TUTORIAL:

Coke formation in 3D steam cracking reactors

Laurien Vandewalle

Laboratory for Chemical Technology

Introduction: steam cracking

Coke formation in steam cracking

Endothermic process at temperatures of 800-900 °C

Deposition of a carbon layer on the reactor surface

Reduced thermal efficiency

High pressure causes loss of product selectivity

Coil carburization and thermal stress

$$r_C = \sum_{i} c_i \cdot A_i \cdot \exp\left(\frac{-E_{a,i}}{RT_{int}}\right)$$

Coke reduction method: 3D reactor technology

Coil cracking due to differences in thermal expansion rate

Hot spots due to inhomogeneous coke formation

Long term behavior

Run length simulations

OpenFOAM applications

chtQSSAFoam solver

- Multi-region reactive solver (with solid-fluid heat transfer)
- Steam cracking chemistry implemented directly in the code, including quasi-steady state approximation (QSSA) to reduce stiffness

crackerCokeSim utility

- Create structured multi-region (fluid, cokes, metal) grids of 3D steam cracking reactor tubes
- Simulate coke layer growth in a post-processing step

Before we start

Open X2Go or VNC connection to HPC

Copy and unpack case files

tar -xzvf steam_cracking_tutorials.tar.gz

Start an interactive job on HPC

qsub -I --pass=reservation=PRETREF -l nodes=1:ppn=4 -l walltime=02:00:00

Load OpenFOAM

module load OpenFOAM/2.2.x-intel-2019a
source \$FOAM_BASH

Compile the necessary solvers and utilities

In the folder steam_cracking_tutorials/solvers_utilities: ./Allwmake

Tutorial part 1 Meshing

Meshing: introduction

Goal: create multi-region (fluid, cokes, metal) grid of 3D steam cracking reactor geometries

crackerCokeSim utility

Initial meshing

Tutorial instructions

Base case files are available in 'meshing_geometryModels' folder

./Allclean

Required OpenFOAM commands

- blockMesh24x -dict system/blockMeshDict
 after executing blockMesh, move polyMesh to subfolder 'cylinder'
- crackerCokeSim -createMesh

Adjust crackerCokeDict to create the geometry of your choice

Tutorial part 2 Reactive simulation

Test case: Millisecond propane cracker

Bare cylindrical tube (2D wedge grid)

ID / OD 30 mm / 40 mm

Length 10 m

Operating conditions

Feedstock118.5 kg/h propane

Steam dilution
0.326 kg/kg

_ CIT 903.7 °C

COP 170 kPa

Uniform heat flux
 69.625 kW/m² (on metal wall)

Note: In reality, the heat flux is non-uniform

Tutorial instructions

Base case files are available in 'propane_cracker_bare_wedge' folder

Required OpenFOAM commands

./Allclean
./Allrun

blockMesh

after executing blockMesh, move polyMesh to subfolder 'cylinder'

- crackerCokeSim -createMesh
- chtQSSAFoam

Run-time post-processing

See controlDict: functions

Plot mixing-cup averages at outlet to check convergence

Post-processing

Visual postprocessing using ParaView

Post-processing

Plot mixing-cup averages as a function of axial position

Tutorial part 3 Coke formation in a finned steam cracking reactor

Case description

The rate of coke formation is a function of temperature, C_2H_4 and C_3H_6 at the fluid-coke interface

- An artificial non-uniform temperature field is applied to a finned steam cracking reactor to illustrate the usage of the crackerCokeSim utility.
- C₂H₄ and C₃H₆ are specified as constants (using the 'coldFlow' option of the utility).

$$T = 1230 + 100 \cdot \frac{R - 0.01}{0.0073}$$

crackerCokeSim utility

Initial meshing

2c. Extrusion of coke region 2d. Extrusion of metal region

Tutorial instructions

Base case files are available in 'coke_growth_finned' folder

Required OpenFOAM commands

crackerCokeSim

```
./Allclean
./Allrun
```

Have a look at the required parameters in crackerCokeDict (e.g. values for C₂H₄ and C₃H₆ mass fractions)

Results

Before coke layer growth

After coke layer growth

More advanced simulation results

Run length

TMT increases at the **same rate** for all geometries, but **absolute max. TMT lower** for 3D geometries

Pressure drop increases because of reduction in cross-sectional flow area during coke formation

Less fast increase for c-rib compared to bare and finned geometry

Coke formation and velocity fields

Fig. 11. Fields of velocity magnitude [m s⁻¹] in the finned reactor geometry: (left) at start-of-run, and (right) after 48 h of coke layer growth (for operating conditions as described in Section 3.1).

Fig. 12. Fields of velocity magnitude [m s⁻¹] in the continuously ribbed reactor geometry: (left) at start-of-run, and (right) after 10 days of coke layer growth (for operating conditions as described in Section 3.1).

Vandewalle, L. A.; Van Cauwenberge, D. J.; Dedeyne, J. N.; Van Geem, K. M.; Marin, G. B. Dynamic Simulation of Fouling in Steam Cracking Reactors Using CFD. *Chem. Eng. J.* **2017**, *329*, 77–87.