
Towards self-managed,
re-configurable streaming
dataflow systems

Vasia Kalavri
kalavriv@inf.ethz.ch

mailto:kalavriv@inf.ethz.ch?subject=

THE DATAFLOW MODEL

‣ Computations as Directed Acyclic Graphs (DAGs)
‣ nodes are operators and edges are data channels
‣ operators can accumulate state, have multiple inputs, express event-

time custom window-based logic

‣ Transformations are data-parallel
‣ distributed workers (threads) execute one parallel instance of one of

more operators on disjoint data partitions

‣ Queries are long-running
‣ input streams are potentially unbounded
‣ results are continuously produced

�2

topK
map printsource

DATAFLOW COMPUTATIONS

 3

w1

w2

w3

w6

w4

w5

w8

w7

Twitter source

Extract hashtags

Count topics

Trends sink

w1 w2

w3 w4
w5 w6

w7 w8

Lo
gic

Qu
ery

 Pl
an

De
plo

ym
en

t

DATAFLOW WORKER ACTIVITIES

▸ Parallel workers perform activities

▸ receive message

▸ deserialize

▸ process

▸ serialize

▸ send message

▸ Or are waiting for

▸ input (nothing in the buffer)

▸ output (no write buffer available)

�4

W1

W2

W3

a b

c d

t=k t=k+1

x u v z

�5�5

traces, configuration,
topology updates, …

Datacenter

Strymon

queries, complex analytics,
simulations, …

policy enforcement,
what-if scenarios, …

STRYMON: ONLINE DATACENTER ANALYTICS AND MANAGEMENT

Datacenter
model

event streams

strymon.systems.ethz.ch

http://strymon.systems.ethz.ch

DS2 auto-scaling
controller

state
backend

SnailTrail
profiler

trace streams

external systems

scaling decisions

input
streams

streaming application
output streams

performance
 summaries

online
performance

metrics

RECONFIGURABLE STREAM PROCESSING

�6

NSDI’18

OSDI’18

Snailtrail: Generalizing Critical Paths for
Online Analysis of Distributed Dataflows

Moritz Hoffmann, Andrea Lattuada, John Liagouris,  
Vasiliki Kalavri, Desislava Dimitrova, Sebastian Wicki, 

Zaheer Chothia, Timothy Roscoe

Systems Group, ETH Zurich

PERFORMANCE TROUBLESHOOTING

▸ long-running, dynamic workloads

▸ many tasks, activities, operators, dependencies

▸ conventional profiling tools provide aggregate information

�8
Duratio

Aggregate data exchange

Dataflow graph

W1

W2

W3 serializatio processing

waiting

deserialization

�9

processing

messageProcessing is the most time-consuming activity

OPTIMIZING ACTIVITY DURATION

waiting

deserialization

W1

W2

W3 serializatio processing

waiting

deserialization

�10

processing

What if we optimize it?

OPTIMIZING ACTIVITY DURATION

W1

W2

W3 serializatio

waiting

deserialization

�11

OPTIMIZING ACTIVITY DURATION

�12

W1

W2

W3 serializatio

waiting

deserialization

No benefit

OPTIMIZING ACTIVITY DURATION

waiting increases

CRITICAL PATH ANALYSIS

THE PROGRAM ACTIVITY GRAPH (PAG)

�14

W1

W2

W3

a b

c d

t=k t=k+1

x u v z

Nodes are timestamped events:
start or end of a worker activity

u = {  
 timestamp: k+1,  
 worker: 2
 }

THE PROGRAM ACTIVITY GRAPH (PAG)

�15

W1

W2

W3

a b

c d

t=k t=k+1

x u v z

Edges represent activities
annotated with a type and duration

(u, v) = {  
 type: serialization  
 duration: 1
 }

CRITICAL PATH

�16

W1

W2

W3

a b

c d

The longest path in the execution history
(not considering waiting activities)

�17

W1

W2

W3

a b

c d

CRITICAL PATH

CRITICAL PATH

�18

W1

W2

W3

a b

c d

Reduced execution

POST-MORTEM CRITICAL PATH ANALYSIS

1. Collect traces during execution

job start job end
profiler

�19

2. Analyze traces offline

analyzer

performance
summaries

ONLINE CRITICAL PATH ANALYSIS

ONLINE ANALYSIS OF TRACE SNAPSHOTS

�21

input stream output stream

periodic
snapshot

trace snapshot
stream

analyzer

performance
summaries
stream

PROGRAM ACTIVITY GRAPH SNAPSHOT

�22

W1

W2

W3

a b

c d

t=k t=k+1

x u v z

ts te

▸ All paths have the same length: te - ts

W1

W2

W3

a b

c d

x u v z

ts te

�23

W1

W2

W3

a b

c d

x u v z

ts te

▸ All paths have the same length: te - ts

�24

W1

W2

W3

a b

c d

x u v z

ts te

▸ All paths have the same length: te - ts

�25

W1

W2

W3

a b

c d

x u v z

ts te

▸ All paths have the same length: te - ts

▸ Choosing a random path might miss critical activities

�26

W1

W2

W3

a b

c d

x u v z

ts te

▸ All paths have the same length: te - ts

▸ Choosing a random path might miss critical activities

�27

▸ All paths have the same length: te - ts

▸ Choosing a random path might miss critical activities

▸ Enumerating all paths is impractical

W1

W2

W3

a b

c d

x u v z

ts te

�28

W1

W2

W3

a b

c d

x u v z

ts te

How to rank activities with regard to criticality?

All paths are
potentially part
of the evolving
critical path

Intuition: the more paths an activity appears on
the more probable it is that this activity is critical

�29

1

2

3

4

5

6

7

8

9

W1

W2

W3

a b

c d

x u v z

ts te

�30

1

2

3

4

5

6

7

8

9

W1

W2

W3

a b

c d

x u v z

ts te

9

0

0

6 6

�31

�32

CRITICAL PARTICIPATION (CP METRIC)
An estimation of the activity’s participation in the critical path

total number of paths
in the snapshot

activity duration: edge weight

centrality: the number of
paths this activity appears on

Can be computed
without path
enumeration!

P ⌘ {~p ✓ E | @ ~p0 : ||~p0|| > ||~p||}, where ~p denotes a path

in G[ts,te], and ||~p|| denotes the total weight of all edges in ~p,

i.e., ||~p|| = P8e 2 ~p e[w].

Any path ~p 2 P is a transient critical path of the activity

graph G in the time interval [ts,te].

Figure 2b shows all six transient critical paths for the
snapshot in Figure 2a. Since each could potentially participate
in the global critical paths, we need to identify the most
important activities for system performance. In other words,
we need a metric for ranking activities according to their
impact on computation performance. In o✏ine CPA such a
ranking is trivial since there is only one critical path for the
entire computation.

We observe that an activity that appears on many transient
paths is more likely to be on the global critical path. In
Figure 2b, edge (d0, i0) appears in two paths, while edge
(g0, h0) belongs to all six. We incorporate this information
in the performance metric we define next.

3.2 Critical Participation

Given the duration of an activity e[w] and the total length ||~p||
of the critical path ~p, the participation of e to ~p is defined as:

qe =
e[w]
||~p|| 2 [0, 1] (1)

and is easily computed for all activities in a single pass of ~p.
We correspondingly define the average critical participa-

tion (CP) of an activity e in a transient critical path as:

CPe =

P
i=N

i=1 q
i

e

N
2 [0, 1] (2)

where q
i

e
is the participation of e to the i-th transient critical

path (given by Eq. 1), and N is the total number of transient
critical paths in the graph snapshot.

A straightforward way to compute CPe is to materialize
all N transient paths and compute the participation of each
activity in every path. However, path materialization is not
viable in an online setting. Instead, we exploit the fact that
the CP of an activity actually depends on the total number of
transient paths this activity belongs to. Hence, we define the
transient path centrality as follows:

Definition 8. Transient Path Centrality: LetP = {~p1, ~p2, ...~pN}
be the set of N transient paths of snapshot G[ts,te]. The tran-

sient path centrality of an edge e 2 G[ts,te] is defined as

c(e) =
NX

i=1

ci(e), where ci(e) =

8>><
>>:

0 : e < ~pi

1 : e 2 ~pi

The following holds:

CPa =
T PC(a) · aw

N(te � ts)
(3)

Eq. 31 indicates that the computation of CPe can be
reduced to the computation of c(e), which requires no path
materialization and can be performed in parallel for all edges
in G[ts,te]. We provide an algorithm for the transient path
centrality and CP without materialization in Section 5.1.

We can now compute the transient path centrality and
critical participation for the Figure 2 example. For instance,
c(d0, i0) = 2 and c(g0, h0) = 6. Respectively, since te � ts = 5
and N = 6, CP(d0,i0) = 0.066 and CP(g0,h0) = 0.2.

Figure 3: A program activity graph snapshot. Each edge is
annotated with its transient path centrality (Definition 8).

The example in Figure 3 illustrates how CP discards ac-
tivities that do not a↵ect performance and focuses on per-
formance bottlenecks and optimization opportunities. In this
case worker w2 waits after activity (f , g) and so neither ac-
tivities (b, f), (e, f), nor (f , g) can be on the critical path and
so improving their performance would not help computation
in [ts, te]. In fact, they are assigned with a zero transient path
centrality and, hence, a zero CP value.

The CP of Eq. 2 can be generalized for activities of a
specific type c as:

X

8e:e[p]=c

CPe (4)

and the following holds1:
X

8c 2 G

X

8e:e[p]=c

CPe = 1 (5)

4. Generality

Here we look at the generality of our approach, and its
applicability to a range of modern dataflow systems - in other
words, what abstract execution model do we assume, and
what constraints does it impose on the instrumented system?

Spark, Flink, TensorFlow, and Timely are superficially
di↵erent, but actually similar with regard to critical path anal-
ysis: all execute dataflow programs expressed as directed
graphs whose vertices are operators (e.g. map, reduce) and
whose edges denote data dependencies. Given a set of work-
ers (threads, processes) and resources, a logical dataflow
graph can be translated into a physical execution plan, where
all workers apply operators of the dataflow program to parti-
tions of the data in parallel.
1 We provide proofs of Eqs. 3 and 5 in an extended technical note.

4 2017/4/30

ONLINE PERFORMANCE ANALYSIS WITH
SNAILTRAIL

�34

reference application SnailTrail

Timely

Trace ingestion

CP-based
performance
summaries

PAG construction

CP computation and
activity ranking

trace streams

Profiling

Trace generation

Apache Flink,
Apache Spark,

TensorFlow,
Heron,

Timely Dataflow, ...

SNAILTRAIL IN ACTION

SNAILTRAIL CP-BASED SUMMARIES

▸ Activity Summary
▸ which activity type is a bottleneck?

�35

0 5 10 15
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

DataMessage
Unknown
Buffer

Deserialization
Serialization
Processing

Activity Summary

Optimize
serialization

Apache Flink: Dhalion WordCount Benchmark, 4 workers, 1s snapshots

�36

SNAILTRAIL CP-BASED SUMMARIES

▸ Activity Summary
▸ which activity type is a bottleneck?

▸ Straggler Summary
▸ which worker is a bottleneck?

�37

0 5 10 15
Snapshot

0.00

0.05

0.10

0.15

C
P

W1

W2

W3

W4

Straggler Summary

Steal work from W1

Apache Flink: Dhalion WordCount Benchmark, 4 workers, 1s snapshots

�38

SNAILTRAIL CP-BASED SUMMARIES

▸ Activity Summary
▸ which activity type is a bottleneck?

▸ Straggler Summary
▸ which worker is a bottleneck?

▸ Operator Summary
▸ which operator is a bottleneck?

�39

Operator Summary

Increase
flatmap’s parallelism

Apache Flink: Dhalion WordCount Benchmark, 10 workers, 1s snapshots

�40

SNAILTRAIL CP-BASED SUMMARIES

▸ Activity Summary
▸ which activity type is a bottleneck?

▸ Straggler Summary
▸ which worker is a bottleneck?

▸ Operator Summary
▸ which operator is a bottleneck?

▸ Communication Summary
▸ which communication channels are bottlenecks?

�41

Communication Criticality

Communication Summary

�42

0 1 2 3 4 5 6 7 8 9 10 11 12
Worker

0
1
2
3
4
5
6
7
8
9

10
11
12

W
or

ke
r

1 32 54 86 7 109 1211
Worker

W
or

ke
r

1
2
3
4
5
6
7
8
9

10
11
12

Collocate worker 5
with 2, 9, 10, 11

github.com/strymon-system/snailtrail

�43

https://github.com/strymon-system/snailtrail

Three steps is all you need:
fast, accurate, automatic scaling decisions

for distributed streaming dataflows
Vasiliki Kalavri, John Liagouris, Moritz Hoffmann,

Desislava Dimitrova, Matthew Forshaw, Timothy Roscoe

Systems Group, ETH Zurich

ev
en

ts
/s

time

idle resources

ev
en

ts
/s

time

SLO violation

Any streaming job will inevitably become
over- or under-provisioned in the future

ev
en

ts
/

s

time

load shedding

: input rate : throughput

�45

THE SCALING PROBLEM

�46

Given a logical dataflow with sources S1, S2, … Sn and rates λ1,
λ2, … λn identify the minimum parallelism πi per operator i,
such that the physical dataflow can sustain all source rates.

S1

S2

λ1

λ2

S1

S2

π=2

π=3

logical dataflow physical dataflow

AUTOMATIC SCALING OVERVIEW

�47

scaling
controllermetrics

policy

scaling action

detect
symptoms

decide whether
to scale

decide how
much to scale

EXISTING SCALING MODELS: QUEUING THEORY

▸ Metrics

▸ service time and waiting time per
tuple and per task

▸ total time spent processing a tuple
and all its derived results

▸ Policy

▸ each operator as a single-server
queuing system

▸ generalized Jackson networks

▸ Action

▸ predictive, at-once for all operators

�48

Too fine-grained,
impractical for

high-rate streams

Sampling degrades
accuracy

Simplified models make
strong assumptions

Unsuitable for complex
operators, e.g. sliding

windows, joins

EXISTING SCALING MODELS: CONTROL THEORY

▸ Metrics

▸ input and output signals

▸ delay of tuples that have just
entered the system

▸ Policy

▸ dataflow as a black-box

▸ SISO models - MIMO too
complex

▸ Action

▸ predictive, dataflow-wide
�49

The output signal
is the delay time

Performance depends on
parameter selection, e.g.
poles placement, sampling

period, damping

Cannot identify
individual bottlenecks
neither model 2-input

operators

EXISTING SCALING MODELS: RULES AND THRESHOLDS

▸ Metrics

▸ externally observed coarse-
grained and aggregates

▸ CPU utilization, throughput, back-
pressure signal

▸ Policy

▸ rule-based

▸ If CPU utilization > 70% and back-
pressure then scale up

▸ Action

▸ speculative, one operator at-a-time

�50

Noisy, sensitive
to interference,

misleading

Easy-to-obtain

Sensitive to thresholds and
require manual tuning

Oscillations, slow
convergence,
black-listing

effect of Dhalion’s scaling actions
in an initially under-provisioned wordcount dataflow

1
2

3 654

�51

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

observed view

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

�52

src
o1

o2

Time (s)

10 10 10

1 2 3 4

100 100
: busy
: waiting

0.5s

instrumentation

DS2 view

true rate = 200 rec/s

ο1 is the
bottleneck

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

observed view

�53

2 ο2 instances can
keep up with the rate

of 4 ο1 instances

THE DS2 MODEL: INSTRUMENTATION AND DATAFLOW DEPENDENCIES

▸ Collect metrics per configurable observation window W

▸ activity durations per worker

▸ records processed Rprc and records pushed to output Rpsd

▸ Capture dependencies through the dataflow graph itself

▸ assign an increasing sequential id to all operators in
topological order, starting from the sources

▸ represent as an adjacency matrix A

▸ Aijj = 1 iff operator i is upstream neighbor of j

�54

THE DS2 MODEL: USEFUL TIME

�55

The time spent by an operator instance in deserialization,
processing, and serialization activities.

‣ excludes any time spent waiting on input or on output
‣ amounts to the time an operator instance runs for if

executed in an ideal setting
‣ when there is no waiting the useful time is equal to the

observed time

Useful time Wu

THE DS2 MODEL: TRUE RATES

�56

True processing / output rates

Aggregated true processing / output rates

THE DS2 MODEL: OPTIMAL PARALLELISM

�57

Optimal parallelism per operator

captures
upstream operators

Aggregated true
output rate of

operator oj , when
oj itself and all
upstream ops

are deployed with
optimal parallelism

current parallelism
of operator i

Recursively computed as:

It can be computed for all
operators by traversing the

dataflow from left to right once

True output rate
of source j

�58

DS2 MODEL PROPERTIES

If operator scaling is linear, then:

▸ scale-up does not cause over-provisioning (no overshoot)

▸ scale-down does not cause under-provisioning (no
undershoot)

Ideal scaling acts as un upper bound when scaling up and as
a lower bound when scaling down:

▸ DS2 will converge monotonically to the target rate

�59

CONVERGENCE STEPS

�60

parallelism

initial rate

target predict
ion

actu
alIf the actual

scaling is linear,
convergence

takes one step

p0 p1

x

x

CONVERGENCE STEPS

parallelism

initial rate

target

x

predict
ion

x
actual

x error

when the actual
scaling is sub-linear,
convergence takes

more than one steps

p0 p1

�61

CONVERGENCE STEPS

parallelism
p0

initial rate

target

p1

predictio
n

actual

x

p2

x
In our experiments,

DS2 took up to three
steps to converge for

complex queries.

x

p3

�62

�63

DS2 operates online in a reactive setting

Instrumented
stream processor

Scaling Manager Scaling Policy

Metrics
Repository

invoke
re-scale job

report
metrics

monitor
pull
metrics

decision

Timely dataflow

Apache Flink

DS2 VS. DHALION ON HERON

�64

wordcountDS2 converges in
a single step for
both operators Dhalion scales one

operator at a time,
resulting to a total

of six steps

DS2 converges in
60s, i.e. as soon as

it receives the
Heron metrics

Dhalion converges
in 2000s

+10 counts

+12 mappers

Target rate: 16.700 rec/s

DS2 ON APACHE FLINK

�65

wordcount

Apache Flink
savepoint and

reconfiguration
takes ~30s

DS2 converges in two
steps for both

operators

DS2 reacts 3s
after the target

rate has
changed

Target rate: 2.000.000 rec/s

CONVERGENCE - NEXMARK

initial
parallelis

m

Q1:
flatmap

Q2:
filter

Q3:
incremental

join

Q5:
tumbling

window join

Q8:
sliding

window

Q11:
session
window

8 => 12 => 16 11 => 13 => 14 16 => 20 14 => 15 => 16 10 12 => 22 => 28

12 => 16 14 18 => 20 16 10 22 => 28

16 => 16 12 => 14 20 16 8 => 10 26 => 28

20 => 16 13 => 14 20 14 => 16 8 => 10 28

24 => 16 14 20 14 => 16 8 => 10 28

28 => 16 14 20 13 => 16 8 => 10 28

at most 3 steps

a single step for many queries
and initial configurations

=> : scaling action

scale-up

scale-down

�66

no
oscillations

fast convergence

true rates as
bounds to avoid
over/under-shoot

true rates through
instrumentation

dataflow
dependency model

predictive,
dataflow-wide

actions

externally
observed

threshold-
based

non-predictive,
single-operator

policy

scaling action

metrics
externally
observed

threshold-
based

non-predictive,
single-operator

policy

scaling action

metrics

DS2 SUMMARY

�67

github.com/strymon-system/ds2

�68

https://github.com/strymon-system/ds2

persistent
storage

resource
manager

auto-scaling
manager

simulator

external systems

current and historical
execution analysis results

resource
utilization

scaling
decisions

streaming (Strymon) application
output stream

input streams

ONGOING WORK

�69

profiler
activity stream

analyzer

activity graph

performance
analysis

state
repository

Megaphone: Live state migration
- Progressive, fine-grained state copies
- No stop-and-restart, no downtime
- Minimal latency spikes

Strymon integration with FASTER
- New, fast key-value store from Microsoft research
- Support for larger-than-memory state
- Fast in-place updates

Towards self-managed,
re-configurable streaming
dataflow systems

Vasia Kalavri
kalavriv@inf.ethz.ch

mailto:kalavriv@inf.ethz.ch?subject=

