
Introduction to HPC-UGent
Jan 20th 2020

https://www.ugent.be/hpc/en/training/materials/2020/introhpcugent

 hpc@ugent.be https://ugent.be/hpc

https://www.ugent.be/hpc/en/training/materials/2020/introhpcugent
mailto:hpc@ugent.be
https://ugent.be/hpc

• Inform you of HPC-UGent services and infrastructure

• Learn what the benefit can be for your research

• Get you started on the central HPC infrastructure at UGent

• Successfully connect to the HPC infrastructure

• Successfully launch your first job

• Figure out how to leverage it for your research

• Answer any questions you may have

About this training – purpose

2

• An HPC tutorial is available, applicable for all VSC infrastructure

• Download it here: https://www.ugent.be/hpc/en/support/documentation.htm

• This is work in progress. If you find errors, do let us know.

• We will specifically use information from these chapters:

1/ Introduction to HPC 4/ Running batch jobs

2/ Getting an HPC account 6/ Running jobs with input/output data

3/ Connecting to the HPC infrastructure 11/ Fine-tuning job specifications

About this training – HPC tutorial

3

https://www.ugent.be/hpc/en/support/documentation.htm

Part of ICT Department of Ghent University

Our mission
HPC-UGent provides centralised scientific computing services,
training, and support for researchers from Ghent University,
industry, and other knowledge institutes.

Our core values
Empowerment - Centralisation - Automation - Collaboration

HPC-UGent

4

hpc@ugent.be

mailto:hpc@ugent.be

HPC-UGent: staff

5

Stijn De Weirdt
technical lead

Kenneth Hoste
user support & training

Andy Georges
sysadmin, tools

Ewald Pauwels
team lead

Wouter Depypere
sysadmin, hardware

Kenneth Waegeman
sysadmin, storage

Álvaro Simón García
cloud, user support

Balázs Hajgató
sysadmin, tools

Bart Verheyde
sysadmin, hardware

High Performance Computing (HPC) is running computations on a
supercomputer, a system at the frontline of contemporary
processing capacity – particularly in terms of size, supported degree
of parallelism, network interconnect and (total) available memory &
disk space.

A computer cluster consists of a set of loosely or tightly connected
computers that work together so that in many respects they can be
viewed as a single system.

 (a.k.a. “supercomputing” or more broadly “scientific computing”)

What is High Performance Computing?

6

harness power of multiple interconnected cores/nodes/processing units

What is High Performance Computing?

7 6

8

Everyday applications of supercomputing

Scientific applications of supercomputing

9

Modern servers, also referred to as (worker)nodes in the context of
HPC, include one or more sockets, each housing a multi-core
processor (next to memory, disk(s), network cards, …).
A modern (micro)processor consists of multiple cores that are used to
execute computations.

Cores, CPUs, processors, sockets, (worker)nodes

10

(worker)node
processor (in socket)
idle core
active core
memory (RAM)

example: workernode
with two 16-core

processors running
a single core job

(not included in picture:
local disk, network cards, ...)

In parallel software, many calculations are carried out simultaneously.
This is based on the principle that large problems can often be divided
into smaller tasks, which are then solved concurrently (“in parallel”).
Example: OpenFOAM can easily use 160 cores at the same time to solve a CFD problem

Parallel programming paradigms:
OpenMP for shared memory systems (multithreading) -> on cores of a single node
MPI for distributed memory systems (multiprocessing) -> on cores of multiple nodes

Parallel vs sequential software

11

OpenMP software can
use multiple or all

cores in a single node

MPI software
can use (all) cores
in multiple nodes

Sequential (a.k.a. serial) software does not do calculations in parallel,
i.e. it only uses one single core of a single workernode.

This type of software does not run faster by just throwing cores at it...

But, you can run multiple instances at the same time!
e.g., you can run a Python script 100 times on 100 cores to quickly analyse 100 datasets

Parallel vs sequential programs

12

Centralised hardware
in the UGent datacenter
at campus Sterre (building S10)

13

Centralised hardware

14

15

1548 - 1620
°Bruges

STEVIN
HPC

infrastructure

Financing by: HPC-UGent
users

HPC-UGent Tier-2 (STEVIN): central investments

HPC-UGent Tier-2 (STEVIN)

16

https://www.ugent.be/hpc/en/infrastructure

https://www.ugent.be/hpc/en/infrastructure

Network connections between nodes ('interconnect')

 Ethernet: 1-10 Gbit/s Infiniband: 50 - 100 Gbit/s

 € €€(€)
 for single core/node jobs required for MPI jobs
 (too slow for fast inter-node communication)

HPC-UGent Tier-2 (STEVIN)

17

HPC-UGent Tier-2 (STEVIN)

18

https://www.ugent.be/hpc/en/infrastructure

"joltik": new GPU cluster (currently in pilot)

• 10 workernodes, each with:

• 2x 16-core Intel Xeon Gold 6242 2.8GHz (Cascade Lake)

• 230GB (usable) RAM memory in total

• 4 NIVIDIA Volta V100 GPUs (32GB GPU memory)

• Infiniband interconnect (double EDR)

• available software: TensorFlow, PyTorch, GROMACS, ...

ETA for general availability: February 2020

https://www.ugent.be/hpc/en/infrastructure

VSC Tier-2 infrastructure

19

Antwerp University association
Brussels University association
Ghent University association
KU Leuven association
Limburg association University-Colleges

Vlaams Supercomputer Centrum
(Flemish Supercomputer Center)

https://www.vscentrum.be/offer

VSC Tier-1 – BrENIAC (@ KUL)

20

For up to date information, see:
https://www.vscentrum.be/tier1

(16,240 cores in total)

extension brings total compute power to ~1.5 PFlops
• 408 additional workernodes,

each with 2x Intel Skylake 14-core processors
• + double the scratch storage volume

21

For academics (all Flemish research centers):

• Free of charge

• Starting Grant (500 node days)

• Fill in application form (https://www.vscentrum.be/tier1),

send it to hpcinfo@kuleuven.be (cc hpc@ugent.be)

• Project access (500 to +5000 nodedays)

• 3 evaluation moments per year

• Application form: see https://www.vscentrum.be/tier1

• Don’t hesitate to contact hpc@ugent.be for help!

VSC Tier-1 – BrENIAC (@ KUL)

mailto:hpcinfo@kuleuven.be
mailto:hpc@ugent.be
https://www.vscentrum.be/en/access-and-infrastructure/tier-1
mailto:hpc@ugent.be

22

For industry:

• Exploratory access (500 node days)

• Free of charge

• Contact hpc@ugent.be

• Contract access

• FWO/UGent/company contract

• Payed usage (~13 euro / node / day)

• Contact hpc@ugent.be

• More information: https://www.vscentrum.be/tier1

VSC Tier-1 – BrENIAC (@ KUL)

mailto:hpc@ugent.be
mailto:hpc@ugent.be
https://www.vscentrum.be/en/access-and-infrastructure/tier-1

Getting a VSC account

23

• See Chapter 2 in HPC-UGent tutorial
• https://www.ugent.be/hpc/en/access/faq/access
• All users of AUGent can request a VSC account

• Researchers & staff
• Master/Bachelor students (after motivation of ZAP)

• VSC account can be used to access HPC infrastructure on all VSC sites
• Subscribed to hpc-announce and hpc-users mailing lists
• Beware of using HPC for teaching/exam purposes!

• No guarantee on HPC availability (power outage/maintenance)
• Have a backup plan at hand
• Advisable teaching/exam formula: project work

https://www.ugent.be/hpc/en/access/faq/access

Managing your VSC account

24

You can manage your VSC account via the VSC account page:

https://account.vscentrum.be

https://account.vscentrum.be

25

1. Connect to login nodes
2. Transfer your files
3. (Compile your code and test it)
4. Create a job script
5. Submit your job
6. Be patient

• Your job gets into the queue
• Your job gets executed
• Your job finishes

7. Move your results

Workflow on HPC infrastructure

26

High-level overview of HPC-UGent infrastructure

Connected to an HPC-UGent login node

27

• command line environment a.k.a. 'shell' a.k.a. bash

• type a command and hit "Enter" to execute it

• think/double check before executing, commands can be destructive!

• some commands take arguments or options (these start with - or --)

• right-left arrow keys: go forward/backward on current command line

• up/down arrow keys: access command history

• Ctrl-A / Ctrl-E: go to start/end of command line

• Ctrl-R: search through command history

• any line that starts with a '#' (hash) is a comment (not a command)

Basic Linux shell usage (interactive)

28

Basic Linux shell commands: navigation

29

 ls list files/directories in current directory ("what's here?")

ls -l long listing (more information)

ls -lrt long listing and sorted by last changed (reversed)

ls example show contents of directory named 'example'

 cd change directory ("go to ...")

cd example change to directory named 'example'

cd - change to previous directory

cd (without any argument): change back to home directory

pwd show present working directory ("where am I?")

Basic Linux shell commands: files & directories

30There is no "trash bin", if you remove something with 'rm', it's gone forever!

 mkdir create directory with specified name (min. 1 argument required)

 mkdir -p create directory + all missing parent directories

 cp copying of files/directories (min. 2 arguments required)

 cp -a recursive copy (& preserve permissions), required for directories

 mv moving/renaming of files/directories (min. 2 arguments required)

 ln -s create symbolic link between two locations (2 arguments required)

 rm removing files (min. 1 argument required) BE CAREFUL!

 rm -f forced removal (silent if there's nothing to remove)

 rm -r recursive removal (required for directories)

 rm -rf forced recursive removal (better think twice before using this...)

Basic Linux shell: environment variables

31

• environment variables are basically "labeled boxes" (with something inside)

• defining an environment variable named $EXAMPLE with value 12345 :

export EXAMPLE=12345

(note: no output from 'export' command, no $, no spaces around '=')

• showing the contents of an environment variable ($ indicates name of env. var.)

echo $EXAMPLE

• using non-existing environment variables does not produce errors!

• a non-existing environment variable is equivalent to an empty value (be careful!)

• environment variables are only defined in the current session/job (not persistent)!

• print all currently defined environment variables with env | sort

Basic Linux shell: file paths

32

• file paths are locations to files & directories on a file system

• . is a shorthand for the current directory, .. for the parent directory
• file paths can be either:

• relative to the current directory
examples: file1.txt , dir1/file2.txt , ../../dir2/

• absolute (start from /, the 'root' of the filesystem)
example: /user/gent/400/vsc40000

• environment variables often have file paths as a value  
examples: $HOME, $VSC_DATA, $VSC_SCRATCH, $TMPDIR, ...

• we strongly recommend to use the provided environment variables 
examples: $VSC_DATA/project1, $VSC_SCRATCH/project1/12345.out

Basic Linux shell: file contents, editing, output redirection

33

• you can inspect the contents of (short) files using the cat command

• for long files, you can use:

• head or tail to inspect the first/last lines of the file

• a pager command like less (scroll with arrow keys or space bar, exit with 'q')

• nano is a relatively easy-to-use command line editor (^ means Ctrl)

• to capture the output of a command, you can use output redirection:

• capturing stdout (normal output): command > out.txt

• capturing stderr (errors & warnings): command 2> err.txt

• capturing both in a single file: command &> err.txt

Basic Linux tutorial

34

• a basic Linux tutorial is available in the HPC-UGent documentation,
available at https://www.ugent.be/hpc/en/support/documentation.htm

• covers basic usage of the shell environment

• explains commonly used commands

• focus on HPC context & job scripts

• includes a couple of basic exercises

• for questions or problems,

don't hesitate to contact hpc@ugent.be !

https://www.ugent.be/hpc/en/support/documentation.htm
mailto:hpc@ugent.be

35

1. Connect to login nodes
2. Transfer your files
3. (Compile your code and test it)
4. Create a job script
5. Submit your job
6. Be patient

• Your job gets into the queue
• Your job gets executed
• Your job finishes

7. Move your results

See Chapter 3 in HPC-UGent tutorial
• Users interact with the HPC infrastructure via the login nodes
• No direct access to the workernodes

(except when a job is running on it)

Workflow on HPC infrastructure

Transferring files to/from the HPC-UGent infrastructure

36

• see section 3.2 in HPC-UGent tutorial for detailed information
• via login nodes
• on Linux or macOS:

• using 'scp' in terminal window (use 'scp -r' for directories)
• or 'rsync' for large transfers (can be restarted)

• or graphical tool like built-in file manager or Cyberduck
• on Windows: WinSCP tool (left: own system; right: HPC; drag 'n drop)

Workflow on HPC infrastructure

37

1. Connect to login nodes
2. Transfer your files
3. (Compile your code and test it)
4. Create a job script
5. Submit your job
6. Be patient

• Your job gets into the queue
• Your job gets executed
• Your job finishes

7. Move your results

• Choose correct PBS directives (Chapter 4, 11)
• Load software modules (Chapter 4)
• Useful environment variables (Chapter 4)
• Access files on shared filesystems (Chapter 6)

A job (shell) script is a text file that specifies:

• the resources that are required by the calculation

(number of nodes/cores, amount of memory, how much time, ...)

• the software that is used for the calculation

(via module load commands)

• the steps that should be done to execute the calculation

(starting from $HOME), specified as shell commands, typically:

1) staging in of input files

2) running the calculation

3) staging out of results

What is a job script?

38

#!/bin/bash

echo "hello world"

• required resources can be specified via #PBS lines in job script (or via qsub)
• maximum walltime: 72 hours
• for longer jobs, use checkpointing

• preferably internal/application checkpointing
• external checkpointing by submitting jobs via csub

• see Chapter 14 in HPC-UGent tutorial

Job scripts: required resources via #PBS directives

39

#!/bin/bash

#PBS -N solving_42 ## job name

#PBS -l nodes=1:ppn=4 ## single-node job, 4 cores

#PBS -l walltime=10:00:00 ## max. 10h of wall time
#PBS -l vmem=50gb ## max. 50GB virtual memory

<rest of job script>

• All user-end software is made available via modules
• Modules prepare the environment for using the software
• Module naming scheme: <name>/<version>-<toolchain>[-<suffix>]

Load a module to use the software:
$ module load Python/3.6.6-intel-2018b

See currently loaded modules using:
$ module list or $ ml

Get overview of available modules using:
$ module avail or $ ml av

• Only mix modules built with the same (version of) compiler toolchain.
e.g., intel (Intel compilers, Intel MPI, Intel MKL (BLAS, LAPACK))

• See also section 4.1 in HPC-UGent tutorial

Job scripts: software modules

40

• $PBS_JOBID
• job id of running job

• $PBS_O_WORKDIR
• directory from which job was submitted on login node
• common to use ‘cd $PBS_O_WORKDIR‘ at beginning of job script

• $PBS_ARRAYID
• array id of running job; only relevant when submitting array jobs (qsub -t)

• $TMPDIR
• Local directory specific to running job
• Cleaned up automatically when job is done!

• $EBROOTFOO, $EBVERSIONFOO
• root directory/version for software package Foo
• only available when module for Foo is loaded

Job scripts: useful environment variables

41

(most of these are only defined in the context of jobs!)

• See Section 6.2 in HPC-UGent tutorial
• Think about input/output:

• How will you stage in your data and input files?
• How will you stage out your output files?

• Manually (on login nodes) vs automatically (as a part of job script)

• Home filesystem: only for limited number of small files & scripts
• Data filesystem ($VSC_DATA*): ‘long-term’ storage, large files
• Scratch filesystems ($VSC_SCRATCH*): for ‘live’ input/output data in jobs

Job scripts: input data & filesystems

42

• home directory ($VSC_HOME): 3GB (fixed)

• personal data directory ($VSC_DATA): 25GB (fixed)

• personal scratch directory ($VSC_SCRATCH): 25GB (fixed)

• current quota usage can be consulted on VSC accountpage
 https://account.vscentrum.be

• more storage quota (GBs, TBs) available for virtual organisations (VOs)
 see Section 6.7 in HPC-UGent tutorial

• additional quota can be requested via https://account.vscentrum.be/django/vo/edit
• shared directories with VO members: $VSC_DATA_VO, $VSC_SCRATCH_VO

• personal VO subdirectories: $VSC_DATA_VO_USER, $VSC_SCRATCH_VO_USER

Storage quota

43

https://account.vscentrum.be
https://account.vscentrum.be/django/vo/edit

• consult VSC accountpage - https://account.vscentrum.be ("View Account" tab)
(for now, only data volumes, not number of files (inode quota))

Current storage usage - personal directories

44

https://account.vscentrum.be

Current storage usage - own VO directories

45

• consult VSC accountpage - https://account.vscentrum.be ("View Account" tab)
(for now, only data volumes, not number of files (inode quota))

https://account.vscentrum.be

• consult VSC accountpage - https://account.vscentrum.be ("View VO" tab)
(for now, only data volumes, not number of files (inode quota))

• detailed info per VO member can only be consulted by VO administrators!

Current storage usage - total VO usage

46

https://account.vscentrum.be

Job scripts: full example (single-core job)

47

#!/bin/bash

#PBS -N count_example ## job name

#PBS -l nodes=1:ppn=1 ## single-node job, single core

#PBS -l walltime=2:00:00 ## max. 2h of wall time

module load Python/3.6.6-intel-2018b

copy input data from location where job was submitted from

cp $PBS_O_WORKDIR/input.txt $TMPDIR

go to temporary working directory (on local disk) & run

cd $TMPDIR

python -c "print(len(open('input.txt').read()))" > output.txt

copy back output data, ensure unique filename using $PBS_JOBID

cp output.txt $VSC_DATA/output_${PBS_JOBID}.txt

Job scripts: full example (multi-node job)

48

#!/bin/bash

#PBS -N mpi_hello ## job name

#PBS -l nodes=2:ppn=all ## 2 nodes, all cores per node

#PBS -l walltime=2:00:00 ## max. 2h of wall time

module load intel/2018b

module load vsc-mympirun

go to working directory, compile and run MPI hello world

cd $PBS_O_WORKDIR

mpicc mpi_hello.c -o mpi_hello

mympirun ./mpi_hello

• Your job script may produce informative/warning/error messages.

• Two output files are created for each job: stdout (*.o) + stderr (*.e)

• Located in directory where job was submitted from (by default)

• Messages produced by a particular command in the job script

can be "caught" and redirected to a particular file instead.

 example > out.log 2> err.log

(see section 5.1 of our Linux tutorial for more details)

• In addition, the software used for the calculation may have generated

additional output files (very software-specific).

Jobs scripts: generated output files

49

50

1. Connect to login nodes
2. Transfer your files
3. (Compile your code and test it)
4. Create a job script
5. Submit your job
6. Be patient

• Your job gets into the queue
• Your job gets executed
• Your job finishes

7. Move your results

• Chapter 4 in course notes
• Demo: qsub, qstat, qdel
• Job scheduling

Workflow on HPC infrastructure

• Submit job scripts from a login node to a cluster for execution using qsub:
$ module swap cluster/golett

$ qsub example.sh

12345.master19.golett.gent.vsc

• An overview of the active jobs is available via qstat:
$ qstat

Job id Name User Time Use S Queue

-------------- ------ ---------- -------- - -----

12345.master19 example vsc40000 07:39:30 R long

• To remove a job that is no longer necessary, use qdel:
$ qdel 12345

Demo: qsub, qstat, qdel

51

• All our clusters use a fair-share scheduling policy.
• No guarantees on when job will start, so plan ahead!
• Job priority is determined by:

• historical usage
• aim is to balance usage over users
• infrequent/frequent users => higher/lower priority

• requested resources (# nodes/cores, walltime, memory, ...)
• larger resource request => lower priority

• time waiting in queue
• queued jobs get higher priority over time

• user limits
• avoid that a single user fills up an entire cluster

Job scheduling

52

• Use case: lots of ((very) short) single-core tasks
• Submitting lots of tiny jobs (minutes of walltime) is not a good idea

• overhead for each job (node health checks), lots of bookkeeping (job scripts, failed jobs, output files)

• Better approach:
• Array jobs

• Single job script, but still lots of submitted jobs
• Each job is assigned a unique id ($PBS_ARRAYID); can be used to select input file, parameters, …

• GNU parallel (https://www.gnu.org/software/parallel/parallel_tutorial.html)
• General-purpose tool to easily running shell commands in parallel with different inputs
• Use ‘parallel’ command in your job script

• Worker (see Chapter 12 in HPC-UGent tutorial https://www.ugent.be/hpc/en/support/documentation.htm)
• One single job that processes a bunch of tasks (multi-core or even multi-node)
• Job script is parameterized, submit with ‘wsub’ rather than ‘qsub’

Embarrassingly parallel jobs

53

https://www.gnu.org/software/parallel/parallel_tutorial.html)
https://www.gnu.org/software/parallel/parallel_tutorial.html)
https://www.ugent.be/hpc/en/support/documentation.htm

To submit a request for software installation:
 https://www.ugent.be/hpc/en/support/software-installation-request
Always include:

• software name and website
• location to download source files

• or make install files available in your account

• build instructions (if you have them)
• a simple test case with expected output

• including instructions on how to run it

Requests may take a while to process; make the request sooner rather than later!

 http://easybuilders.github.io/easybuild

Software installations

54

https://www.ugent.be/hpc/en/support/software-installation-request
http://hpcugent.github.io/easybuild/
http://easybuilders.github.io/easybuild

• Documentation is available at:

• https://www.ugent.be/hpc/en/support/documentation.htm
• HPC tutorial, basic Linux tutorial

• Training sessions - https://www.ugent.be/hpc/en/training/training

• upcoming sessions in Ghent:

• Introduction to multithreading and OpenMP (28-29 May 2020)

• Introduction to MPI (3 June 2020)

• HPC-UGent user meeting (17 Feb 2020) 
see https://www.ugent.be/hpc/en/training/2020/usermeeting

Documentation & training

55

https://www.ugent.be/hpc/en/support/documentation.htm
https://www.ugent.be/hpc/en/training/training
https://www.ugent.be/hpc/en/training/2020/usermeeting

Don't hesitate to contact HPC-UGent support: hpc@ugent.be

Always include:
• VSC login id
• clear description of problem (or question)
• location of job script and output/error files in your account

• don’t send them in attachment, we prefer to look at it ‘in context’
• job IDs, which cluster

Preferably use your UGent email address.

Alternatives:
• short meeting (for complex problems, big projects)
• hpc-users mailing list

Questions, problems, getting help

56

mailto:hpc@ugent.be

