===

Systems @ ETH ziricr

Towards self-managed.
re-configurable streaming
dataflow systems -

kalavriv@inf.ethz.ch

mailto:kalavriv@inf.ethz.ch?subject=

THE DATAFLOW MODEL
sk ® @& 7

» Computations as Directed Acyclic Graphs (DAGs)
» nodes are operators and edges are data channels

» operators can accumulate state, have multiple inputs, express event-
time custom window-based logic

» Transformations are data-parallel

» distributed workers (threads) execute one parallel instance of one of
more operators on disjoint data partitions

» Queries are long-running

» input streams are potentially unbounded

» results are continuously produced

DATAFLOW COMPUTATIONS

o Twitter source Count topics
o

ol

Extract hashtags Trends sink

—

1

o

—

p S W2

o)

=

(e |

source

Deployment

DATAFLOW WORKER ACTIVITIES

» Parallel workers perform activities

) receive message] .
- T e °
» deserialize A
. .
) process AT
X u V Z 9
» serialize K N
cC ¢
" & o —t—»
» send message
» Or are waiting for S O

» input (nothing in the buffer)

» output (no write buffer available)

STRYMON: ONLINE DATACENTER ANALYTICS AND MANAGEMENT

traces, configuration,
topology updates, ...

policy enforcement, queries, complex analytics,
what-if scenarios, ... simulations, ...

strymon.systems.ethz.ch

http://strymon.systems.ethz.ch

RECONFIGURABLE STREAM PROCESSING

streaming application

output streams

. » external systems
Input -
streams 8 h
> . .
trace streams SnaIITraII
profiler
G 2 |
@ backend Q;Q ﬁ N SD I P 1 8
scaling decisions ‘ online
performance
DS2 auto-scaling metrics
<
controller performance
.) summaries

0SDI"18

Generalizing Critical Paths for
Online Analysis of Distributed Dataflows

Moritz Hoffmann, Andrea Lattuada, John Liagouiris,
Vasiliki Kalavri, Desislava Dimitrova, Sebastian Wicki,
Zaheer Chothia, Timothy Roscoe

Systems Group, ETH Zurich

PERFORMANCE TROUBLESHOOTING

» long-running, dynamic workloads
» many tasks, activities, operators, dependencies

» conventional profiling tools provide aggregate information

Keyed Aggregation -> Sink:

!
Datafl oW g ra p h Source: Custom Source » FlatMap | Unnamed

Parallelism: 4 REBALANCE Parallelism: 2 HASH
Parallelism: 4

Subtasks
Bytes Parallelism Task W
b
08 g 4 [0fo] +Jolofol o]
b 1
;" 2017-10-19, 17:45:43 2017-10-19, 17:47:42 1m58s § 2.54 GB 12,844,494 4.59 GB 254,656,192 2 joo]2[o]ofe]o] m
I 1 by
I | ‘
‘ Start Time End Time Records received Bytes sent Records sent Attempt ost Status
i 2017-10-19, 17:45:43 6,401,851 | 2.29GB 126,924,569 1 alamari:43402 [RUNNING |
i |
' 2017-10-19, 17:45:43 6,442,643 127,731,623 alamari:43402 [RUNNING |
254,646,032 4 4 [00] 400 o] 0 RUNNING |

OPTIMIZING ACTIVITY DURATION

’ o . [) [] []
waiting deserialization

* s 'S L,\,_ \ - e ——) ,ﬂ
Processing is the most time-consuming activity
W2 waiting‘ . " "'

serializatio

W3

s deserialization

C

OPTIMIZING ACTIVITY DURATION

W2

serializatio

W3

deserialization

C

10

OPTIMIZING ACTIVITY DURATION

W1

W2 <

serializatio P

W3 ’

waiting

deserialization

C

11

OPTIMIZING ACTIVITY DURATION

serializatio deserialization

W3

—No benefit——M

12

CRITICAL PATH ANALYSIS

THE PROGRAM ACTIVITY GRAPH (PAG)

a b
W1
@ ® -~ ’
u = { 'l
timestamp: k+1, R4
worker: 2 .
4
W2 } |
A ,0—» Q
X Ju ' *s
’ 1}
’ .

¥ 4

¢ ., Nodes are timestamped events:
W3 " start or end of a worker activity >

C

t=k t=k+1

14

THE PROGRAM ACTIVITY GRAPH (PAG)

a b
W1
‘. (u, v) = {
* type: serialization
\‘ duration: 1
W2 ; }
X ¢ U Vv r AN
I' ‘\
Y 4
Y 4
c ./ Edges represent activities
W3 " annotated with a type and duration -
t=k t=k+1

15

CRITICAL PATH

W2

W3

The longest path in the execution history
(not considering waiting activities)

16

CRITICAL PATH

17

CRITICAL PATH

Reduced execution

18

POST-MORTEM CRITICAL PATH ANALYSIS

~

1. Collect traces during execution

‘job Istart‘ I-: ‘joblend‘

.\

.

~

(-)
2. Analyze traces offline
= o
- :
performance
summaries
- .

19

ONLINE CRITICAL PATH ANALYSIS

ONLINE ANALYSIS OF TRACE SNAPSHOTS

input stream

>
1 N N

periodic
snhapsho

trace snapshot

stream

_

output stream

>
e .

t

performance
summaries
stream

>
1 N N

>

21

PROGRAM ACTIVITY GRAPH SNAPSHOT

t

a b
W1
*---p
W2
H Q
X " U \"/ Z
C " d “
W3 % :
® o -

t=k t=k+1

22

» All paths have the same length: t. .t

23

» All paths have the same length: t. .t

24

» All paths have the same length: t. .t

25

» All paths have the same length: t. .t

» Choosing a random path might miss critical activities

26

» All paths have the same length: t. .t

» Choosing a random path might miss critical activities

27

» All paths have the same length: t. .t
» Choosing a random path might miss critical activities

» Enumerating all paths is impractical

28

All paths are

potentially part
of the evolving
critical path W3

W2

How to rank activities with regard to criticality?

Intuition: the more paths an activity appears on
the more probable it is that this activity is critical

29

CRITICAL PARTICIPATION (CP METRIC)

An estimation of the activity’s participation in the critical path

centrality: the number of
paths this activity appears on

\ activity duration: edge weight

CP, - Ca) - a,
N(te R ts)

/ Can be computed

total number of paths
in the snapshot

without path

enumeration!

32

ONLINE PERFORMANCE ANALYSIS WITH
SNAILTRAIL

SNAILTRAIL IN ACTION

reference application

trace streams

>

>

A

Apache Flink,
Apache Spark,
spark® Tensorklow,

Heron,
LA Timely Dataflow, .

TensorFlow

>

SnailTrail

EE W ."ﬁ"’. EE .
Timely
Trace ingestion

CP computation and
activity ranking

—— CP based
‘] G
performance

summaries

34

SNAILTRAIL CP-BASED SUMMARIES

» Activity Summary

» which activity type is a bottleneck?

35

Activity Summary

1.0
0.8
0 Optimize
O serialization
0.41
0.2
O'OO 5 10 15
Snapshot
BN DataMessage Deserialization
B Unknown Serialization
B Buffer B Processing
Apache Flink: Dhalion WordCount Benchmark, 4 workers, 1s snapshots

36

SNAILTRAIL CP-BASED SUMMARIES

» Activity Summary

» which activity type is a bottleneck?

» Straggler Summary

» which worker is a bottleneck?

37

Straggler Summary

. 0.10- Steal work from W1
@ W2
0.05-
W3
w4
0-004 5 10 15
Snapshot

Apache Flink: Dhalion WordCount Benchmark, 4 workers, 1s snapshots

38

SNAILTRAIL CP-BASED SUMMARIES

» Activity Summary

» which activity type is a bottleneck?
» Straggler Summary

» which worker is a bottleneck?

» Operator Summary

» which operator is a bottleneck?

39

Operator Summary

0.1251
0.1001
8. 0.075- Increase
NWW flatmap’s parallelism
0.050-
0.0251
0-000, 20 40
Snapshot
—— Count Flatmap

Apache Flink: Dhalion WordCount Benchmark, 10 workers, 1s snapshots

40

SNAILTRAIL CP-BASED SUMMARIES

» Activity Summary

» which activity type is a bottleneck?
» Straggler Summary

» which worker is a bottleneck?
» Operator Summary

» which operator is a bottleneck?

» Communication Summary

» which communication channels are bottlenecks?

41

Worker

- N W PhHh 01 O @

Communication Summary

—
= N

—
O O

Collocate worker 5
with2, 9,10, 11

1 2 3 4 5 6 7 8 9 10 11 12
Worker

Communication Criticality

42

)

github.com/strymon-system/snailtrail

43

https://github.com/strymon-system/snailtrail

fast, accurate, automatic scaling decisions
for distributed streaming dataflows

Vasiliki Kalavri, John Liagouris, Moritz Hoffmann,
Desislava Dimitrova, Matthew Forshaw, Timothy Roscoe

Systems Group, ETH Zurich

events/

Any streaming job will inevitably become
over- or under-provisioned in the future

A load shedding 1 idle resources 1 SLO violation
O"

events/s

time time

-------- :input rate : throughput

45

THE SCALING PROBLEM

logical dataflow physical dataflow

=2

Given a logical dataflow with sources S1 S, ... Sp and rates Ay,
A2 ... A\, identify the minimum parallelism n; per operator |,
such that the physical dataflow can sustain all source rates.

46

AUTOMATIC SCALING OVERVIEW

decide how
much to scale

scalin
9 L,

detect
symptoms

l'\,EE

metrics

controller

policy

decide whether
to scale

47

EXISTING SCALING MODELS:

Too fine-grained,

impractical for
» service time and waiting time per high-rate streams

tuple and per task

» Metrics

» total time spent processing a tuple Sampling degrades
and all its derived results accuracy
» Policy

Simplified models make

» each operator as a single-server .
strong assumptions

queuing system
» generalized Jackson networks Unsuitable for complex

» Action operators, e.g. sliding
windows, joins

» predictive, at-once for all operators

EXISTING SCALING MODELS:

» Metrics

» input and output signals

» delay of tuples that have just
entered the system

» Policy
» dataflow as a black-box

» SISO models - MIMO too
complex

» Action

» predictive, dataflow-wide

The output signal
is the delay time

Performance depends on
parameter selection, e.g.
poles placement, sampling

period, damping

Cannot identify
individual bottlenecks
neither model 2-input

operators

49

EXISTING SCALING MODELS:

» Metrics

» externally observed coarse-
grained and aggregates

» CPU utilization, throughput, back-
pressure signal
» Policy
» rule-based

» If CPU utilization > 70% and back-
pressure then scale up

» Action

» speculative, one operator at-a-time

Noisy, sensitive
to interference,
misleading

Easy-to-obtain

Sensitive to thresholds and
require manual tuning

Oscillations, slow
convergence,
black-listing

50

Output rate [records/s]

effect of Dhalion’s scaling actions
in an initially under-provisioned wordcount dataflow

3

17500

15000

12500 1

10000 1

75001

()

N %)
9 o
o o
o o

()

2

!

i |

c %fsﬁ{tg“
0N

- Source Rate
-—-=Target Rate

500

1000 1500 2000 2500 3000

Elapsed time [s]

51

~N

Which operator is the bottleneck?

What if we scale 01 x 4?

How much to scale 0,?

observed view

52

backpressure
target: 40 rec/s

2 Oy instances can
01 is the keep up with the rate

bottleneck of 4 o4 instances
s [
E (10 :
+ | —: busy 01 | :
e : waiting :
: Ty e e e true rate = 200 rec/s :
I I ——Time (s)
: 1 2 3 4 . o
: Instrumentation

53

THE DS2 MODEL:

» Collect metrics per configurable observation window W

» activity durations per worker

» records processed Ry, and records pushed to output Rpsg
» Capture dependencies through the dataflow graph itself

» assign an increasing sequential id to all operators in
topological order, starting from the sources

» represent as an adjacency matrix A

» Aj=1iff operatoriis upstream neighbor of |

54

THE DS2 MODEL.

Useful time W,

The time spent by an operator instance in deserialization,
processing, and serialization activities.

» excludes any time spent waiting on input or on output

» amounts to the time an operator instance runs for if
executed in an ideal setting

» when there is no waiting the useful time is equal to the
observed time

55

THE DS2 MODEL.

True processing / output rates

R
prc
Ay = W
U

Rpsd

O Wu

Aggregated true processing / output rates

k:p,f
oilA)) = Y A;
k=1

k=p;
Oj MO] — Z /l(ﬁ{
k=1

56

THE DS2 MODEL.

Optimal parallelism per operator

mi=|) Ajiioj[A]"}

V. j<i

captures
upstream operators

@Mﬂ -
Pi

Aggregated true
output rate of
operator o;, when
o; itself and all
upstream ops
are deployed with
optimal parallelism

n<i1<m

current parallelism

of operator i

57

Recursively computed as:
True output rate

of source j

][A Z Auj 0u] ;

Vuu<j

It can be computed for all
operators by traversing the
dataflow from left to right once

0<j<n

n<j<m

58

DS2 MODEL PROPERTIES

If operator scaling is linear, then:
» scale-up does not cause over-provisioning (no overshoot)

» scale-down does not cause under-provisioning (no
undershoot)

Ideal scaling acts as un upper bound when scaling up and as
a lower bound when scaling down:

» DS2 will converge monotonically to the target rate

59

CONVERGENCE STEPS

It the actual
scaling is linear,
convergence
takes one step

target

initial rate-

Po

P1
parallelism

60

CONVERGENCE STEPS

when the actual
scaling is sub-linear,
convergence takes
more than one steps

target

initial rate-

parallelism

61

CONVERGENCE STEPS

In our experiments,
DS2 took up to three
steps to converge for

complex queries.

target

initial rate

Po

parallelism

62

DS2 operates online in a reactive setting

Timely dataflow

re-scale job

Instrumented
stream processor

[Scaling Manager

report
metrics

e 4
.-
e
-
.
e

T
]

Metrics

Repository

pull
metrics

decision

[
L Scaling Policy }

DS2 VS. DHALION ON HERON

wordcount

P ————— -

DS2 converges in
. 301 — FlatMap (DS2)
a single step for —— Count (DS2)

both operators | === FlatMap (Dhalion)
—== Count (Dhalion)

10 ; Dhalion scales one
counts operator at a time,

resulting to a total
of six steps
rs

N
o

+12 mapp

#lnstances
(o]
ol

S S Dhalion converges
. . N in 2000s
it receives the | ~====-- r=-

Heron metrics 0 500 1000 1500 2000 2500 3000
Elapsed time [s]

DS2 converges in |
60s, i.e. as soon as]

Target rate: 16.700 rec/s

DS2 ON APACHE FLINK

wordcount
2000000 ====r)

£ 1500000 1
: ©
Apache Flink £ 1000000 -

—— Source Rate
A --= Target Rate

5 O
savepoint and 2 500000 -

reconfiguration : 1,
takes ~30s |
................................. FlatMap

2 1o | : : —-= Count
% - :: DS2 reacts 3s
A I i iy
£ o e rate has

5{ — R ———

200 400 600 800 1000 1200 1400 drEmgEe

DS2 converges in two Elapsed time [s]

steps for both

operators Target rate: 2.000.000 rec/s

65

CONVERGENCE - NEXMARK

at most 3 steps

Q11:
initial Q1: Q2: Q3: Q5: Q8: .
. e session
parallelis |flatmap filter incremental tumbling sliding .
. window
m‘——m jOIn wmdow jOIn wmdow

&3=> 12=>16 11=>13=>14 16 => 20 14=>15=>16 10 12=>22=>28)
12 => 16 14 18 => 20 16 10 22 =>28
16 => 16 12=>14 20 16 8=>10 26 => 28
20 => 16 13=>14 20 14=>16 8=>10 28
24 => 16 14 20 14=>16 8§=>10 28
[28 => 16 14 20 13=>16 8 => 1@ 28

scale-down
=> : scaling action

a single step for many queries

and initial configurations

66

DS2 SUMMARY

metrics

externally no
true rates through 4 _—
observed | | J oscillations
INstrumentation

policy
threshold-

based

true rates as
bounds to avoid
over/under-shoot

dataflow

dependency model

scaling action

predictive,

non-predictive, dataflow-wide
: : Jfast convergence
single-operator actions

67

»

github.com/strymon-system/ds2

68

https://github.com/strymon-system/ds2

ONGOING WORK

Megaphone: Live state migration

r"'“

i1
state
repository

- Progressive, fine-grained state copies

- No stop-and-restart, no downtime
- Minimal latency spikes

Strymon integration with FASTER

- New, fast key-value store from Microsoft research

- Support for larger-than-memory state

- Fast in-place updates

69

===

Systems @ ETH ziricr

Towards self-managed.
re-configurable streaming
dataflow systems -

kalavriv@inf.ethz.ch

mailto:kalavriv@inf.ethz.ch?subject=

