

Towards self-managed, re-configurable streaming dataflow systems

Vasia Kalavri kalavriv@inf.ethz.ch

THE DATAFLOW MODEL

- Computations as Directed Acyclic Graphs (DAGs)
 - nodes are operators and edges are data channels
 - operators can accumulate state, have multiple inputs, express eventtime custom window-based logic
- Transformations are data-parallel
 - distributed workers (threads) execute one parallel instance of one of more operators on disjoint data partitions
- Queries are long-running
 - input streams are potentially unbounded
 - results are continuously produced

DATAFLOW COMPUTATIONS

DATAFLOW WORKER ACTIVITIES

- Parallel workers perform activities
 - receive message
 - deserialize
 - process
 - serialize
 - send message
- Or are waiting for

- input (nothing in the buffer)
- output (no write buffer available)

STRYMON: ONLINE DATACENTER ANALYTICS AND MANAGEMENT

strymon.systems.ethz.ch

RECONFIGURABLE STREAM PROCESSING

Snailtrail: Generalizing Critical Paths for Online Analysis of Distributed Dataflows

Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki Kalavri, Desislava Dimitrova, Sebastian Wicki, Zaheer Chothia, Timothy Roscoe

Systems Group, ETH Zurich

PERFORMANCE TROUBLESHOOTING

- long-running, dynamic workloads
- many tasks, activities, operators, dependencies
- conventional profiling tools provide aggregate information

CRITICAL PATH ANALYSIS

THE PROGRAM ACTIVITY GRAPH (PAG)

THE PROGRAM ACTIVITY GRAPH (PAG)

CRITICAL PATH

The **longest** path in the execution history (not considering waiting activities)

CRITICAL PATH

CRITICAL PATH

POST-MORTEM CRITICAL PATH ANALYSIS

ONLINE CRITICAL PATH ANALYSIS

ONLINE ANALYSIS OF TRACE SNAPSHOTS

PROGRAM ACTIVITY GRAPH SNAPSHOT

▶ All paths have the same length: t_e t_s

▶ All paths have the same length: t_e t_s

▶ All paths have the same length: t_e t_s

- ▶ All paths have the same length: t_e t_s
- Choosing a random path might miss critical activities

- ▶ All paths have the same length: t_e t_s
- Choosing a random path might miss critical activities

- ▶ All paths have the same length: te ts
- Choosing a random path might miss critical activities
- Enumerating all paths is impractical

All paths are potentially part of the evolving critical path

How to rank activities with regard to criticality?

Intuition: the more paths an activity appears on the more probable it is that this activity is critical

CRITICAL PARTICIPATION (CP METRIC)

An estimation of the activity's participation in the critical path

centrality: the number of paths this activity appears on

total number of paths in the snapshot

Can be computed without path enumeration!

ONLINE PERFORMANCE ANALYSIS WITH SNAILTRAIL

SNAILTRAIL IN ACTION

SNAILTRAIL CP-BASED SUMMARIES

- Activity Summary
 - which activity type is a bottleneck?

Activity Summary

Apache Flink: Dhalion WordCount Benchmark, 4 workers, 1s snapshots

SNAILTRAIL CP-BASED SUMMARIES

- Activity Summary
 - which activity type is a bottleneck?
- Straggler Summary
 - which worker is a bottleneck?

Straggler Summary

Apache Flink: Dhalion WordCount Benchmark, 4 workers, 1s snapshots

SNAILTRAIL CP-BASED SUMMARIES

- Activity Summary
 - which activity type is a bottleneck?
- Straggler Summary
 - which worker is a bottleneck?
- Operator Summary
 - which operator is a bottleneck?

Operator Summary

Apache Flink: Dhalion WordCount Benchmark, 10 workers, 1s snapshots

SNAILTRAIL CP-BASED SUMMARIES

- Activity Summary
 - which activity type is a bottleneck?
- Straggler Summary
 - which worker is a bottleneck?
- Operator Summary
 - which operator is a bottleneck?
- Communication Summary
 - which communication channels are bottlenecks?

Communication Summary

github.com/strymon-system/snailtrail

Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows

Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dimitrova, Matthew Forshaw, Timothy Roscoe

Systems Group, ETH Zurich

Any streaming job will inevitably become over- or under-provisioned in the future

THE SCALING PROBLEM

Given a logical dataflow with sources $S_1, S_2, ... S_n$ and rates $\lambda_1, \lambda_2, ... \lambda_n$ identify **the minimum parallelism** π_i per operator i, such that the physical dataflow can **sustain all source rates**.

AUTOMATIC SCALING OVERVIEW

EXISTING SCALING MODELS: QUEUING THEORY

Metrics

- service time and waiting time per tuple and per task
- total time spent processing a tuple and all its derived results

Policy

- each operator as a single-server queuing system
- generalized Jackson networks

Action

predictive, at-once for all operators

Too fine-grained, impractical for high-rate streams

Sampling **degrades** accuracy

Simplified models make strong assumptions

Unsuitable for complex operators, e.g. sliding windows, joins

EXISTING SCALING MODELS: CONTROL THEORY

Metrics

- input and output signals
- delay of tuples that have just entered the system

Policy

- dataflow as a black-box
- SISO models MIMO too complex

Action

predictive, dataflow-wide

The output signal is the **delay** time

Performance depends on parameter selection, e.g. poles placement, sampling period, damping

Cannot identify individual **bottlenecks** neither model 2-input operators

EXISTING SCALING MODELS: RULES AND THRESHOLDS

Metrics

- externally observed coarsegrained and aggregates
- CPU utilization, throughput, backpressure signal

Policy

- rule-based
- If CPU utilization > 70% and backpressure then scale up

Action

speculative, one operator at-a-time

Noisy, sensitive to interference, misleading

Easy-to-obtain

Sensitive to thresholds and require **manual tuning**

Oscillations, slow convergence, black-listing

effect of Dhalion's scaling actions in an initially under-provisioned wordcount dataflow

Which operator is the bottleneck?

What if we scale $o_1 \times 4$?

How much to scale o₂?

THE DS2 MODEL: INSTRUMENTATION AND DATAFLOW DEPENDENCIES

- Collect metrics per configurable observation window W
 - activity durations per worker
 - ightharpoonup records processed R_{prc} and records pushed to output R_{psd}
- Capture dependencies through the dataflow graph itself
 - assign an increasing sequential id to all operators in topological order, starting from the sources
 - represent as an adjacency matrix A
 - ▶ A_{ij} = 1 iff operator i is upstream neighbor of j

THE DS2 MODEL: USEFUL TIME

Useful time W_u

The time spent by an operator instance in **deserialization**, **processing**, and **serialization** activities.

- excludes any time spent waiting on input or on output
- amounts to the time an operator instance runs for if executed in an ideal setting
 - when there is no waiting the useful time is equal to the observed time

THE DS2 MODEL: TRUE RATES

True processing / output rates

$$\lambda_p = \frac{R_{\mathrm{prc}}}{W_u}$$

$$\lambda_o = \frac{R_{\mathrm{psd}}}{W_u}$$

Aggregated true processing / output rates

$$o_i[\lambda_p] = \sum_{k=1}^{k=p_i} \lambda_p^k \qquad o_i[\lambda_o] = \sum_{k=1}^{k=p_i} \lambda_o^k$$

THE DS2 MODEL: OPTIMAL PARALLELISM

Optimal parallelism per operator

$$\pi_i = \left[\sum_{\forall j: j < i} A_{ji} \left[o_j [\lambda_o]^* \cdot \left(\frac{o_i [\lambda_p]}{p_i} \right)^{-1} \right], n \le i < m \right]$$

captures upstream operators

Aggregated true
output rate of
operator o_j, when
o_j itself and all
upstream ops
are deployed with
optimal parallelism

current parallelism of operator i

Recursively computed as:

True output rate of source j

$$o_{j}[\lambda_{o}]^{*} = \begin{cases} o_{j}[\lambda_{o}] = \lambda_{\text{src}}^{j}, & 0 \leq j < n \\ \frac{o_{j}[\lambda_{o}]}{o_{j}[\lambda_{p}]} \cdot \sum_{\forall u: u < j} A_{uj} \cdot o_{u}[\lambda_{o}]^{*}, & n \leq j < m \end{cases}$$

It can be computed **for all operators** by traversing the
dataflow from left to right **once**

DS2 MODEL PROPERTIES

If operator scaling is linear, then:

- scale-up does not cause over-provisioning (no overshoot)
- scale-down does not cause under-provisioning (no undershoot)

Ideal scaling acts as un **upper bound** when scaling up and as a **lower bound** when scaling down:

▶ DS2 will converge monotonically to the target rate

CONVERGENCE STEPS

If the actual scaling is **linear**, convergence takes **one** step

CONVERGENCE STEPS

when the actual scaling is **sub-linear**, convergence takes **more than one** steps

CONVERGENCE STEPS

In our experiments,
DS2 took **up to three steps** to converge for
complex queries.

DS2 operates online in a reactive setting

DS2 VS. DHALION ON HERON

Target rate: 16.700 rec/s

DS2 ON APACHE FLINK

CONVERGENCE - NEXMARK

at most **3 steps Q11**: initial **Q1**: **Q2**: **Q3**: **Q5**: **Q8**: session filter parallelis flatmap tumbling sliding incremental window join window join window m scale-up 12 => 22 => **28** <= 8 10 12 => **16** 11 => 13 => **14** 16 => 20 14 => 15 => **16** 12 => 16 14 18 => **20** 16 10 22 => **28** 16 => 16 12 => **14** 20 16 8 => 10 26 => **28** 20 => 16 14 => **16** 8 => 10 13 => **14** 20 28 24 => 16 14 20 14 => **16** 8 => 10 28 28 => 16 14 20 13 => **16** 8 => 10 28

a single step for many queries and initial configurations

scale-down

=> : scaling action

DS2 SUMMARY

metrics externally observed

policy thresholdbased

scaling action

non-predictive, single-operator

true rates through instrumentation

dataflow dependency model

> predictive, dataflow-wide actions

github.com/strymon-system/ds2

ONGOING WORK

streaming (Strymon) application

Towards self-managed, re-configurable streaming dataflow systems

Vasia Kalavri kalavriv@inf.ethz.ch