-dependency ("write after read", WAR):

 Output dependency ("write after write", WAW):

© 2010-19 LRZ/RRZE Introduction to OpenMP 24

a = …
b = a
c = b

second instruction
cannot execute

concurrently with first

b = a
a = …
… = a + …

b = a
a2 = …
… = a2 + …

resolvable at cost of
introducing a new variable

("name dependency")

a = …
b = a
a = …

a = …
b = a
a2 = …

after name dependency
resolution, statements 1

and 3 can execute
concurrently.

Flow dependency remains.

Privatization

© 2010-19 LRZ/RRZE Introduction to OpenMP 25

e
xe

cu
tio

n
se

q
u

en
ce

a[k] = …;

#pragma omp parallel \

shared(a)

{ int i; float s;

s = 0.0;

for (i=…;i<…;i++) {

s += a[i];

}

}

fork:
T0 T1 T2 T3

s0 s1 s2 s3

s0 s1 s2 s3

join: i, s go out of scope

 Block-local variables in C/C++
 are automatically private

shared private

a

a

a

thread-local copies of
s are updated

Note: One can expect the same behaviour for the
Fortran 2008 BLOCK construct, but this is currently
not specified in the OpenMP standard

example calculates
thread-individual sums

C

useless, from a practical point
of view. But bear with me -

we'll fix this, eventually

split iteration space (?)

Privatization with masking

© 2010-19 LRZ/RRZE Introduction to OpenMP 26

e
xe

cu
tio

n
se

q
ue

nc
e

real :: s

real :: a(:)

integer :: i

s = …

!$omp parallel private(s) &

!$omp shared(a)

s = 0.0

do i = …, …

s = s + a(i)

end do

!$omp end parallel

… = … + s

s
fork:

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists
(inaccessible)

s join: si become undefined

shared private

 Masking occurs
• for privatized variables

declared outside the
parallel region

 Loop variables
• are always private

Fortran
a

a

a

would expect value from before
parallel region to persist, but side

effects are possible.
For example, modification
via a pointer (avoid this!)

If s were shared, the program would have a race condition.

Code for work-shared Matrix-Vector multiplication:
The DO / FOR directive

 Serial

 OpenMP parallel

© 2010-19 LRZ/RRZE Introduction to OpenMP 27

DO k = 1, n

DO j = 1, n

r(j) = r(j) + a(j, k) * x(k)

END DO

END DO

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r[j] = r[j] + a[k*n+j] * x[k];

}

}

!$omp parallel

!$omp do

DO j = 1, n

DO k = 1, n

r(j) = r(j) + a(j, k) * x(k)

END DO

END DO

!$omp end do

… = r(…)

!$omp end parallel

Fortran

#pragma omp parallel

{

#pragma omp for

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r[j] = r[j] + a[k*n+j] * x[k];

}

}

… = r[…];

}

applies to j-loop

all threads synchronize

no race condition
against previous

definitions

C

implicit barrier

r, a, x are
shared by default j, k are private

Further rules for work shared loops

 Slicing of iteration space
• „loop scheduling“

• default behaviour is
implementation dependent

• usually as equal as possible
chunks of largest possible size,
one chunk per thread

 In the example,
• slicing is done as shown some

slides earlier

• loop order was switched to avoid
having many synchronizations

 Additional clauses
• on OMP DO / omp for will be

discussed later

 Restrictions on loop structure
• Trip count must be computable at

entry to loop

• Disallowed:
C style loops modifying the loop
variable in the loop body, or using a
non-evaluable exit condition, or
Fortran DO WHILE loop;

• loop body must be a well-formed
structured block with single entry
and single exit point

 Note:
• directive (by default) acts only on

outermost enclosed loop

© 2010-19 LRZ/RRZE Introduction to OpenMP 28

actually, we're caught between a
rock and a hard place here ...

Avoiding race conditions (1):
mutual exclusion via the critical directive

© 2010-19 LRZ/RRZE Introduction to OpenMP 29

e
xe

cu
tio

n
se

q
ue

nc
e

real :: s, stot

real :: a(:)

integer :: i

stot = 0.0

!$omp parallel private(s) &

!$omp shared(a,stot)

s = 0.0

!$omp do

do i = 1, size(a)

s = s + a(i)

end do

!$omp end do

!$omp critical

stot = stot + s

!$omp end critical

!$omp end parallel

fork:
T0 T1 T2 T3

s0 s1 s2 s3

s0 s1 s2 s3

join

 Only one thread at a time can execute a critical region
 others must wait  code in region is effectively serialized

Fortran

stot

stot

synchronization
point

shared private

stot

stot

stot

stot

parallel array summation

updates are now
synchronized

Dealing with race conditions
through atomic updates

 Properties of atomic operations
• the atomic directive applies only for

a single update to a scalar shared
variable of intrinsic type

• this way of updating can be done
safely when executed concurrently
(exception to the rules on race conditions!)

• otherwise, no synchronising effect
imposed by semantics

• hardware atomic instructions
available  likely more efficient than
critical region

© 2010-19 LRZ/RRZE Introduction to OpenMP 30

float stot;

stot = 0.0;

#pragma omp parallel \

shared(a,stot)

{ int i; float s;

s = 0.0;

#pragma omp for

for (i=0;i<N;i++) {

s += a[i];

}

#pragma omp atomic update

stot += s;

}

C

parallel array summation

legacy notation
omp atomic

is also permitted

 C can use #pragma omp critical

 Fortran can use !$omp atomic ...

© 2010-19 LRZ/RRZE

The two kinds of memory in OpenMP

 Data accessed by can be
shared or private

 shared data – one instance
of an entity available to all
threads (in principle)

 private data – each per-
thread copy only available
to thread that owns it

 Data transfer transparent to
programmer

 Synchronization
necessary for accessing sha-
red data from different
threads to avoid race
conditions

 implicit barrier

 explicit directive

private

Shared

T0

T2

T1

T3

private

private
private

31Introduction to OpenMP

The firstprivate clause

 Extension of private:
• value of master copy is transferred to

private variables
• restrictions: not a pointer, not assu-

med shape, not a subobject, master
copy not itself private etc.

© 2010-19 LRZ/RRZE Introduction to OpenMP 32

e
xe

cu
tio

n
se

q
ue

nc
e

real :: s

s = …

!$omp parallel &

!$omp firstprivate(s)

… = … + s

s = …

!$omp end parallel

… = … + s

s
fork:
T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists
(inaccessible)

s join

shared private

uses value from
master copy

Fortran

now starting to wrap up ...

real :: s

s = …

!$omp parallel

!$omp do lastprivate(s)

do i = 1, n

s = …

end do

!$omp end do

… = … + s

!$omp end parallel

The lastprivate clause

 Extension of private:
• value from thread which executes last

update in the serial code is transferred
back to master copy

• restrictions similar to firstprivate

© 2010-19 LRZ/RRZE Introduction to OpenMP 33

e
xe

cu
tio

n
se

q
ue

nc
e

s
fork:
T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists
(inaccessible)

s join

shared private

 When to use?
• as little as possible

• legacy code

on work sharing
directive

s has value produced by
i-loop iteration n

Fortran

Data scoping defaults

 Scoping clauses can be
specified for
• parallel regions

• loop work sharing constructs

 Defaults
• apply if no clause is specified

• may vary by construct, but for
the above the following apply:

pre-existing objects are by
default shared, except for loop
variables, which are private.

objects declared inside the
lexical or dynamic scope of the
construct are private.

 Recommendation:
• specify a default(none) clause

on each directive that permits
scoping:

• this forces you to explicitly
consider and specify scoping for
all pre-existing objects

© 2010-19 LRZ/RRZE Introduction to OpenMP 34

Fortran

!$omp parallel default(none) &

!$omp shared(…) private(…) …

…

C

#pragma omp parallel default(none) \

shared(…) private(…) …

…

other values
are possible

this cannot be changed, of course Now: Second exercise session

Reductions

Concept of Reduction

 Seen in previous exercise:
• need for assembling partial

results across threads

• up to now: with critical region

 OpenMP reductions:
• sometimes more efficient at scale

• implementation tunings like

reduce complexity from
O(nthreads) to O(log2(nthreads))

• always easier to understand and
maintain

© 2010-19 LRZ/RRZE Introduction to OpenMP 36

fork

join

ex
ec

ut
io

n
se

qu
en

ce

want ∑ 𝑠௜

௜ here

(not directly possible because s is private)

s0 s1 s2 s3 s4

si = si + … on each thread

new concept is needed ...

for associative and
commutative operations

 Example 1: Sum reduction in a parallel region

• value of s after end of parallel region: ௜

௜

 Note: multiple reductions are permitted

Reduction clause

© 2010-19 LRZ/RRZE Introduction to OpenMP 37

!$omp parallel reduction(+:x,y,z)

Fortran float s;

s = 2.2;

#pragma omp parallel reduction(+:s)

{

…

s += …;

}

… *= s;

C

s can be safely consumed due to
previous implicit barrier

private copy of s
operation consistent

real :: s

s = 2.2

!$omp parallel reduction(+:s)

…

s = s + …

!$omp end parallel

… = … * s

operation consistent

incoming value

!$omp parallel reduction(+:x,y) &

!$omp reduction(*,z)

private copy of s
(initial value 0.0)

s can be safely consumed due to
previous implicit barrier

 Example 2: Sum reduction in a work shared region

• value of s after end of worksharing region: ௜

௜

Reduction clause cont'd

© 2010-19 LRZ/RRZE Introduction to OpenMP 38

real :: s

s = 2.2

!$omp parallel shared(s)

…

!$omp do reduction(+:s)

do i = 1, n

…

s = s + …

end do

!$omp end do

… = … * s

!$omp end parallel

Fortran float s;

s = 2.2;

#pragma omp parallel shared(s)

{

…

#pragma omp for reduction(+:s)

for (i=0, i<n, i++) {

…

s += …;

}

… *= s;

}

C

s can be safely consumed due to
previous implicit barrier

s can be safely consumed due to
previous implicit barrier

private copy of sprivate copy of s
(initial value 0.0)

operation consistentoperation consistent

incoming value

Initial value of private reduction variables

Operation Initial value

+ 0

- 0

* 1

.and. .true.

.or. .false.

.eqv. .true.

.neqv. .false.

MAX -HUGE(X)

MIN HUGE(X)

IAND all bits set

IEOR all bits 0

IOR all bits 0

© 2010-19 LRZ/RRZE Introduction to OpenMP 39

 Depends on operation

 Supported intrinsic operations:

Operation Initial value

+ 0

- 0

* 1

& 0

| 0

^ 0

&& 1

|| 0

MAX smallest
representable value

MIN largest
representable value

Fortran C / C++

Array reductions

 Example
• reduces complete array b and m

elements of array a, elementwise

• uses regular Fortran array
section notation

• C example does the same as the
Fortran example

• OpenMP-defined sectioning
syntax (differs from Fortran):

© 2010-19 LRZ/RRZE Introduction to OpenMP 40

now also supported
in C/C++ !

 General rules:
• array section must be a contiguous object ( no strides permitted)

• dynamic objects must be associated / allocated, and the status must not be
modified for the private copies

real :: a(*)

real :: b(n)

!$omp parallel reduction(+:b) &

!$omp reduction(*:a(1:m))

…

Fortran float *a;

float b[N];

#pragma omp parallel \

reduction(+:b[:]) \

reduction(*:a[0:m])

…

C/C++

[lower bound : length][lower bound : upper bound]

pointee created
e.g. via malloc()

no deallocate/free within reduction region

must specify
upper bound

(assumed size)

same as
b[0:N]

User-defined reductions

 Using derived types

 And now we want to write

• but the compiler will refuse to build it („+“ not known to OpenMP) unless
further measures are taken ...

© 2010-19 LRZ/RRZE Introduction to OpenMP 41

typedef struct {

int numerator, denominator;

} Fraction;

Fortran
type :: fraction

integer :: numerator, denominator

end type

C

add overloaded operators +, -, * etc.
or even user-defined operators

type(fraction) :: af

af = …

!$omp parallel reduction(+:af)

…

af = af + …

!$omp end parallel

Fraction af;

af = …;

#pragma omp parallel \

reduction(+:af)

{

…

Fraction_sum(af, …);

}

provide functions to add, etc.

Declaring a user-defined reduction

 Combiner
• connects to operator implementation

Fortran: example defers to overloaded „+“, C: references „Fraction_add“
special OpenMP parameters omp_in, omp_out formally describe the two
operands for each operation needed

 Initializer

• implements initial value setting for private copies
Fortran: uses (overloaded) structure constructor, C similar
special OpenMP parameter omp_priv formally describes private copy

© 2010-19 LRZ/RRZE Introduction to OpenMP 42

!$omp declare reduction(+:fraction:omp_out=omp_out+omp_in) &

!$omp initializer(omp_priv=fraction(0,1))

Fortran

#pragma omp declare reduction(+:Fraction: \

Fraction_add(omp_out,omp_in)) \

initializer(omp_priv=Fraction{0,1})

C

declare reduction(<op>:<type>:<combiner>)

initializer(omp_priv=...) or initializer(function(...))

More on Work Sharing

Loops and loop scheduling

Collapsing loop nests

Parallel sections

The schedule clause

 Default scheduling:
• implementation dependent

• typical: largest possible chunks of as-
equal-as-possible size
(„static scheduling“)

 User-defined scheduling:

chunk: always a non-negative integer.
If omitted, has a schedule dependent
default value

 1. Static scheduling
• schedule(static,10)

• minimal overhead (precalculate work
assignment)

• default chunk value: see left

 2. Dynamic scheduling
• after a thread has completed a

chunk, it is assigned a new one, until
no chunks are left

• synchronization overhead

• default chunk value is 1

© 2010-19 LRZ/RRZE Introduction to OpenMP 44

static
!$OMP do schedule(dynamic [,chunk])

guided

iteration space (threads color coded)

schedule(dynamic, 10)

10 iterations

both threads take long to complete
their chunk (workload imbalance)

Fortran

3. Guided scheduling

© 2010-19 LRZ/RRZE Introduction to OpenMP 45

 Size of chunks in dynamic schedule

• too small  large overhead

• too large  load imbalance

 Guided scheduling: dynamically vary chunk size.

• Size of each chunk is proportional to the number of unassigned iterations
divided by the number of threads in the team, decreasing to chunk-size.
(default:  1)

 Chunk size:

• means minimum chunk size (except perhaps final chunk)

• default value is 1

• both dynamic and guided scheduling are useful for handling poorly balanced
and unpredictable workloads.

iteration space

chunk == 7

OpenMP Scheduling of simple for loops

© 2010-19 LRZ/RRZE Introduction to OpenMP 46

OMP_SCHEDULE=static OMP_SCHEDULE=dynamic,10

OMP_SCHEDULE=static,10 OMP_SCHEDULE=guided,10

4. Deferred scheduling

 Decided at run time:

 auto (automatic scheduling)

• programmer gives
implementation the freedom to
use any possible mapping.

 runtime

• schedule is one of the above or
the previous two slides

• determine by either setting
OMP_SCHEDULE, and/or calling
omp_set_schedule()
(overrides env. setting)

• find which is active by calling
omp_get_schedule()

 Examples:
• environment setting:

export OMP_SCHEDULE=ꞌguidedꞌ

export OMP_NUM_THREADS=4

./myprog.exe

• call to API routine:

© 2010-19 LRZ/RRZE Introduction to OpenMP 47

auto
!$OMP do schedule(runtime)

omp_set_schedule(
omp_sched_dynamic,4);

#pragma omp parallel
{
#pragma omp for schedule(runtime)

for (…) {
…

}
}

C

Fortran

Final remarks on scheduling

 Please check your compiler documentation for implementation-
dependent aspects

 An implementation may add its own scheduling algorithms

• code using specific scheduling may be at a disadvantage

• recommendation: Allow changing of schedule during execution

 If runtime scheduling is chosen and OMP_SCHEDULE is not set

• execution starts with implementation-defined setting

© 2010-19 LRZ/RRZE Introduction to OpenMP 48

Collapsing loop nests

 Example: Two nested loops

• assume kmax is 2, and jmax is 3
• then the workshared loop will

scale to at most 2 threads

 Therapy:
• use a collapse clause to improve

scaling
• this flattens two (or more) loop

nests into a single iteration space

 Improved example:

• slicing is performed on the virtual
index Icoll:

 Restrictions:
• rectangular iteration space
• CYCLE/continue in innermost

loop only

© 2010-19 LRZ/RRZE Introduction to OpenMP 49

!$OMP do

do k=1, kmax

do j=1, jmax

:

end do

end do

!$OMP end do

!$OMP do collapse(2)

do k=1, kmax

do j=1, jmax

:

end do

end do

!$OMP end do

specify nesting level
to collapse

Icoll 0 1 2 3 4 5

J 1 2 3 1 2 3

K 1 1 1 2 2 2

sequenced by
serial

execution
order

Fortran

Collecting load imbalances
at synchronization points

 Example:

 Assumptions on code following the synchronization point:
• does not involve tsum

• has a load imbalance that is inverse to that of preceding code block

© 2010-19 LRZ/RRZE Introduction to OpenMP 50

!$omp parallel

!$omp do reduction(+:tsum)

do k=1, kmax

tsum = tsum + foo(a, b, c)

end do

!$omp end do

…

… = tsum …

!$omp end parallel

ti
m

e

T0 T1 T2 T3

waiting in barrier

barrier
completed by

all threads

implicit
barrier

actively executing

Fortran

T0 performance
slows all others

nowait clause and explicit barrier directive

 Reduce load imbalance

• by removing the barrier via the
nowait clause

 Assure code correctness

• may require explicit barrier directive
before tsum (or other modified
shared variable) is accessed

© 2010-19 LRZ/RRZE Introduction to OpenMP 51

!$omp parallel

!$omp do reduction(+:tsum)

do k=1, kmax

tsum = tsum + foo(a, b, c)

end do

!$omp end do nowait

…

!$omp barrier

… = tsum …

!$omp end parallel

ti
m

e

T0 T1 T2 T3

waiting in barrier

barrier
completed by

all threads

no barrier

actively executing DO

actively executing post-DO code

code not involving tsum

Fortran

#pragma omp for reduction(+:tsum) \

nowait

{ … } C

Parallel sections

 Non-iterative work-sharing construct
• distribute a static set of structured blocks

• each block is executed exactly once by one of the threads in the team

 Allowed clauses on sections:

• private, first/lastprivate, reduction, nowait

© 2010-19 LRZ/RRZE Introduction to OpenMP 52

!$OMP sections

!$OMP section

:

:

:

!$OMP section

:

:

:

…

!$OMP end sections

code block 1
by thread 0

code block 2
by thread 1

synchronization

#pragma omp sections

#pragma omp section

{

:

}

#pragma omp section

{

:

}

…

// end sections

Fortran C

Parallel sections cont'd

 Restrictions:
• section directive must be within lexical scope of sections directive, and

directly enclosed (no interleaved language construct is permitted)

• sections directive binds to innermost enclosing parallel region
→ only the threads executing the binding parallel region participate in the
execution of the section blocks and the implicit barrier (if not eliminated with
nowait)

 Scheduling to threads
• implementation-dependent

• if there are more threads than code blocks, excess threads wait at synchro-
nization point

 In modern OpenMP,
• tasking provides a much more flexible and scalable way to implement this

and much more general patterns  will be treated tomorrow

© 2010-19 LRZ/RRZE Introduction to OpenMP 53

single directive and copyprivate clause

 Execution:
• only one thread of the team executes

the statements in the block

• others go to the end of the block

© 2010-19 LRZ/RRZE Introduction to OpenMP 54

e
xe

cu
tio

n
se

q
ue

nc
e

fork:
T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3

persists
(inaccessible)

s join

shared private

s2

optional clause:
copyprivate(s)
→ Broadcast

parallel

 Synchronization
• of all threads at end of single

block

end parallel

single

end single

thread T2
arrives first

float s;

s = …;

#pragma omp parallel private(s)

{

#pragma omp single \

copyprivate(s)

{

…;

s = …;

} // end single

… = … + s;

} // end parallel

single directive syntax

 Note:
• update of shared variables inside a single block is safe against subsequent

accesses, due to synchronization at the end of that block

© 2010-19 LRZ/RRZE Introduction to OpenMP 55

real :: s

s = …

!$omp parallel private(s)

!$omp single

…

s = …

!$omp end single &

!$omp copyprivate(s)

… = … + s

!$omp end parallel

Fortran
C

block executed by
one thread only

Work sharing with single:
the nowait clause

 Implement a self-written work scheduler

• one possible scheme (of many), sketched only:

• not the most efficient method
 preferably use tasking (covered tomorrow); the single construct will be
relevant in that context

© 2010-19 LRZ/RRZE Introduction to OpenMP 56

…

!$omp parallel

do iw=1, nwork

!$omp single

…

!$omp end single nowait

…

!$omp barrier

end do ! iw

!$omp end parallel

produce work for
iteration 1

produce work for iteration
iw+1 (using a non-trivial
amount of time e.g. I/O)

other threads continue
and work on iteration iw

Fortran

Global variables
and threading

Global variables and their default scope

 Examples:

 Such variables by default have shared scope

 The same applies for variables with the SAVE (Fortran) or static (C)
attribute

 Implication:

• code using such memory is often not thread-safe, unless mutual
exclusion mechanisms are used when accessing the objects

© 2010-19 LRZ/RRZE Introduction to OpenMP 58

module my_globals

implicit none

integer :: my_count

real, allocatable :: a(:)

…

end module

Fortran

REAL :: A(1000)

INTEGER :: MY_COUNT

COMMON / MY_GLOBS / A, MY_COUNT

FORTRAN 77

#define NMAX 1000

float a[NMAX];

void my_func() {

extern float a;

…

}

C

Privatizing global objects

 When program semantics requires that each thread work on its
own copy, privatization is necessary

• not exactly the same as private variables  separate syntax needed

 C:

• #pragma omp threadprivate(list)

• list is a comma-separated list of file-scope, namespace-scope, or
static block-scope variables that do not have incomplete types

 Fortran:

• !$omp threadprivate(list)

• list is a comma-separated list of named variables and named common
blocks. Common block names must appear between slashes.

 Objects start out with master copy existing only

• thread-private copies (with undefined values) spring into existence
when the first parallel region is started

© 2010-19 LRZ/RRZE Introduction to OpenMP 59

directive placed in declaring
program unit

Further properties of threadprivate storage

 Copyin clause

• broadcasts object values from
master copy to thread-
individual copies

• works analogous to the
firstprivate clause

 Subsequent parallel regions:

• thread-individual copies retain
their values (by thread) if

1. second parallel region not
nested inside first

2. same number of threads is
used

3. no dynamic threading is
used

Note: none of the potential viola-
tions of the above three rules
are dealt with in this course

© 2010-19 LRZ/RRZE Introduction to OpenMP 60

allocate(a(ndim))

a(:) = …

!$omp parallel copyin(a)

… = a(i) + …

a(i) = …

!$omp end parallel

Fortran

uses value set on
master

Recommendations:
• Avoid using global variables in the context of threading
• Use object-based design instead

... useful varia

© 2010-19 LRZ/RRZEIntroduction to OpenMP 61

The master construct

 Only thread zero (from the current team) executes the enclosed
code block
 there is no implied barrier either on entry to, or exit from, the master

construct. Other threads continue without synchronization

 Notes:
• Not all threads must reach the construct; if the master thread does not reach

it, it will not be executed at all

• this is not a work sharing construct, it only serves for execution control

© 2010-19 LRZ/RRZE Introduction to OpenMP 62

!$omp master

block

!$omp end master

#pragma omp master

{ block }

Fortran C

Combined constructs

 Certain combinations of constructs can be fused

• the result is a single construct that behaves as if the two individual
ones were tightly nested

• may be more efficient due to reduced synchronization needs

• is often easier to read

 Example: joint "parallel do" (C has "parallel for" here ...)

• both variants have the same semantics

© 2010-19 LRZ/RRZE Introduction to OpenMP 63

!$omp parallel

!$omp do

do i=1, n

…

end do

!$omp end do

!$omp end parallel

!$omp parallel do

do i=1, n

…

end do

!$omp end parallel do

Fo
rt

ra
n

Conditional parallelism

 Put an "if" clause on a
parallel region

• specify a scalar logical
argument

• may require manual tuning for
properly dealing with thread
count dependency etc.

 Specific uses:
1. execute serially for small

problem sizes
(parallel overhead may reduce
performance)

2. suppress nested parallelism in
a library routine:

© 2010-19 LRZ/RRZE Introduction to OpenMP 64

!$omp parallel if (n > 8000)
…

!$omp end parallel

#pragma omp parallel if \
(! omp_in_parallel())

{
…

}

process work
item of size O(np)

Fortran

logical / int function
from OpenMP run time:

are we already parallel in
executing scope?

Now: Third exercise session

OpenMP 4.0
SIMD (vectorization) directives

Optimization of innermost

loop structures

Acknowledgment is due to M. Klemm (Intel)

SIMD - single instruction multiple data

 Example:
• Sandy Bridge vector unit

• 256 Bit SIMD

• addition of 8 Byte words

 Instruction capability
• 1 vector add and 1 vector mult

per cycle  theoretical Peak 8
Flops/cycle (double precision)

 LD/ST issue capability for
Sandy Bridge
• 4 Words LD/cycle

• 4 Words ST/(2 cycles)

• performance boost depends on
algorithm, including its temporal
locality properties

 More recent processors may
have more advanced units
• more SIMD lanes

• additional vector operations

© 2010-19 LRZ/RRZE Introduction to OpenMP 66

R0 R1 R2

+

+

+

+

6
4

 b
it

D
P

 w
o

rd
2

5
6

 B
it

re
gi

st
e

rs

A + B = C
4 elements with 1 AVX instruction

Before OpenMP 4.0 …

 … programmers had to rely on auto-vectorization,

• or use non-portable extensions
 programming models (e.g. Intel Cilk Plus)

 intrinsics (e.g. _mm_add_pd())

 compiler pragmas

which may or may not get ignored by the compiler

© 2010-19 LRZ/RRZE Introduction to OpenMP 67

#pragma omp parallel for
#pragma vector always
#pragma ivdep
for (int i=0; i<N; i++) {
a[i] = b[i] + …;

}

C

OpenMP SIMD loop construct

 Vectorize a loop nest

• cut into chunks that fit into a SIMD vector register

• without parallelization of the loop body

 Syntax

© 2010-19 LRZ/RRZE Introduction to OpenMP 68

#pragma omp simd [clause[[,] clause], …]

for loops

!$omp simd [clause[[,] clause], …]

do loops

[!$omp end simd] Fortran

C

Simple example

 Scalar product

 Converts serial element-wise execution

to vectorized one:

© 2010-19 LRZ/RRZE Introduction to OpenMP 69

void sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp simd reduction(+:sum)

for (int k=0; k<n; k++) {

sum += a[k] * b[k];

}

vectorization
architecture-specific

vector length

C

Data Sharing Clauses

 Existing ones adapted to SIMD-style execution

• required for more complex loop bodies

 private (var-list)

create uninitialized vectors for variables in var-list

(loop iteration variables are private by default)

 lastprivate (var-list)

copy last iteration value to variable at the end of the construct

 reduction (op:var-list)
create private copies for variables in var-list and apply the reduction
operation op at the end of the construct

© 2010-19 LRZ/RRZE Introduction to OpenMP 70

42 ? ? ? ?

4212 5 8 17 +

Loop clauses (1)

 safelen (length)

• maximum distance between
iterations that can run
concurrently without breaking
any dependencies

 linear (list[:linear-step])

• produce private copy of a variable that is in linear relationship with the
loop iteration variable: xi = xstart + (i – istart) * linear-step

© 2010-19 LRZ/RRZE Introduction to OpenMP 71

#pragma omp simd safelen(5)
for (int k=j; k<n; k++) {
b[k] = a[k] * b[k-j];

}

• programmer assures j > 5
• compiler can use a vector

length of at most 6

Loop clauses (2)

 aligned (list[:alignment])

• specifies that variables in the list are aligned, either by the specified
integer value of alignment in units of bytes, or in implementation-
specific manner

 collapse(n)

• collapse iteration space of a SIMD loop nest

© 2010-19 LRZ/RRZE Introduction to OpenMP 72

SIMD worksharing construct

 Parallelize and vectorize a loop nest

• distribute iteration space of loops across threads

• subdivide loop chunks to be processed in SIMD registers

 Syntax

© 2010-19 LRZ/RRZE Introduction to OpenMP 73

#pragma omp for simd [clause[[,] clause], …]
for loops

!$omp do simd [clause[[,] clause], …]
do loops
[!$omp end do simd]

Fortran

C

Scalar product again …

© 2010-19 LRZ/RRZE Introduction to OpenMP 74

void sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp for simd reduction(+:sum)
for (int k=0; k<n; k++) {
sum += a[k] * b[k];

}

vectorization

Thread 0 Thread 1 Thread 2
parallelization

assume invocation by
all threads executing in a

parallel region

Function vectorization

 Function call inside SIMD region  Therapy: explicitly declare for
use in vectorized loops

• C/C++ syntax

• Fortran syntax

• clauses are also supported

• causes generation of multi-
version code by the compiler

© 2010-19 LRZ/RRZE Introduction to OpenMP 75

float min(float a, float b) {
return a < b ? a : b;

}

float distsq(float x, float y) {
return (x – y)*(x – y);

}

void example() {
#pragma omp for simd
for (i=0; i<N; i++) {
d[i] = min(
distsq(a[i],b[i]),c[i]);

}
}

may fail if functions
outside file scope

#pragma omp declare simd
function def. or decl.

!$omp declare simd &
!$omp (proc-name-list)

Code generation for SIMD functions

 vectorized versions of generated functions are shown

© 2010-19 LRZ/RRZE Introduction to OpenMP 76

#pragma omp declare simd
float min(float a, float b) {
return a < b ? a : b;

}

#pragma omp declare simd
float distsq(float x, float y) {
return (x – y)*(x – y);

}

void example() {
#pragma omp for simd
for (i=0; i<N; i++) {
d[i] = min(
distsq(a[i],b[i]),c[i]);

}
}

vec8 min_v(vec8 a, vec8 b) {
return a < b ? a : b;

}

vec8 distsq_v(vec8 x, vec8 y) {
return (x – y)*(x – y);

}

vd = min_v(
distsq_v (va, vb), vc);

no SIMD directives permitted
inside vectorized functions!

Clauses applicable for declare simd

 simdlen (length)

generate function to support supplied vector length

 uniform (argument-list)

argument has a constant value between iterations of invoking loop

 inbranch vs. notinbranch

function always / never called from inside an if statement

 linear (list[:linear-step])

 aligned (list[:alignment])

 reduction (op:var-list)

© 2010-19 LRZ/RRZE Introduction to OpenMP 77

as before

Final remarks on SIMD

 Case studies on vectorizable applications:

• show performance improvements of factor 1.5 – 4.3 compared to
auto-vectorized code

• you may not be as successful, but a 20% performance improvement
for 45 min optimization work is also quite nice

 Resolution of dependencies

• may sometimes involve code restructuring and splitting of loops

 Further features available: combination of device control
directives with SIMD

• platform dependence

• not discussed in this talk

© 2010-19 LRZ/RRZE Introduction to OpenMP 78

Now: Fourth exercise session

More on Synchronization
and Correctness

Memory model
Identifying correctness problems

Named critical regions
Atomic operations

Loop dependencies
Mutual exclusion with locks

Concurrent updates on shared variables

 Scenario:

• the above is non-conforming

• data race causes unpredictable results to be produced

 Reason:
• different threads can have different views on same variable: temporary view

(in-register value) vs. memory value

• these two views become inconsistent when a thread modifies the variable

© 2010-19 LRZ/RRZE Introduction to OpenMP 80

real :: a

a = 0

!$omp parallel shared(a) num_threads(2)

a = a + 1

write(*,'(''a on thread ',i0,' is ',i0)') &

omp_get_thread_num(), a

!$omp end parallel

write(*,'(''a after construct is ',i0)') a

Fortran
Thread 0 Thread 1

1 1

2 1

1 2

possible results
in first write

possible results in second
write: 1 or 2

fix number of threads
for parallel execution

© 2010-19 LRZ/RRZE

Memory consistency rules

 Flush Operation
• is performed on a set of (shared)

variables or on the whole thread-
visible data state of a program

• discards temporary view:

 modified values are forced to
cache/memory (requires exclu-
sive ownership)

 next read access must be
from cache/memory

• further memory operations only
allowed after all involved threads
complete flush:

 restrictions on memory in-
struction reordering (by compiler)

 Ensure consistent view of
memory:
• Assumption: want to write a data

item with one thread, read it with
another one

• Order of execution required:

1. thread 0 writes to shared variable

2. thread 0 flushes variable

3. thread 1 flushes same variable

4. thread 1 reads variable

81Introduction to OpenMP

• The challenge is to assure step 3
happens after step 2

• OpenMP construct synchronization
semantics assure this as well as the
necessary implicit flush operations (if
correctly used)

!$omp flush [list]
recommend to avoid
use of explicit flushes

But it is possible to make mistakes ...

 Example: update via critical region
• mutual exclusion is only assured for the statements inside the block

i.e., subsequent threads executing the block are synchronized against each
other

 If other statements access the shared variable, you may be in
trouble:

© 2010-19 LRZ/RRZE Introduction to OpenMP 82

!$omp parallel shared(x) …
:

!$omp critical
x = x + y

!$omp end critical
…
a = f(x, …)

!$omp end parallel

Race on read to x.
Most likely, a barrier is required before
this statement to assure that all threads
have executed their mutexed updates

 OpenMP correctness analysis:

• no special compiler option needed (except perhaps –g)

• GUI also for Linux-based system

 Identify memory issues in addition to threading issues

• leaks, dangling pointers etc.

 Start up GUI

• prerequisites: set up environment and possibly stack limit

• then, invoke the GUI with

• command line inspxe-cl is also available, but will not be discussed
in this talk

© 2010-19 LRZ/RRZE

Using Intel Inspector on x86-based systems

inspxe-gui &

Introduction to OpenMP 83

© 2010-19 LRZ/RRZE

Starting up the GUI  start a new project

enter project name
then press „create project“

Introduction to OpenMP 84

 Needed information:

• executable name
(must have been built with
OpenMP)

• executable path
(autocompleted)

• arguments if needed
by executable

 Further advanced
settings are possible

© 2010-19 LRZ/RRZE

Configure the project

Introduction to OpenMP 85

© 2010-19 LRZ/RRZE

Run Analysis: New  Analysis Result

Select analysis mode, then start
here: Threading Error Analysis 
locate deadlocks and data races

note potentially high performance
impact

Introduction to OpenMP 86

© 2010-19 LRZ/RRZE

Error indication by severity

Note:
requires debug
option for
compiled code

a race condition
was identified

Introduction to OpenMP 87

© 2010-19 LRZ/RRZE

Source window: conflicting reads/writes

Introduction to OpenMP 88

Critical regions: consider multiple updates

a) same shared variable

critical region is global  OK

b) different shared variables

mutual exclusion not required  unnecessary loss of performance

© 2010-19 LRZ/RRZE Introduction to OpenMP 89

subroutine foo()
!$omp critical
x = x + y

!$omp end critical

thread 0

subroutine bar()
!$omp critical
x = x + z

!$omp end critical

thread 1

subroutine foo()
!$omp critical
x = x + y

!$omp end critical

subroutine bar()
!$omp critical
w = w + z

!$omp end critical

Fo
rt

ra
n

Fo
rt

ra
n

Named critical regions

 Solution:
• use a named critical

mutual exclusion only if same name is used for critical regions acting on
different code blocks

 Note: The atomic directive is bound to the updated variable
 problem does not occur when such a directive is used.

© 2010-19 LRZ/RRZE Introduction to OpenMP 90

subroutine foo()
!$omp critical (foo_x)
x = x + y

!$omp end critical (foo_x)

subroutine bar()
!$omp critical (foo_w)
w = w + z

!$omp end critical (foo_w)Fo
rt

ra
n

More variants of atomic operations

 Assumption:

• v, w private or shared scalar
variables

• x a shared scalar variable

 Atomic read:

 Atomic write:

 Atomic capture

• different ordering of statements
also allowed

 Not atomic:
• evaluation of expressions or

updates on v

 Atomic update:

• !$omp atomic update

• same as „traditional“ atomic
directive

© 2010-19 LRZ/RRZE Introduction to OpenMP 91

#pragma omp atomic read
v = x;

#pragma omp atomic write
x = v;

!$omp atomic capture
v = x
x = x <op> w

!$omp end atomic

Atomic operations require care

 Atomic directives
• permit the programmer to

explicitly program with race
conditions

 Rationale for use:
• performance
• tailored synchronizations  will

usually require explicit flush
operations (not discussed)

 Programmer's responsibility
• to assure that no inconsistencies

result  must evaluate results
from all possible interleavings of
execution by different threads

• tools might not be able to
observe problems

 Synchronization effect
• apart from the value change on

the variable itself being visible,
no synchronization is done

• sequentially consistent atomic
operations:

perform a flush on all thread-
visible variables (but no
synchronization otherwise).
Semantics are the same as for
such operations in the C++11
standard

© 2010-19 LRZ/RRZE Introduction to OpenMP 92

#pragma omp atomic \
seq_cst update

x = x + v;

Dealing with dependencies in a loop

 Variant of theoretical exercise
• race condition i-1  i on one

statement

• race occurs on chunk boundaries
executed by different threads:

 Ordered clause and directive
• Syntax: uses a clause for the loop and an

ordered region inside the loop body

• statements in ordered region are executed
in same order as the loop‘s iteration variable
is increased in a serial execution

• statements outside the ordered region can
execute in parallel

• only one ordered region permitted

© 2010-19 LRZ/RRZE Introduction to OpenMP 93

real :: a(n), b(n), x(n)
a = …; b = …; x(1) = …
!$omp parallel shared(a,b,x)
!$omp do
do i=2, n
b(i) = f1(a(i), b(i))
x(i) = a(i) * x(i-1) + b(i)
a(i) = f2(b(i), x(i))

end do
!$omp end do
!$omp end parallel Fortran

!$omp do ordered
do …
…

!$omp ordered
…

!$omp end ordered
…

end do
!$omp end do Fortran

x[i-1] x[i]
Ta Tb

Corrected example

 Assures that code block with flow dependency is effectively serialized

• Ta signals completion of its chunk to Tb  synchronization avoids the race

© 2010-19 LRZ/RRZE Introduction to OpenMP 94

!$omp parallel shared(a,b,x)
!$omp do ordered
do i=2, n
b(i) = f1(a(i), b(i))

!$omp ordered
x(i) = a(i) * x(i-1) + b(i)

!$omp end ordered
a(i) = f2(b(i), x(i))

end do
!$omp end do
!$omp end parallel Fortran

x[i-1]
x[i]

Ta Tb

Explicit cross-iteration
dependency specification

 depend clause  Additional semantics:

• may be needed due to possibly
different (schedule dependent) chunk
assignment

• might improve concurrency

© 2010-19 LRZ/RRZE Introduction to OpenMP 95

x[i-10] … x[i-8]

x[i]
Ta Tb

#pragma omp for ordered (1)

for (i=10; i<N; i++) {

… // independent execution

#pragma omp ordered \

depend(sink:i-10)

x[i] = a[i] * x[i-10] + b[i];

#pragma omp ordered \

depend(source)

… // independent execution

} C

consumer Tb
must wait

supplier Ta signals
completion

Doacross loop nests

© 2010-19 LRZ/RRZE Introduction to OpenMP 96

 Ordered clause with a nesting depth specification

• parallel execution within diagonal i+j=d is possible, in order of d

• loop schedule tuning will be required

#pragma omp for ordered (2)

for (i=1; i<N; i++) {

for (j=1; j<N; j++) {

#pragma omp ordered depend(sink:i-1,j) depend(sink:i,j-1)

a[i][j] = … * a[i-1][j] + … * a[i][j-1];

#pragma omp ordered depend(source)

}

} C

dependencies span across
two nested loops

a

beware potential deadlocks (incorrectly specified dependencies)

© 2010-19 LRZ/RRZE

Mutual exclusion with locks

A shared lock variable can be used to implement
specifically designed synchronization mechanisms

• mutual exclusion bound to objects  more
flexible than critical regions

97Introduction to OpenMP

OpenMP lock variables

 Two variants of locks exist:

• simple locks

• nestable locks (will not be dealt with in detail in this course)

 Declaration of a lock variable

© 2010-19 LRZ/RRZE Introduction to OpenMP 98

use omp_lib

…

integer(omp_lock_kind) :: a_lock

integer(omp_nest_lock_kind) :: a_nestable_lock

#include <omp.h>

…

omp_lock_t a_lock;

omp_nest_lock_t a_nestable_lock;

Fortran

C

typically an integer capable of
representing an adress

Preparing locks for use

 The initial state of a lock variable is "uninitialized"

• i.e. it is not actually associated with a lock variable

 Need to invoke an initialization function on it before it is used

• subroutines / void functions provided in OpenMP run time

• Fortran: replace *lock argument by integer of appropriate kind

© 2010-19 LRZ/RRZE Introduction to OpenMP 99

Name Purpose

omp_init_lock(omp_lock_t *lock) initializes an uninitialized lock; the lock variable
has the state "unlocked" on return

omp_destroy_lock(omp_lock_t *lock) destroys a lock that has the state "unlocked".

omp_init_nest_lock
(omp_nest_lock_t *lock)

initializes an uninitialized nestable lock; the lock
variable has the state "unlocked" on return, and
its nesting count is zero.

omp_destroy_nest_lock
(omp_nest_lock_t *lock)

destroys a nested lock that has the state
"unlocked".

Lock ownership

 An initialized OpenMP lock can be in one of the states unlocked, or locked

 The (unique) task region that has successfully acquired the lock is said to
own the lock

 Only the task region that owns the lock can release it, returning it to the
unlocked stage.

 Notes:

• state combinations not described in the table are not permitted (e.g., a task
region trying to unset a lock it does not own)

• the lock variable must be shared in the calling scope

© 2010-19 LRZ/RRZE Introduction to OpenMP 100

Name Purpose

omp_set_lock(omp_lock_t *lock) If the lock is already locked by another task region,
block until the state of the lock changes. If the lock
is in the state unlocked, acquire it, setting it to the
locked state, and continue execution.

omp_unset_lock(omp_lock_t *lock) Release the lock that is owned by the executing
task region.

thread + context it is executing in

Simplest possible example

 Usage pattern analogous to named critical region
• programmer is responsible for relationship between lock and objects

protected by it

© 2010-19 LRZ/RRZE Introduction to OpenMP 101

use omp_lib

integer(omp_lock_kind) :: lock

call omp_init_lock(lock)

…

!$omp parallel

call omp_set_lock(lock)

…

call omp_unset_lock(lock)

…

!$omp end parallel

call omp_destroy_lock(lock)

starts in unlocked state

#include <omp.h>

omp_lock_t lock;

omp_init_lock(&lock);

#pragma omp parallel

{

omp_set_lock(&lock);

…

omp_unset_lock(&lock);

…

}

omp_destroy_lock(&lock);

only one thread at a
time gets to play
with the red balls

starts in unlocked state

only one thread at a
time gets to play
with the red balls

release resourcesrelease resources

Fortran C

Non-blocking attempt at ownership

 Function call signature

• if the lock is already locked by another task region, return "false"

• if the lock has the state unlocked, acquire it (setting the state to locked) and
return the value "true".

 Permits implementing additional concurrency

© 2010-19 LRZ/RRZE Introduction to OpenMP 102

logical function omp_test_lock(lock) Fortran

int omp_test_lock(omp_lock_t *lock) C

!$omp parallel

do while (.not. omp_test_lock(lock))

…

end do

…

call omp_unset_lock(lock)

!$omp end parallel

do stuff unrelated
to the red balls

#pragma omp parallel

{

while (! omp_test_lock(&lock)) {

…

}

…

omp_unset_lock(&lock);

}

play with the red
balls

play with the red
balls

do stuff unrelated
to the red balls

Fortran C

Final notes on locking

 Potential performance issues

• locks are a relatively expensive synchronization mechanism

• lock contention (algorithm dependent)

 Programming issues

• easy to produce deadlock (non-composable against other constructs)

 Nestable locks

• extended semantics for repeated locking (additional nesting count)

 Locks with hints (OpenMP 4.5)

• programmer can specify expected usage pattern, but the actual effect
is implementation dependent

• this is an advanced topic, and using this feature may require special
hardware features (transactional processing)

• OpenMP 5.0 will likely have some changes in this area

© 2010-19 LRZ/RRZE Introduction to OpenMP 103

Synchronization overhead

 Syncbench from the EPCC OpenMP microbenchmarks is used

• evaluates the overheads for all synchronizing constructs
systematically

• overhead is what remains even if no workload is processed

 Showing results as a function of thread count

• alternatively, depending on node architecture and used compiler

 Note order of magnitude

• a microsecond typically corresponds to a couple of thousand CPU
cycles

© 2010-19 LRZ/RRZE Introduction to OpenMP 104

Thread count dependence

© 2010-19 LRZ/RRZE Introduction to OpenMP 105

0,01 0,05 0,09 0,08 0,07 0,07
0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

Westmere 4-socket node overhead with ICC 15

Parallel Barrier Critical / Lock Atomic Reduction

ov
er

he
ad

in
 µ

s 2 sockets
used

Architecture dependence

© 2010-19 LRZ/RRZE Introduction to OpenMP 106

0,06 0,19 0,08 0,13
0,00

2,00

4,00

6,00

8,00

10,00

12,00

Westmere-EX (20) AMD Magny Cours (16) Sandy Bridge EP (16) Haswell EP (28)

2-socket results with ICC 15

Parallel Barrier Critical / Lock Atomic Reduction

ov
er

he
ad

in
 µ

s

Compiler dependence

© 2010-19 LRZ/RRZE Introduction to OpenMP 107

0,40 1,10
0,070,06 0,06 0,13

0,00

5,00

10,00

15,00

20,00

25,00

30,00

ICC 15 GCC 6.1 PGCC 15

Westmere 20 thread results

Parallel Barrier Lock Atomic Reduction

ov
er

he
ad

in
 µ

s

How to deal with synchronization overhead

 Therapy 1:

• use the right compiler

• note: x86 does not (yet) support hardware synchronization

 Therapy 2:

• execute serially for small problem sizes

• conclude parallel execution if not needed any more

 Therapy 3 (may be most effective):

• reduce the synchronization requirements of your algorithm

• Examples: nowait clause, or extend parallel regions to reduce
number of forks/joins

© 2010-19 LRZ/RRZE Introduction to OpenMP 108

Now: Fifth exercise session

Tasking

Work sharing for irregular problems,

recursive problems

and information structures

Acknowledgement due to L. Meadows/T. Mattson (Intel)

for their SC08 slides

Processing information structures

 Example: linked list

 Data layout

• each list item may carry a different payload

• parallel processing on a per-list-item basis  load imbalance is likely
to occur

• the list as a whole is intended to be shared (i.e. no copies of payload
should be created during processing)

© 2010-19 LRZ/RRZE Introduction to OpenMP 110

type :: list

type(list), pointer :: next => null()

real, allocatable :: data(:)

end type

Fortran

typedef struct {

List *next;

real *data; int n;

} List;

C

data component
of first list item

Serial processing of a linked list

 Not a regular loop in the sense of OpenMP
• cannot use work sharing constructs even though potential concurrency is

obvious.

 In general:
• API calls for processing information structures often are recursively invoked
 OpenMP 2.5 offers no means of parallelization for this situation, although
concurrency can be formally exposed.

© 2010-19 LRZ/RRZE Introduction to OpenMP 111

subroutine process_list(head)

type(list), target :: head

type(list), pointer :: p

p => head

do while (associated(p))

call do_work(p%data)

p => p%next

end do

end subroutine Fortran

void process_list(list *head) {

list *p = head;

while (p) {

do_work(p->data, p->n);

p = p->next;

} C

What is a task?

 Aim: make OpenMP worksharing more flexible

 Semantics:

• When a thread encounters a task construct, a task is generated from the
code of the associated structured block.

• Data environment of the task is created (according to the data-sharing
attributes, defaults, …)

• The encountering thread may immediately execute the task, or defer its
execution.
In the latter case, any thread in the team may be assigned the task.

 Introduced with OpenMP 3.0

• additional features and improvements added in later versions of the standard

© 2010-19 LRZ/RRZE Introduction to OpenMP 112

Concept of tasking

 If free resources are available,
• expect task to start execution immediately

 Task binds to innermost enclosing parallel region

© 2010-19 LRZ/RRZE Introduction to OpenMP 113

fork

tim
e

pragma omp task [clause,…]
a thread (any one)

encounters a
task directive

join

{
structured-block

}

OpenMP scheduler assigns
execution of block to a free resource

block & data put
into queue

task queue (a limited resource)

illustration of deferred tasks

Simplest example: code sections

© 2010-19 LRZ/RRZE Introduction to OpenMP 114

program code_sections

use mod_functions

implicit none

real :: a, b

integer :: n = …

!$omp parallel

!$omp master

!$omp task

a = function_1(n)

!$omp end task

!$omp task

b = function_2(n)

!$omp end task

!$omp end master

!$omp end parallel

write(*,*) a + b

end program

concurrently executed

int main() {

float a, b;

int n = …;

#pragma omp parallel

#pragma omp master

{

#pragma omp task

{ a = function_1(n); }

#pragma omp task

{ b = function_2(n); }

} // end parallel and master

printf("%f\n", a + b);

}

no synchronization
(different than single)

concurrently executed
if sufficiently many
threads available

a and b have
shared scope

only thread 0
creates tasks

Fortran C

threads waiting here
will be put to work

Data scoping in task regions

 Recommendation:

• use a default(none) clause
on all task directives

• explicitly specify the scoping for
each data object

© 2010-19 LRZ/RRZE Introduction to OpenMP 115

int main() {

float a, b;

int n, i;

a = …; n = …;

#pragma omp parallel private(b)

b = …;

#pragma omp master

#pragma omp task

{

for (i=0;i<n;i++) {

b = b + …;

… = a + foo(i);

}

}

}

C

a is shared (because it is
shared in all lexically
enclosing constructs)

i is private
(loop index)

b is
firstprivate

default scopings

Tasked linked list

 Need to have local pointer p firstprivate:
• avoid race condition on shared original (vs. subsequent update)

• assure that association status is copied to thread executing the task region

© 2010-19 LRZ/RRZE Introduction to OpenMP 116

subroutine process_list(head)

type(list), target :: head

type(list), pointer :: p

!$omp parallel

!$omp single shared(p)

p => head

do while (associated(p))

!$omp task firstprivate(p)

call do_work(p%data)

!$omp end task

p => p%next

end do

!$omp end single nowait

!$omp end parallel

end subroutine Fortran

void process_list(list *head) {

list *p = head;

#pragma omp parallel

{

#pragma omp single \

nowait shared(p)

{

while (p) {

#pragma omp task firstprivate(p)

{ do_work(p->data, p->n); }

p = p->next;

}

} // end single

} // end parallel C

only one thread
creates tasks

only one thread
creates tasks

synchronization
here all tasks

done

synchronization
here all tasks

done

task region (includes
procedure execution)
task region (includes
procedure execution)

The „if“ clause on a task directive

 When „if“ argument evaluates to „false“,
• the parent task must suspend execution until the encountered task region

has been completed (an „undeferred task“). However, it is not fully clear from the
standard whether the child task must be executed by the same thread.

• but otherwise semantics are the same (with respect to data environment and
synchronization) as for a „deferred“ task

 User-directed optimization („task pruning“)
• avoid overhead for deferring small task

• avoid creating too many tasks (resource limits!)

• cache locality / memory affinity are likely to change

© 2010-19 LRZ/RRZE Introduction to OpenMP 117

#pragma omp task firstprivate(p) if (sizeof(p->data) > threshold)

{ do_work(p->data); }

C

!$omp task firstprivate(p) if (size(p%data) > threshold)

call do_work(p%data)

!$omp end task

Fortran

Recursive tasking

 Divide and conquer

• initial function invocation in a
parallel region, usually from a
single thread

 Previous example:
• only sibling tasks are created

 This example:
• each task creates two child tasks
 „deep hierarchy“ of tasks

 Scoping for xl, yl:
• start out as private variables

• only newly created tasks share
scope with these variables

• shared scope is needed to
communicate data outside the
task regions

© 2010-19 LRZ/RRZE Introduction to OpenMP 118

float daq(float *data, int n) {

float xl, yl;

int n1 = …, n2 = …;

float *data2 = …;

if (n1 < THRESHOLD)

{ … }

#pragma omp task shared(xl)

{ xl = daq(data, n1); }

#pragma omp task shared(yl)

{ yl = daq(data2, n2); }

#pragma omp taskwait

return xl - yl;

} C

private at
this point

data data2

n
n1 n2

terminate
recursion

Tasking-specific synchronization

 The taskwait directive
• suspends execution until immediate child tasks of current task complete

(the directive does not apply for descendants of child tasks)

 Syntax:

 Needed in example from previous slide
• avoid race condition of assignments vs. evaluation

• avoid local variables vanishing into thin air while tasks are still executing

© 2010-19 LRZ/RRZE Introduction to OpenMP 119

!$omp taskwait

#pragma omp taskwait

Fortran

C

Task switching

 Possible issues with task
scheduling:
• large number of tasks are

created  implementation-
defined limit on unassigned tasks
may be reached

• all currently active tasks reach a
synchronization statement 
threat of deadlock?

 Task switching
• permits a thread to suspend a

task and start or resume another
task at a task scheduling point

• for tied tasks, the same thread is
obliged to resume execution of
the suspended task later

Task scheduling points

immediately after generation of a task

at the end of a task region

in implicit or explicit barrier regions
(wait until all tasks executed by the team are done)

in a taskwait region

in a taskyield region

at the end of a taskgroup region

© 2010-19 LRZ/RRZE Introduction to OpenMP 120

e.g., a thread that creates lots of
tasks may stop doing so and start

working on one of them

tasks are tied by default ...

di
sc

us
se

d
la

te
r

Thread switching

 Default behaviour:

• a task assigned to a thread must be (eventually) completed by that
thread  task is tied to the thread

 Change this via the untied clause

• execution of task block may change

to another thread of the team at any task scheduling point

 Deployment of untied tasks

• Starvation scenario:
Task switching has caused the task-generating thread to run a long
calculation, with the result that all generated tasks were consumed
and most threads idle.
If the task that generates the work is untied, a different thread can
take over the task-generating workload.

© 2010-19 LRZ/RRZE Introduction to OpenMP 121

pragma omp task untied
structured-block C

Interactions of Untied Tasks
with other OpenMP features

 Thread-related semantics
used in the untied task region are
likely to trip you up, for example ...

• relying on results delivered by
omp_get_thread_num()

 may become inconsistent
after thread switch

• referencing and defining values
stored in threadprivate global
variables

 may access a different copy
after thread switch

 Workaround
• revert from untied to tied for the

duration of problematic
operations, if possible

• or use an "if (0)" clause
(undeferred task might be executed by a
different thread, though)

© 2010-19 LRZ/RRZE Introduction to OpenMP 122

#pragma omp task untied

{

...

#pragma omp task final (1)

{

...

} // end included tied task

...

} // end untied task

all thread-centric
programming is localized here

Further potentially dangerous interactions

 Use of threadprivate data by tied tasks
• value of threadprivate variables cannot be assumed to be unchanged across

a task scheduling point. Might have been modified by another task executed
by the same thread.

 Tasks and locks:
• if a lock is held across a task scheduling point, interleaved code trying to

acquire it (maybe using the same thread) may cause deadlock

 Tasks and critical regions:
• similar issue if suspension of a task happens inside a critical region and the

same thread tries to access the same critical region in another scheduled task

 Tools?
• correctness tools will currently only find some of the issues that can arise

© 2010-19 LRZ/RRZE Introduction to OpenMP 123

Comment: implementation-defined task scheduling points in untied
tasks have been removed from the standard

Programmer-defined task scheduling points

 Syntax and Semantics

• permits (but does not force) task
suspension for the current task at
the point where the directive is
placed

 Example
• avoid deadlock in a mutual

exclusion region
(taken from the OpenMP examples)

subroutine foo (lock, n)

use omp_lib

integer(kind=omp_lock_kind) :: lock

integer :: n

integer :: i

do i = 1, n

!$omp task

call something_useful()

do while &

(.not. omp_test_lock(lock))

!$omp taskyield

end do

call something_critical()

call omp_unset_lock(lock)

!$omp end task

end do

end subroutine

© 2010-19 LRZ/RRZE Introduction to OpenMP 124

!$omp taskyield

#pragma omp taskyield

Fortran

C

Fortran

Task group synchronization

 Purpose:
• synchronize all tasks created inside a structured block

• includes all descendants, not only immediate child tasks

• synchronization (i.e. waiting for task completion)
happens at the end of the taskgroup region (task scheduling point)

 Syntax:

 Note:
• tasks that were created before the taskgroup region started execution are

not synchronized

© 2010-19 LRZ/RRZE Introduction to OpenMP 125

!$omp taskgroup
structured block

!$omp end taskgroup

#pragma omp taskgroup
{
structured block

}

Fortran

C

↔ taskwait

↔ taskwait, barrier

new tasks are started
during execution of this block

(„taskgroup set“)

Example:
recursive tasking with atomic
updates in each task guarantee
completeness of updates

Final and mergeable tasks

 Final tasks
• use a final clause with a

condition on a task directive

• if the condition evaluates to
„true“, the resulting task is
always undeferred, and is
immediately executed by the
parent task‘s thread

• reduces the overhead of placing
tasks in the “task pool”

• all tasks created inside task
region are also final (different
from an if clause)

• inside a task block,
omp_in_final() can be used
to check whether the task is final

 Merged tasks

• using a mergeable clause
may create a merged task if it
is undeferred or final

• a merged task has the same
data environment as its
creating task region

 Final and/or mergeable

• can be used for optimization
purposes

• e.g. to optimize wind-down
phase of a recursive
algorithm

© 2010-19 LRZ/RRZE Introduction to OpenMP 126

current implementations seem not
to actively support merging.

Task priority

 Syntax

 Semantics

• provides a hint to the run time on prioritizing (ordering) task execution

• the priority value must be a non-negative integer; higher values
correspond to higher priorities; maximum value is
omp_get_max_task_priority()

• do not rely on a particular ordering of tasks imposed by specifying a
priority

© 2010-19 LRZ/RRZE Introduction to OpenMP 127

!$omp task priority(priority_value)

#pragma omp task priority(priority_value)

Fortran

C

#pragma omp task priority(9999)
participants.get_coffee(100);

Order and Chaos

 Example program

© 2010-19 LRZ/RRZE Introduction to OpenMP 128

s1 = '‘; s2 = 'and‘; s3 = 'chaos'

!$omp parallel

!$omp master

!$omp task

s1 = 'order'

write(*, fmt='(a)', advance='NO') trim(s1) // ' '

!$omp end task

!$omp task

write(*, fmt='(a)', advance='NO') trim(s2) // ' '

!$omp end task

!$omp task

write(*, fmt='(a)', advance='NO') trim(s3) // ' '

!$omp end task

!$omp end master

!$omp end parallel

write(*, fmt='(a)', advance='NO') new_line('a')

Observed output with 3 threads can be
any of ...
and order chaos
order chaos and
chaos order and
order and chaos
chaos and order
and chaos order

Serialization?

 Consider
• a set of sibling tasks

• a shared variable x that is referenced or defined by more than one of them

• in dependence: synchronizes memory operations against previously started tasks with an inout
or out dependence on same memory location

• out or inout dependence: synchronizes memory operations against any defined
dependence on same memory location for previously started task

x = ...

A
... = x

B
x = x + ...

C

Introducing data-driven dependencies:
the „depend“ clause

© 2010-19 LRZ/RRZE Introduction to OpenMP 129

i.e., all created by the same
(parent) task

order of task generation
depend(out:x) depend(in:x) depend(inout:x)

C must wait for both A and B
to complete memory operations

list of variables defines
critical memory locations

Ordering the Chaos

 Via addition of depend clauses

© 2010-19 LRZ/RRZE Introduction to OpenMP 130

s1 = '‘; s2 = 'and‘; s3 = 'chaos'

!$omp parallel

!$omp master

!$omp task depend(out:s1)

s1 = 'order'

write(*, fmt='(a)', advance='NO') trim(s1) // ' '

!$omp end task

!$omp task depend(in:s1) depend(out:s2)

write(*, fmt='(a)', advance='NO') trim(s2) // ' '

!$omp end task

!$omp task depend(in:s2)

write(*, fmt='(a)', advance='NO') trim(s3) // ' '

!$omp end task

!$omp end master

!$omp end parallel

write(*, fmt='(a)', advance='NO') new_line('a')

Observed output with 3 threads can only be
order and chaos

The type of memory operation that is actually
performed is irrelevant for the ordering
properties (although it usually determines
what type of dependency must be declared to
avoid race conditions)

Real-world example:
Cholesky decomposition

 Drawing the square root of a matrix

𝑻

 Recursive blocked algorithm

 LAPACK algorithm ?POTRF

© 2010-19 LRZ/RRZE Introduction to OpenMP 131

symmetric
positive definite

ଵଵ ଶଵ
்

ଶଵ ଶଶ

ଵଵ

ଶଵ ଶଶ

lower triangular

ଵଵ
்

ଶଵ
்

ଶଶ
்= *

 Phase 2

• parallel updates of columns
K = J+NB, J+2*NB, ...

 Phase 1

• one thread only

• „hot“ block column is J

Loop Parallel Cholesky

© 2010-19 LRZ/RRZE Introduction to OpenMP 132

Step 1: ?POTRF2
(non-blocked)

Step 2: ?TRSM
(linear equation)

Step 3: ?SYRK

J

NB Step 4: ?GEMM

J K

load imbalance
 use suitable schedule

Loop-parallel implementation sketch

 Reminiscence:
• Parallelization of Linear Algebra Algorithms on the KSR1, R. Bader (1994)
• same basic structure of algorithm, but OpenMP is more elegant

© 2010-19 LRZ/RRZE Introduction to OpenMP 133

!$OMP PARALLEL PRIVATE(JB, KB)

DO J = 1, N, NB

JB = MIN(NB, N-J+1)

!$OMP SINGLE

! Update the current diagonal block

! A(J,J), JB by JB and test for

! non-positive-definiteness

CALL POTRF2(...)

IF (J+JB.LE.N) THEN

! using the above, solve for

! A(J+JB,J), N-J-JB+1 by JB

CALL DTRSM(...)

END IF

!$OMP END SINGLE

...

!$OMP DO SCHEDULE(...)

DO K = J+NB, N, NB

KB = MIN(NB, N-K+1)

! Update diagonal block A(K,K)

! from A(J,K)

CALL DSYRK(...)

IF (K+KB.LE.N) THEN

! Update subdiagonal block A(K+KB,K)

! from A(K+KB,J) and A(K,J)

CALL DGEMM(...)

END IF

END DO

!$OMP END DO

END DO

!$OMP END PARALLEL

Extracting more parallelism

 Phase 1:

• multithread the TRSM update
by subdividing the block
column

 Phase 2:

• multithread the GEMM update
by subdividing the block column

• pipelined startup of
SYRK/GEMM updates possible
as phase 1 blocks complete

 Tasking makes this easy to do

 Note:
• nested parallelism has more overhead

and is more difficult to manage

© 2010-19 LRZ/RRZE Introduction to OpenMP 134

Requirement:
need to specify the data
dependencies
 Fortran array sections

in depend clauses

?SYRK can
proceed

Tasked implementation sketch

© 2010-19 LRZ/RRZE Introduction to OpenMP 135

!$OMP PARALLEL PRIVATE(JB, JJB, KB)

DO J = 1, N, NB

JB = MIN(NB, N-J+1)

!$OMP SINGLE

!$OMP TASK &

!$OMP& DEPEND(inout: &

!$OMP& A(J:J+JB-1,J:J+JB-1))

CALL POTRF2(...)

!$OMP END TASK

DO JJ = J+JB, N, NB

JJB = MIN(NB, N-JJ+1)

!$OMP TASK &

!$OMP& DEPEND(in: &

!$OMP& A(J:J+JB-1,J:J+JB-1)) &

!$OMP& DEPEND(inout: &

!$OMP& A(JJ:JJ+JJB-1,J:J+JB-1))

CALL DTRSM(...)

!$OMP END TASK

END DO

...

DO K = J+NB, N, NB

KB = MIN(NB, N-K+1)

!$OMP TASK DEPEND(in: &

!$OMP& A(K:K+KB-1,J:J+JB-1))

!$OMP& DEPEND(inout: &

!$OMP& A(K:K+KB-1,K:K+KB-1))

CALL DSYRK(...)

!$OMP END TASK

DO JJ = K+KB, N, NB

JJB = MIN(NB, N-JJ+1)

!$OMP TASK DEPEND(in: &

!$OMP& A(JJ:JJ+JJB-1,J:J+JB-1),&
!$OMP& A(K:K+KB-1,J:J+JB-1))

!$OMP& DEPEND(inout: &

!$OMP& A(JJ:JJ+JJB-1,K:K+KB-1))

CALL DGEMM(...)

!$OMP END TASK

END DO

END DO

!$OMP END SINGLE

END DO

!$OMP END PARALLEL

explicit
synchronization
point removed

Performance numbers
problem size: n = 10,000, block size: nb = 256

© 2010-19 LRZ/RRZE Introduction to OpenMP 136

0,453
0,571

0,3

0,5

1,0

2,0

4,0

8,0

16,0

1 2 4 7 14 21 28

So
lu

ti
on

 ti
m

e
(s

)

Threads

Cholesky Decomposition on 2.6 GHz Haswell

MKL loop parallel task parallel

Performance numbers
problem size: n = 10,000, block size: nb = 256

© 2010-19 LRZ/RRZE Introduction to OpenMP 137

0,380
0,480

0,3

0,5

1,0

2,0

4,0

8,0

16,0

1 2 4 8 16 32 64

So
lu

ti
on

 ti
m

e
(s

)

Threads

Cholesky Decomposition on 1.4 GHz KNL

MKL loop parallel task parallel

Technology advances ...

 Comparing the N = 6000 solution time

© 2010-19 LRZ/RRZE Introduction to OpenMP 138

KSR1 (24 cells) Haswell
(28 cores)

KNL
(64 cores)

year of release 1992 2014 2015

solution time (s) 270 0.13 0.16

GFlop/s 0.267 566 440

memory limit
of machine

strong scaling limit

Applying tasking to loops

 Tasking and worksharing loops:

• coexistence is difficult, because tasks are often issued in a context
that does not permit application of "omp do/for"

• creating a task for each loop iteration may be too fine-grained

 New construct: taskloop

• creates task regions for iterations of associated loop(s)

© 2010-19 LRZ/RRZE Introduction to OpenMP 139

!$omp taskloop [clauses]
do var = ni, ne
...

end do
!$omp end taskloop

#pragma omp taskloop [clauses]
for (var = ni; var <= ne; var++) {
...

}

Fortran

C

OpenMP 4.5

Taskloop clauses

 Scoping:

• private, firstprivate, shared, default

 Inherited from work sharing:

• collapse, lastprivate

 Inherited from tasking:

• if, final, mergeable, priority, untied

 New clauses:

• grainsize(size)

• num_tasks(num)

• nogroup

© 2010-19 LRZ/RRZE Introduction to OpenMP 140

constrains number of iterations assigned to each
task (upper limit < 2*grainsize)

maximum number of tasks created

by default, a taskloop construct implies a
taskgroup region. This is similar to the sync at
the end of a worksharing construct.The nogroup
clause removes this additional synchronization.

Current compiler support
is limited

Reductions across tasks

 Known reduction properties:
• operation and involved variables

• scope of clause: well defined starting point for creating private copies, and
end points (usually with synchronization) for putting together partial results

 Two step procedure for reductions across tasks:
1. define the scope of the reduction (2 variants; note the synchronization point)

2. inside the region, specify which explicit tasks participate:

© 2010-19 LRZ/RRZE Introduction to OpenMP 141

• the second property is not trivially assured in the context of tasking
• it is not obvious which created tasks participate in a reduction

!$omp parallel reduction(task, +:x)
... ! create tasks (see below)

!$omp end parallel

parallel or worksharing region

!$omp taskgroup task_reduction(+:x)
... ! create tasks (see below)

!$omp end taskgroup

taskgroup or taskloop region

OpenMP 5.0

!$omp task in_reduction(+:x)
... ! tasked code & data

!$omp end task

requires consistency with specification in
enclosing scope definition

Now: 6th exercise session

Performance:

Architectural aspects

We need ideas on ...

 What can be expected from the processor architecture?

• want at least an estimate for performance limits  avoid „stumbling in
the dark“

• much more detailed node performance engineering and modeling:
course by G. Hager and G. Wellein – see

and references cited within

 How to exploit the architecture as best as possible

• use optimal data access patterns

• minimize synchronization overhead

• Account for interactions of OpenMP features with „serial“ optimization
techniques (might be compiler optimization or lack thereof!)

© 2010-19 LRZ/RRZE Introduction to OpenMP 143

http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=300&username=guest&password=guest&lang=en

Processor Architecture

 Performance Characteristics

• determined by memory
hierarchy

 Impact on Application
performance: depends on
where data are located

• temporal locality: reuse of
data stored in cache allows
higher performance

• no temporal locality:
reloading data from memory
(or high level cache) reduces
performance

 For multi-core CPUs,

• available bandwidth may
need to be shared between
multiple cores

© 2010-19 LRZ/RRZE Introduction to OpenMP 144

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

Bandwidth:
determines how
fast application
data can be
brought to
computational
units on CPU

high
bandwidth
available

low
bandwidth
available  shared caches and memory

Concept of cache

 A small but fast memory area
• used for storing a (small)

memory working set for efficient
access

 Reasons:
• physical and economic

limitations

 Loads (stores) to (from)
core registers
• may trigger cache miss 

transfer of memory block („cache
line“, CL) from memory

 Cache fills up …

• usually least recently used CL
is evicted

 Example:

© 2010-19 LRZ/RRZE Introduction to OpenMP 145

Main memory

Cache

Core

c(:) = a(:) + …

a CL of A a CL of C

core register:
load a(1)

…
store c(1)

delayed
to eviction

Control of Affinity
NUMA effects
False Sharing

Current Node architecture ...

• multi-core multi-threaded processors with a deep cache hierarchy

• typically, two sockets per node

© 2010-19 LRZ/RRZE Introduction to OpenMP 147

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

ccNUMA architecture: „cache-coherent non-uniform memory access“

Illustration shows 4 cores per socket. Current sockets have 8 – 14 cores

HT or QPI

socket

Prolegomenon: nested parallelism

 An implementation might
support this:

• nesting of parallel regions

© 2010-19 LRZ/RRZE Introduction to OpenMP 148

#include <stdio.h>

int main() {

#pragma omp parallel

{ …

#pragma omp parallel

{

…

}

}

return 0;

} C

fork

joinex
ec

ut
io

n
se

qu
en

ce

fork fork fork fork

join join join join

each thread in „outer“ region
becomes master thread of

„inner“ region

„outer“ region

„inner“ region

mentioned here for illustrative purposes

Resource assignment

 Suitable environment settings

 Operating system:
• responsible for assigning hardware resources to threads

• in general not trivial – note that (active) thread count can change during
execution

 Possible issues (performance impact):
• threads might move around between cores

• multiple threads might share a core (or other resources)

© 2010-19 LRZ/RRZE Introduction to OpenMP 149

export OMP_NUM_THREADS=4,2
export OMP_NESTED=true
export OMP_DYNAMIC=false
…
./my_nested_openmp_program.exe

one integer for each
nesting level

 a mechanism for controlling thread affinity / binding is desirable

else, „inner“ regions might/will
execute with 1 thread only.

forbid implementation to interfere with
number of threads assigned

Thread affinity – Processor binding

 Two aspects:

1. What entity should a thread be bound to?  concept of place

2. How should the binding be performed (if at all ...)?

 Optimal binding strategy depends on machine and application

 Putting threads far apart („spread“, „scatter“) might

• improve aggregate memory bandwidth

• improve combined cache size

• decrease performance of synchronization constructs

 Putting threads close together (i.e. on two adjacent cores) might

• improve performance of synchronization constructs

• decrease available memory bandwidth and cache size per thread

© 2010-19 LRZ/RRZE Introduction to OpenMP 150

 available since OpenMP 4.0
before that: implementation-specific mechanisms

OpenMP place:
a container unit for pinning of threads

© 2010-19 LRZ/RRZE Introduction to OpenMP 151

 Places are defined via either
• an abstract name (threads, cores, or sockets), optionally followed by a

bracketed positive integer (number of places):

• or an explicit list of places, specified as list of integer intervals
(in the following example, all three specs are equivalent)

meaning of the index is implementation defined, but you can expect
the smallest unit of execution (a hardware thread on x86) to be used.

export OMP_PLACES=“{0,1,2,3},{4,5,6,7}“

export OMP_PLACES=“{0:4},{4:4}“

export OMP_PLACES=“{0:4}:2:4“-

export OMP_PLACES=“cores(8)“

2 places with 4 hw
threads each

same, using
<offset:length> notation

same, using
<firstplace:#_of_places:stride_of_offset>

notation

8 places with 1
physical core each

OpenMP binding

© 2010-19 LRZ/RRZE Introduction to OpenMP 152

 Determine whether threads should be pinned

• environment variable OMP_PROC_BIND

• with values true or false, or

• a comma-separated list of entries:

 Example:

• binding is determined for at most two levels of parallel nesting

master bind created threads to same place as
master thread

close bind created threads to a place close to the
one assigned to the master

spread use a sparse distribution pattern to bind
created threads to places

export OMP_PROC_BIND=spread,close

Example for OpenMP binding

 Nested parallelism example from earlier

 Threads are named Si, and S'i, S''i, ..., for outer and inner region, respectively:

 Overcommitment causes places to be reused (i.e. multiple threads per place)

© 2010-19 LRZ/RRZE Introduction to OpenMP 153

export OMP_NUM_THREADS=4,2
…
export OMP_PLACES=“cores(8)”
export OMP_PROC_BIND=spread,close
./my_nested_openmp_program.exe

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

outer region S0 S1 S2 S3
inner region S'0 S'1 S''0 S''1 S'''0 S'''1 Siv

0 Siv
1

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1
Node

Socket 0 Socket 1

Identifying binding strategy within the program

 The function

returns one of the following constants:

 The value may depend on the nesting level from which the
function is called

© 2010-19 LRZ/RRZE Introduction to OpenMP 154

integer(…) function omp_get_proc_bind() Fortran

omp_proc_bind_t omp_get_proc_bind(void) C

omp_proc_bind_false 0

omp_proc_bind_true 1

omp_proc_bind_master 2

omp_proc_bind_close 3

omp_proc_bind_spread 4

Identifying placement

 A number of functions exist to handle various inquiries:

© 2010-19 LRZ/RRZE Introduction to OpenMP 155

Name Result type Purpose

omp_get_num_places() int number of places available

omp_get_place_num_procs
(int place_num)

int number of processors available in
place_num (0 .. number of places - 1)

omp_get_place_proc_ids
(int place_num, int *ids)

void ids contains numerical identifiers of
processors in place place_num

omp_get_place_num() int place number of place to which calling
thread is bound

omp_get_partition_num_places() int number of places in place partition of
innermost implicit task

omp_get_partition_place_nums
(int *place_nums)

void list of place numbers for innermost implicit
task

Program-internal binding

 A proc_bind clause can be specified

 Example:

© 2010-19 LRZ/RRZE Introduction to OpenMP 156

#pragma omp parallel num_threads(4) proc_bind(spread)

{ …

#pragma omp parallel num_threads(2) proc_bind(close)

{ …

}

}
C

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

outer region S0 S1 S2 S3
inner region S'0 S'1 S''0 S''1 S'''0 S'''1 Siv

0 Siv
1

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1
Node

Socket 0 Socket 1
executed with

OMP_PLACES=cores(8)

Identifying node topology

 Topology =

• Where in the machine does
core #n reside?

• awkward numbering anyway?

• which cores share which
cache levels

• which hardware threads
(“logical cores”) share a
physical core?

 Use LIKWID tool to identify

• developed by J. Treibig
• https://github.com/RRZE-HPC/likwid

has source code and
documentation

 Available commands
• likwid-topology: Print thread and

cache topology

• likwid-pin: Pin threaded
application without touching code

• likwid-perfctr: Measure perfor-
mance counters

• likwid-mpirun: mpirun wrapper
script for easy LIKWID integration

• likwid-bench: Low-level
bandwidth benchmark generator
tool

• … some more

© 2010-19 LRZ/RRZE Introduction to OpenMP 157

Intel / Sandy Bridge topology

 Output of likwid-topology –g (ASCII art section):
Socket 0:
+---+
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 0 16 | | 1 17 | | 2 18 | | 3 19 | | 4 20 | | 5 21 | | 6 22 | | 7 23 | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +---+ |
| | 20MB | |
| +---+ |
+---+
Socket 1:
+---+
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 8 24 | | 9 25 | | 10 26 | | 11 27 | | 12 28 | | 13 29 | | 14 30 | | 15 31 | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +---+ |
| | 20MB | |
| +---+ |
+---+

© 2010-19 LRZ/RRZE Introduction to OpenMP 158

hyperthreaded
cores

L1D

L2

shared
L3

each socket forms
a NUMA domain

AMD / Magny Cours topology

 Output of likwid-topology –g (ASCII art section):
Socket 0:
+---+
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------------------------------------+ +-------------------------------------+ |
| | 5MB | | 5MB | |
| +-------------------------------------+ +-------------------------------------+ |
+---+
Socket 1:
+---+
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | | 64kB | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | | 512kB | |
| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |
| +-------------------------------------+ +-------------------------------------+ |
| | 5MB | | 5MB | |
| +-------------------------------------+ +-------------------------------------+ |
+---+

© 2010-19 LRZ/RRZE Introduction to OpenMP 159

single threaded
cores

L1D

L2

shared
L3

each socket forms
two NUMA domains

likwid-pin – Overview

 Pins processes/threads to specific cores without touching code
• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Based on combination of wrapper tool together with overloaded pthread
library  binary must be dynamically linked!

 Can also be used as a superior replacement for Linux command
taskset

 Supports logical core numbering within a node and within an
existing CPU set
• Useful for running inside CPU sets defined by someone else, e.g., the MPI

start mechanism or a batch system

 Usage examples:
• Physical numbering (as given by likwid-topology):

• Logical numbering by topological entities:

© 2010-19 LRZ/RRZE Introduction to OpenMP 160

likwid-pin -c 0,2,4-6 ./myApp parameters

likwid-pin -c S0:0-3 ./myApp parameters

all of a(:) physically
located here

Memory affinity

 Allocation of memory (with C malloc() / Fortran ALLOCATE)

• only provides a virtual memory address

 Physical memory

• is assigned when a memory location is initialized („first touch“)

• units of pages (note overhead due to page faults!)

 Consequence for OpenMP

• possible memory accesses across socket boundaries

• only half the available

memory BW might be exploited on a 2-socket system

© 2010-19 LRZ/RRZE Introduction to OpenMP 161

L1D
L2

L1D
L2

L1D
L2

L1D
L2

L3

Memory Interface

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

a(:) = 0.0
!$omp parallel do
DO i=1, size(a)
… = … a(i) …

END DO
!$omp end parallel do

L1D
L2

L1D
L2

L1D
L2

L1D
L2

L3

Memory Interface

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

unused

one half of
a processed

other half of a
processed

first touch here

Fo
rt

ra
n

Balancing memory affinity

 Desirable and scalable memory access pattern:

• requires initialization with an OpenMP parallelized loop

 Distributed first touch

• ideally, uses same loop schedule as later processing

• now, the full available

memory BW can be exploited on a multi-socket system

© 2010-19 LRZ/RRZE Introduction to OpenMP 162

L1D
L2

L1D
L2

L1D
L2

L1D
L2

L3

Memory Interface

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

L1D
L2

L1D
L2

L1D
L2

L1D
L2

L3

Memory Interface

Memory

P
T0

T1

P
T0

T1

P
T0

T1

P
T0

T1

unused

one half of
a processed

other half of a
processed

!$omp parallel do
DO i=1, size(a)
a(i) = …

END DO
!$omp end parallel do
…
!$omp parallel do
DO i=1, size(a)
… = … a(i) …

END DO
!$omp end parallel do same half of a

located on-socket
same half of a

located on-socket

Fo
rt

ra
n

MVM performance for N=8000

 Measured on two AMD Magny Cours sockets
• thread pinning uses „close“ strategy

© 2010-19 LRZ/RRZE Introduction to OpenMP 163

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

First touch master only First touch distributed

Tasking and NUMA effects

 Remember:

• tasking decouples data items and associated functions from the
threading model

 Consequence:

• repeated execution of tasking on data items might use different
threads  memory affinity will get lost!

© 2010-19 LRZ/RRZE Introduction to OpenMP 164

#pragma omp task
execute_my_function(a, b, c);

#pragma omp task shared(a, b, c)
establish_my_data(a, b, c);

#pragma omp taskwait
#pragma omp task shared(a, b, c)

execute_my_function(a, b, c);

this function might
execute on a different
thread than this one

Partial therapy: register locality

 At initialization

• store which thread performed it – threads are color coded below

 Working on data items

• first work on items that are local to the executing thread

• next work on items that are located elsewhere (nearby first)
 task stealing due to unpredictable thread assignment

• additional bookkeeping (mutual exclusion) is needed to assure
complete and unique execution

© 2010-19 LRZ/RRZE Introduction to OpenMP 165

D1
D2

D3
D4

D5

D6

D7

integer :: work_item(idm, nthr)

thread 0 1 2

item # 1 2 3

item # 4 5 6

item # 7 - -

Simple example: NUMA-aware tasked triads

© 2010-19 LRZ/RRZE Introduction to OpenMP 166

tasking
overhead

effective
memory BW

biggest possible
chunk size was used
 1 chunk per thread

possible

mutex effect

Performance problems with
small shared variables

 Example program: count even and odd array values

© 2010-19 LRZ/RRZE Introduction to OpenMP 167

integer is(2), ict(2,ntdm), ia(n)

…

!$omp parallel private(myid) shared(ict, ia)

myid = omp_get_thread_num()+1

!$omp do private(index)

do i=1,n

index = mod(ia(i),2)+1

ict(index,myid) = ict(index,myid) + 1

end do

!$omp end do

!$omp critical

is = is + ict(1:2,myid)

!$omp end critical

!$omp end parallel

initialization omitted

formally correct,
no race condition

Fortran

Example program parallel efficiency

 Baseline 1 thread execution time: AMD 0.75 s, Intel SandyBridge 0.37 s

© 2010-19 LRZ/RRZE Introduction to OpenMP 168

7

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16

Ef
fic

ie
nc

y
in

 %

Number of Threads
AMD Magny Cours Intel Sandy Bridge

Array size
250,000,000

Updating neighbouring data
from different cores

P0

load a(1)

store a(1)

 Store operation
• write back always done on

complete cache lines

• "merging of partial cache lines" is
not possible

 Cache coherence protocol
• keeps track of cache line status

• assures data consistency by
enforcing hardware
synchronization between writes

© 2010-19 LRZ/RRZE Introduction to OpenMP 169

Main memory

Cache 0

Core 0

a CL of A

core register

Core 1

Cache 1

P1

load a(2)

store a(2)

Typical sequence of write operations

 Hardware execution sequence for
write on Core 0:

1. Request exclusive access to CL (Core 0
issues it first)

2. Invalidate CL in Cache 1

3. Modify CL in Cache 0 (exclusively owned)

4. mark CL shared

 Hardware execution sequence
on Core 1:

5. Request CL from memory for reading
(granted after CL is marked shared)

6. Request exclusive access to CL

7. Invalidate CL in Cache 0

8. Modify CL in Cache 1 (exclusively owned)

9. mark CL shared

© 2010-19 LRZ/RRZE Introduction to OpenMP 170

Main memory

Cache 0

Core 0

a CL of A

Core 1

Cache 1

Diagram shows state
after step 3

Consequences

 Repeated access to data in same cache line:

• causes thrashing of cache lines

• for each access, more than twice the memory latency may be
accumulated, resulting in significant performance reduction

 This effect is called "false sharing"

© 2010-19 LRZ/RRZE Introduction to OpenMP 171

Avoidance of false sharing

 Privatization ‒ here through use of a reduction variable

 Alternative for retaining shared variables: Add padding

• tradeoff: may lose spatial locality

© 2010-19 LRZ/RRZE Introduction to OpenMP 172

integer is(2), ia(n)

…

!$omp parallel shared(ict, ia)

!$omp do private(index) reduction(+:is)

do i=1,n

index = mod(ia(i),2)+1

is(index) = is(index) + 1

end do

!$omp end do

!$omp end parallel

initialization omitted

Fortran

private variables are assured
of using well-separated
parts of the physical memory
(thread-individual stack or
heap)

Parallel efficiency for improved example

 Baseline 1 thread execution time: AMD 0.81 s, Intel SandyBridge 0.36 s

© 2010-19 LRZ/RRZE Introduction to OpenMP 173

56

75

0
10
20
30
40
50
60
70
80
90

100
110

1 2 4 8 16

Ef
fic

ie
nc

y
in

 %

Number of Threads
AMD Magny Cours Intel Sandy Bridge

Now: last exercise session

Remaining performance degradation
is due to saturation of memory bus

Outlook: Towards
quantifying performance

Using synthetic loop kernels
for performance evaluation

 Characteristics

• known operation count, load/store count

• some variants of interest:

• run repeated iterations for varying vector lengths (working set sizes)

© 2010-19 LRZ/RRZE Introduction to OpenMP 175

132Vector Triadai = bi * ci + di

122Linked Triad (Stream)ai = bi * s + ci

012Normn2 = n2 + ai * ai

022Scalar Products = s + ai * bi

StoresLoadsFlopsNameKernel

 Synthetic benchmark: bandwidths of „raw“ architecture

for a single core

Vector Triad D(:) = A(:) + B(:) * C(:)

© 2010-19 LRZ/RRZE Introduction to OpenMP 176

L1D – 32kB
< 112 GB/s

L2 – 256 kB
< 62 GB/s

L3 – 20 MB
~ 33 GB/s

Memory
~ 14.7 GB/s

measured „effective“ BW:
3 LD+1ST

16 Bytes / Flop, repeated execution
(actually issued: 4 LD+1ST in L2 and higher)

Vectorization (256 Bit registers)
provides performance boost

mostly in L1/L2 cache

Theoretical performance limit

 Sandy Bridge vector unit:
• 256 Bit SIMD (single instruction

multiple data)

• Example: addition of 8 Byte words

 Instruction capability
• 1 vector add and 1 vector mult

per cycle  theoretical Peak 8
Flops/cycle

 LD/ST issue capability
• 4 Words LD/cycle

• 4 Words ST/(2 cycles)

 Vector triad:
• required loads limit performance

to 8 Flops / 3 cycles

i.e. 7.2 GFlop/s at 2.7 GHz

 Consult processor-specific
architecture manual

© 2010-19 LRZ/RRZE Introduction to OpenMP 177

R0 R1 R2

+

+

+

+

6
4

 b
it

D
P

 w
o

rd
2

5
6

 B
it

re
gi

st
e

rs

A + B = C
4 elements with 1 AVX instruction

Only L1 might maintain needed bandwidth

 Throughput mode: run with independent threads up to number of cores on a socket

Vector Triad D(:) = A(:) + B(:) * C(:)

© 2010-19 LRZ/RRZE Introduction to OpenMP 178

memory interface of socket:
saturated w/ 4 threads

effective per-core
share of L3 shrinks

L1/L2/L3 bandwidths
scale well

Looking at Memory Performance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N=12506888 Vector Triad

Sandy Bridge

Magny Cours

© 2010-19 LRZ/RRZE Introduction to OpenMP 179

saturation of
1st socket

with 4 threads

second socket
memory interface

per-socket bandwidth
40 GB/s

per-socket bandwidth
24 GB/s

More on cache-based memory systems

 Loads and Stores

• usually apply to cache lines

• size: 64, 128 or more Bytes

 Pre-fetch

• avoid latencies when
streaming data

• pre-fetches usually done in
hardware

• decision according to memory
access pattern

 Pre-Requisite:

• spatial locality

• violation of spatial locality:
if only part of a cache line is used
 effective reduction in
bandwidth

© 2010-19 LRZ/RRZE Introduction to OpenMP 180

Performance of strided triad on Sandy Bridge
- loss of spatial locality

ca. 40 MFlop/s
(remains constant
for strides > ~25)

© 2010-19 LRZ/RRZE Introduction to OpenMP 181

Notes:

 stride known at
compile time

 serial compiler
optimizations may
compensate perfor-
mance losses in real-
life code

D(::stride) = A(::stride) + B(::stride)*C(::stride)
Example: stride 3

Returning to the matrix-vector product

 r = M ∙ x i.e.

© 2010-19 LRZ/RRZE Introduction to OpenMP 182

௜ ௜௝ ௝

௡

௝ୀଵ

 First parallelization attempt:

 Parallel patterns used:
• data decomposition (load balanced)

• loop parallelism (no dependencies)

 Directive placement:
• coarse grained parallelism to

avoid synchronization overhead

!$omp parallel

!$omp do

DO j = 1, n

DO k = 1, n

r(j) = r(j) + a(j, k) * x(k)

END DO

END DO

!$omp end do

… = r(…)

!$omp end parallel

index ordering
causes non-contiguous

accesses

M x r

j j

Measured performance (size 8000)

 Speed-Up:

as a function of number of threads
on 8-core processors

• Scaling bad beyond 4 threads

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8

Sandy
Bridge

Magny
Cours

Ideal

© 2010-19 LRZ/RRZE Introduction to OpenMP 183

௧
௧

 Absolute performance:

• MFlop/s = 2 ∙ n2 / time

• used dgemv for serial run

 Speed-Up useless if baseline
performance is bad

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5 6 7 8

Sandy
Bridge

Magny
Cours

SB serial

MC serial

a measure for execution time
if problem size is constant

threads

threads

Improved Matrix-Vector Multiply

 Switch loop order
• map column blocks to threads:

• color code indicates thread
assignment

© 2010-19
LRZ/RRZE

Introduction to OpenMP 184

 Variant 2 of code:
• contiguous access to M

• array reduction on result vector

 Performance estimate for single
thread:

• double that of triad  1.86 GFlop/s

M x r

!$omp parallel do reduction(+:r)
DO k = 1, n
DO j = 1, n
r(j) = r(j) + M(j, k) * x(k)

END DO
END DO
!$omp end parallel do

j j

2 loads (?)1 store (?)

vector add scalar mult

Cannot be the whole truth –
remember serial performance: 3.7 GFlop/s!

Re-measured performance (size 8000)

 For variant 2 of the MVM: Performance in MFlop/s

 Comments:
• „no OpenMP“  variant 2 compiled without OpenMP

• Conclusion: compiler stops making certain serial optimizations if OpenMP
switch is toggled

© 2010-19 LRZ/RRZE Introduction to OpenMP 185

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5 6 7 8

Sandy Bridge

Magny Cours

SB no OpenMP

MC no OpenMP

threads

Variant 3: Reduce memory traffic

 Outer loop unrolling

• conditioning omitted

• asymptotically increases intensity to
2 Flops per word (1 load on matrix
per original loop iteration)

 Expected performance

• for M from memory (i.e. outside
any cache)

• contiguous streaming of data

• assuming 40 GB/s bandwidth
for a socket

• estimation method is known
as „Roofline Model“

© 2010-19 LRZ/RRZE Introduction to OpenMP 186

!$omp parallel do reduction(+:r)
DO k = 1, n-3, 4
DO j = 1, n
r(j) = r(j) + M(j, k) * x(k)&

+ M(j, k+1) * x(k+1) &
+ M(j, k+2) * x(k+2) &
+ M(j, k+3) * x(k+3)

END DO
END DO
!$omp end parallel do

2 Flop 40 GB
Perf = ---------- * ---------- = 10 GFlop/s

8 Bytes s

computational
intensity

available
bandwidth

(slowest path)

Unrolling is limited by number of
available registers and prefetch
streams (architecture-dependent!)

Graphical representation of Roofline

1,00

10,00

100,00

0,03125 0,0625 0,125 0,25 0,5 1

Pe
rf

or
m

an
ce

 in
 G

Fl
op

/s

Computational intensity (Flop/Byte)

BW = 40 GB/s (Memory) BW = 400 GB/s (aggregate L2 caches in socket)

Peak AVX (2.7 GHz) Peak SSE (2.7 GHz)

© 2010-19 LRZ/RRZE Introduction to OpenMP 187

MVM from memory

MVM from L2 (?)
need AVX?

compute
bound

Variant 3 MVM performance (N=8000)

 In MFlop/s. Unroll factors: Sandy Bridge 4, Magny Cours 8

 Comment:

• roofline model only predicts „saturated“ performance

• single-thread performance is limited by non-overlapping memory/core
operations (see ref. (2))

© 2010-19 LRZ/RRZE Introduction to OpenMP 188

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4 5 6 7 8

Sandy Bridge

Magny Cours

SB serial

MC serial

threads

Why use variant 3 …

 … if variant 2 gives us the full performance anyway?

• even if this only is attained with 8 threads

 Possible reasons:

• „switch off“ cores 6-8 to save energy (relevant for you if this is
budgeted – may happen not too far in the future!)

• use cores 6-8 for other tasks that are cache bound

• use cores 6-8 for MPI communication (I/O via PCI) if you do hybrid
programming (i.e., combine MPI with OpenMP)

© 2010-19 LRZ/RRZE Introduction to OpenMP 189

References

© 2010-19 LRZ/RRZEIntroduction to OpenMP 190

Recommended reading

(1) OpenMP 5.0 standard and OpenMP 4.5 examples at
http://www.openmp.org/specifications/

(2) Parallel programming in OpenMP
Rohit Chandra et al; Morgan Kaufmann 2000

(3) Using OpenMP - portable shared memory parallel programming
B. Chapman, G. Jost, R. van der Pas; MIT Press 2008

(4) Using OpenMP - the next step
R. van der Pas, E. Stotzer. Ch. Terboven; MIT Press 2017

(5) J. Treibig, G. Hager, G. Wellein: LIKWID
A lightweight performance-oriented tool suite for x86 multicore environments.
PSTI2010, Sep 13-16, 2010, San Diego, CA DOI: 0.1109/ICPPW.2010.38; Preprint:
http://arxiv.org/abs/1004.4431

(6) G. Hager, J. Treibig, J. Habich, and G. Wellein:
Exploring performance and power properties of modern multicore chips via simple
machine models. Preprint: arXiv:1208.2908

(7) G. Hager, G. Wellein: Introduction to High Performance Computing for Scientists
and Engineers. Chapman & Hall / CRC (2011)

© 2010-19 LRZ/RRZE Introduction to OpenMP 191

Appendix:
Setting up Vtune Amplifier

© 2010-19 LRZ/RRZEIntroduction to OpenMP 192

 Tuning of serial and threaded programs

• performance counter access requires group rights

 Start up GUI

• prerequisites: set up environment and possibly stack limit

• then, invoke the GUI with

• command line amplxe-cl is also available, but will not be discussed

 Project generation analogous to Intel Inspector

© 2010-19 LRZ/RRZE

Using Vtune Amplifier on x86-based systems

amplxe-gui &

Introduction to OpenMP 193

Example run: A badly performing
solution of the histogram calculation

#pragma omp parallel private(seed,i,k,me)

{

me = omp_get_thread_num();

seed = 123 + 159*me;

for (k=0; k<100000; ++k) {

#pragma omp for

for (i=0; i<10000; ++i) {

ir[i] = rand_r(&seed) & 0xf;

}

#pragma omp master

for (i=0;i<10000; ++i) {

hist[ir[i]]++;

}

#pragma omp barrier

// prevents ir from being modified

// before hist update is done

}

}

© 2010-19 LRZ/RRZE Introduction to OpenMP 194

 Various types are provided

• select „Concurrency“

• in the project properties, set
OMP_NUM_THREADS to
number of physical cores

 Note:

• analysis may take quite a
long time to run, even for
programs of small size

© 2010-19 LRZ/RRZE

Choose Analysis type

Note:
performance quality evaluation
assumes complete system is used

Introduction to OpenMP 195

 Result:

• thread concurrency
very low although
CPU usage is high

© 2010-19 LRZ/RRZE

Result tabs: Summary

Introduction to OpenMP 196

 Observation:

• much time spent in
OpenMP run time
library

• lots of transitions
indicated  have
false sharing

© 2010-19 LRZ/RRZE

Result tabs: Bottom-up view

Introduction to OpenMP 197

 Click on routine with significant resource usage

© 2010-19 LRZ/RRZE

Drill down to source

many updates to
small shared variable

Introduction to OpenMP 198

resulting load imbalance
is collected at barriers

