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Coke formation in steam cracking

Endothermic process at temperatures of 800—900 °C o ‘

Deposition of a carbon layer on the reactor surface

——> Reduced thermal efficiency T T
——> High pressure causes loss of product selectivity
——> Coil carburization and thermal stress

Coke reduction method: 3D reactor technology
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Nova Chemicals, 2002; Linde Group; Muiios et al., 2013; Albright et al., 1988; Muios et al., 2014

Colil cracking due to
differences in thermal
expansion rate

Hot spots due to
inhomogeneous coke
formation




Long term behavior

3D elements lead to non-uniform coking
A

\
Shape of 3D element + cokes change over time

’

. Flow field (and heat transfer) is altered
Position of local hot spots changes ‘
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OpenFOAM applications

chtQSSAFoam solver

= Multi-region reactive solver (with solid-fluid heat transfer)
= Steam cracking chemistry implemented directly in the code,

Including quasi-steady state approximation (QSSA) to
reduce stiffness

crackerCokeSim utility

= Create structured multi-region (fluid, cokes, metal) grids of
3D steam cracking reactor tubes

= Simulate coke layer growth in a post-processing step

N

GHENT
UNIVERSITY



Before we start

Open X2Go or VNC connection to HPC

Copy and unpack case files
tar -xzvf steam cracking tutorials.tar.gz

Start an interactive job on HPC
gsub -I --pass=reservation=PRETREF -1 nodes=1:ppn=4 -1 walltime=02:00:00

Load OpenFOAM
module load OpenFOAM/2.2.x-1intel-2019a
source $FOAM BASH

Compile the necessary solvers and utilities
In the folder steam cracking tutorials/solvers utilities: ./Allwmake
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Tutorial part 1
Meshing




Meshing: introduction

Goal: create multi-region (fluid, cokes, metal) grid of 3D
steam cracking reactor geometries

Multi-region 3D reactor geometries

straight fins MERT transverse rib dimples

metal tube wall . ‘ G i

coke

fluid
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crackerCokeSim utility

Initial meshing
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Ta. Initial cylindrical mesh
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1b. Extrusion of gas region to gas-coke interface

Tube metal

Coke layer

Gas

Ic Extusion of coke region
to tube metal interface

1d. Extruion ofetal region
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Tutorial instructions

Base case files are available in ‘meshing _geometryModels’ folder
Required OpenFOAM commands -/ iide"’m
run
= blockMesh24x -dict system/b1ockMeshD1ct
after executing blockMesh, move polyMesh to subfolder ‘cylinder’
» crackerCokeSim —-createMesh

Adjust crackerCokeDict to create the geometry of your choice
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Tutorial part 2
Reactive simulation




Test case: Millisecond propane cracker

Bare cylindrical tube (2D wedge grid)
ID/ OD 30 mm /40 mm
Length 10 m

Operating conditions

— Feedstock 118.5 kg/h propane
— Steam dilution 0.326 kg/kg

— CIT 903.7 °C

— COP 170 kPa

— Uniform heat flux 69.625 kW/m? (on metal wall)

Note: In reality, the heat flux is non-uniform
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Tutorial instructions

Base case files are avallable in ‘propane_cracker bare wedge’ folder

./Allclean
./Allrun

Required OpenFOAM commands
= blockMesh

after executing blockMesh, move polyMesh to subfolder ‘cylinder’
= crackerCokesim —-createMesh
= chtQSSAFoam
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COT [K]

Run-time post-processing

See controlDict: functions
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Post-processing

Visual postprocessing using ParaView

Temperature Species mass fraction
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Mass fraction C3HS8 [-]
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Post-processing

Plot mixing-cup averages as a function of axial position

Propane mass fraction
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Tutorial part 3
Coke formation In a finned
steam cracking reactor




Case description

The rate of coke formation is a function of

temperature, C,H, and C;H; at the fluid-
coke interface

= An artificial non-uniform temperature field
IS applied to a finned steam cracking
reactor to illustrate the usage of the
crackercCokeSim utility.

= C,H, and C,;H, are specified as constants
(using the ‘coldFlow’ option of the utility). T = 1230+ 100 -
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crackerCokeSim utility

Initial meshing

1a. Initial cylindrical mesh 1b. Extrusion of gas region to gas-coke interface 1c. Extrusion of coke region  1d. Exrsin of etal region

\ to tube metal interface /

Tube metal

Coke layer
y Coke layer grows

>

Gas

Coke formation —
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— 2a. Initial cylindrical mesh 2b. Extrusion of gas region to new gas-coke interface: 2¢. Extrusion of coke region  2d. Extrusion of metal region
GHENT . N . the extrusion distance from (1b) is reduced with the to tube metal interface
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Tutorial instructions

Base case files are available in ‘coke _growth_finned’ folder

Required OpenFOAM commands
= crackerCokeSim

Have a look at the required parameters in crackerCokeDict (e.g.
values for C,H, and C;H; mass fractions)
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Results

Before coke layer growth After coke layer growth
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More advanced simulation
results




Run length
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TMT Increases at the same rate for all
geometries, but absolute max. TMT lower

N

GHENT
UNIVERSITY

Time on stream [days]

250000
_D
o
o A 200000
Max. allowable TMT .© -~ A ©
________ N o
o Ea S 150000
O O A T
O A o
] o 2 100000
0 & 0 E
gy A o
o 2t bare O 50000
&_--ﬂ c-rib A&
AT fin
= I I I I I I {]

[]
o
4
‘o a
a- A
o A
A
AD A
g o
LD
8.0 bare O
c-rib A
fin U
I I I I I I

2 4 6 8 10 12 14

Time on stream [days]

Pressure drop increases because of reduction in
cross-sectional flow area during coke formation

for 3D geometries Less fast increase for c-rib compared to bare

and finned geometry

H H Vandewalle, L. A.; Van Cauwenberge, D. J.; Dedeyne, J. N.; Van Geem, K. M.; Marin, G. B. Dynamic
Simulation of Fouling in Steam Cracking Reactors Using CFD. Chem. Eng. J. 2017, 329, 77-87.
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Coke formation and velocity fields
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Fig. 11. Fields of velocity magnitude [m s~'] in the finned reactor geometry: (left) at start-of-run, and (right) after 48 h of coke layer growth (for operating conditions as
described in Section 3.1).
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Fig. 12. Fields of velocity magnitude [m s~'] in the continuously ribbed reactor geometry: (left) at start-of-run, and (right) after 10 days of coke layer growth (for operating
conditions as described in Section 3.1).
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