

DEPARTMENT VIROLOGY, PARASITOLOGY, AND IMMUNOLOGY RESEARCH GROUP OF VIROLOGY

Linking Nanopore sequencing & High-Performance Computing

HPC UGent User Meeting

Nick Vereecke 28 June 2021

Presentation Outline

- Nanopore sequencing & Applications
- SARS-CoV-2 Sequencing
- Bacterial Whole Genome Sequencing

Nanopore sequencing & Applications

Approach	Single Molecule	Sequencing by Synthesis
PCR-dependent	No, but possible	Yes
Read length	Up to Mbps	150-300 bp (x2)
Read Quality	Q20 ²⁰²¹	Q30
Throughput	Real-Time	Days > Months
Instrument cost	\$	\$\$\$

Approach	Single Molecule	Sequencing by Synthesis
PCR-dependent	No, but possible	Yes
Read length	Up to Mbps	150-300 bp (x2)
Read Quality	Q20 ²⁰²¹	Q30
Throughput	Real-Time	Days > Months
Instrument cost	\$	\$\$\$

- Third-Generation Sequencing
- Single Molecule label-free sequencing
- \circ Versatile

Approach	Single Molecule	Sequencing by Synthesis
PCR-dependent	No, but possible	Yes
Read length	Up to Mbps	150-300 bp (x2)
Read Quality	Q20 ²⁰²¹	Q30
Throughput	Real-Time	Days > Months
Instrument cost	\$	\$\$\$
Versatility	High	Medium
In-field	Yes	No

Dr. S. Theuns; 2019

Approach	Single Molecule	Sequencing by Synthesis
PCR-dependent	No, but possible	Yes
Read length	Up to Mbps	150-300 bp (x2)
Read Quality	Q20 ²⁰²¹	Q30
Throughput	Real-Time	Days > Months
Throughput Instrument cost	Real-Time \$	Days > Months \$\$\$
Throughput Instrument cost Versatility	Real-Time \$ High	Days > Months \$\$\$ Medium

Current raw read QC = 98.3%

= 7 mistakes in 400 bp amplicon= 85 mistakes in 5,000 bp reads

(Λ)	Raw-read accuracy	99.3 %, > Q20
(Duplex	99.8%, ~ Q29
	SNP detection (F1 scores human)	SNV: 99.9 % ¹ Indel: 98.5 % ²
	Assembly⁺ (Human)	80 Mbase N50 ³ Q 47
	Assembly (Bacterial)	Circular > Q 50
	SV detection (F1 scores human)	96%
	Methylation included	6mA, 5mC, 5hmC

London Calling 2021

Error probability	Accuracy
0.1 (1 in 10)	90%
0.01 (1 in 100)	99%
0.001 (1 in 1000)	99.9%
0.0001 (1 in 10.000)	99.99%
	0.1 (1 in 10) 0.01 (1 in 100) 0.001 (1 in 1000) 0.0001 (1 in 10.000)

10

Approach	Single Molecule	Sequencing by Synthesis
PCR-dependent	No, but possible	Yes
Read length	Up to Mbps	150-300 bp (x2)
Read Quality	Q20 ²⁰²¹	Q30
Throughput	Real-Time	Days > Months
Instrument cost	\$	\$\$\$
Versatility	High	Medium
In-field	Yes	No

Approach	Single Molecule	Sequencing by Synthesis
PCR-dependent	No, but possible	Yes
Read length	Up to Mbps	150-300 bp (x2)
Read Quality	Q20 ²⁰²¹	Q30
Throughput	Real-Time	Days > Months
Instrument cost	\$	\$\$\$
Versatility	High	Medium
In-field	Yes	No

- Third-Generation Sequencing
- Single Molecule label-free sequencing
- \circ Versatile
 - Native DNAseq
 - PCR-amplified DNAseq
 - PCR-amplified cDNAseq (from RNA)

- Third-Generation Sequencing
- Single Molecule label-free sequencing
- \circ Versatile
 - Native DNAseq
 - PCR-amplified DNAseq
 - PCR-amplified cDNAseq (from RNA)
 - Native RNAseq

- o Third-Generation Sequencing
- Single Molecule label-free sequencing
- \circ Versatile
 - Native DNAseq
 - PCR-amplified DNAseq
 - PCR-amplified cDNAseq (from RNA)
 - Native RNAseq^{New}
 - DNA & RNA Methylation

SARS-CoV-2 Sequencing

- Genome = ± 30 kbases +ssRNA
- First complete sequence available **December 2019 (Wuhan-Hu-1)**
- Standardized protocols readily available through **ARTIC Network**
- o Josh Quick, James Ferguson & Nick Loman

SARS-CoV 2 virion structure

Alanagreh et al., 2020 MDPI Pathogens

- Genome = ± 30 kbases +ssRNA
- First complete sequence available **December 2019 (Wuhan-Hu-1)**
- Standardized protocols readily available through **ARTIC Network**
- o Josh Quick, James Ferguson & Nick Loman
- Nanopore Accuracy?

- Genome = ± 30 kbases +ssRNA
- First complete sequence available **December 2019 (Wuhan-Hu-1)**
- Standardized protocols readily available through **ARTIC Network**
- o Josh Quick, James Ferguson & Nick Loman
- Nanopore Accuracy?

- Genome = ± 30 kbases +ssRNA
- First complete sequence available **December 2019 (Wuhan-Hu-1)**
- Standardized protocols readily available through **ARTIC Network**
- o Josh Quick, James Ferguson & Nick Loman
- Nanopore Accuracy?

- Genome = \pm **30 kbases +ssRNA**
- First complete sequence available **December 2019 (Wuhan-Hu-1)**
- Standardized protocols readily available through **ARTIC Network**
- o Josh Quick, James Ferguson & Nick Loman
- Nanopore Accuracy?

Gohl et al., 2020 BMC Bioinformatics

- Genome = ± 30 kbases +ssRNA
- First complete sequence available **December 2019 (Wuhan-Hu-1)**
- Standardized protocols readily available through **ARTIC Network**
- o Josh Quick, James Ferguson & Nick Loman
- Nanopore Accuracy?

• Belgium?

- March 2020 small scale
- January 2021 upscaling
- June 2021 = **27,926 genomes (2.59%)**

1 You Retweeted

• Belgium?

- March 2020 small scale
- January 2021 upscaling
- June 2021 = **27,926 genomes (2.59%)**
- o UK & Denmark biggest sequencing efforts
- Today = **2.019.497 complete** SARS-CoV-2 genomes

Genomes shared per country

Number of SARS-CoV-2 Genomes

GISAID on 24.06.2021

Importance of HPC

- More genomes = More data = More **computational power** required
- \circ 2.019.497 genomes (30 kbases_{/genome}) = 61 gigabases = ± 65 gigabytes data
- o HPC implementation
 - SARS-CoV-2 genome construction
 - *Phylogenetic analyses (bootstrapping = repeating for significance)*
 - Time-guided phylogenetic analyses (e.g. beast = **GPU version** available)

Importance of HPC – Genome Construction

- Each SARS-CoV-2 genome generated from ± 90 amplicons (400 bases)
- V3 protocol requires (only) 100,000 sequenced amplicons to get 50X overall coverage
 - = Each amplicon (400 bp) x 50
 - = min. 1.8 million bases/genome
 - = min. 2 gigabytes data/genome
- o Multiplexing to save costs per genome
- 24 96 genomes per sequencing run (24h)
- o 48 200 gigabytes data

CPU & GPU

Loman & Ferguson; 2021

29

- Phylogenetic analyses
 - 1. Compare sequences one by one (Multiple-Sequence Alignment)
 - 2. Cluster closest/similar genomes together (Phylogeny)
 - 3. Add significant power of lineages (Bootstrapping)
 - 4. Add time of sampling (time-guided phylogenetic analysis)
- Mutation rate = $\pm 2 \text{ mutations}_{/\text{month}}$

- Phylogenetic analyses
 - 1. Compare sequences one by one (Multiple-Sequence Alignment)
 - 2. Cluster closest/similar genomes together (Phylogeny)
 - 3. Add significant power of lineages (Bootstrapping)
 - 4. Add time of sampling (time-guided phylogenetic analysis)

- Phylogenetic analyses
 - 1. Compare sequences one by one (Multiple-Sequence Alignment)
 - 2. Cluster closest/similar genomes together (Phylogeny)
 - 3. Add significant power of lineages (Bootstrapping)
 - 4. Add time of sampling (time-guided phylogenetic analysis)

• Phylogenetic analyses

- 1. Compare sequences one by one (Multiple-Sequence Alignment)
- 2. Cluster closest/similar genomes together (Phylogeny)
- 3. Add significant power of lineages (Bootstrapping)
- 4. Add time of sampling (time-guided phylogenetic analysis)

CPU

Laurens Lambrechts; 2020

• Outbreak analyses

35

Laurens Lambrechts; 2020

CPU

o Outbreak analyses

Al 18 bewoners dood in woonzorgcentrum in Mol, meesten besmet geraakt met zelfde virusstam

- Not to identify a single "culprit"
- Use to evaluate/adjust local & global safety measures

36

CPU

3.3x10⁻⁵ subst. per site

Laurens Lambrechts; 2020

- o Outbreak analyses
- o Variant of Concern analyses

Rambaut et al.; 2020

37

- o Outbreak & variant analyses
- o Variant of Concern analyses
- Try it yourself?

https://nextstrain.org/ncov/global

• Belgian builds > **Prof. G. Baele** (KULeuven)

38

- Bacterial genomes = 1-5 Mbp (+/- plasmids)
- 33x up to 166x bigger genomes (Vs. SARS-CoV-2)
- Standard Bacterial Genomics workflows:
 - 1. Basecalling
 - 2. Demultiplexing & Quality Filtering
 - 3. De novo genome construction
 - 4. Downstream analyses
 - Phylogenetic analysis
 - Bacterial Identification & Typing
 - Identification of Virulence & Antimicrobial Resistance Markers
 - Genome Annotation

- Long-read sequencing data
 - easily resolves **complete** bacterial genomes & plasmids
 - Applicable to **diverse** bacterial species
 - No PCR bias due to GC content
 - Resolving *repetitive* regions
 - Advantages in **Metagenomics**

Vereecke et al., 2020 BMC Bioinformatics

• Long-read sequencing data

- easily resolves **complete** bacterial genomes & plasmids
- Applicable to **diverse** bacterial species
- No PCR bias due to GC content
- Resolving *repetitive* regions
- Advantages in **Metagenomics**

Mycoplasma sp.? 29% GC Highly repetitive

Vereecke et al., 2020 BMC Bioinformatics

Importance of HPC

- Bigger genomes = More data = More **computational power** required
- HPC implementation
 - Basecaller training
 - Raw data basecalling (**GPU version** available)
 - Bacterial genome construction
 - *Phylogenetic analyses (bootstrapping = repeating for significance)*
 - Genome-Wide Association Studies (GWAS)

45

- **Teaching** software to more accurately translate raw data into bases.
- Bonito Research Basecaller (ONT)
- Multi-GPU support = increased speed of training!
- Generate genomes with Consensus Quality = Illumina data

METHODOLOGY ARTICLE

High quality genome assemblies of *Mycoplasma bovis* using a taxon-specific Bonito basecaller for MinION and Flongle long-read nanopore sequencing

Nick Vereecke^{1,4*}^(D), Jade Bokma², Freddy Haesebrouck³, Hans Nauwynck^{1,4}, Filip Boyen³, Bart Pardon² and Sebastiaan Theuns^{1,4}

Open Access

A C T T A C T T T A G C G G G C G A T C T A A A C G A A G T C A C C C G T *"True" Reference*

47

Teach the original model how to translate = model training

GPU

48

Teach the original model how to translate = model training

ACTTACTTTAGCGGGCGATCTAAACGAAGTCACCCGT Trained Sequenced read

A C T T A C T T A A G C G G G C G A T C T A A C C G A A G T C A C C C C T **Default** Sequenced read

ACTTACTTTAGCGGGCGATCTAAACGAAGTCACCCGT

GPU

Importance of HPC – Genome Construction

CPU & GPU

ONT *default* (2020) Q-score: 30 99.9% 1000 mistakes in genome

ONT trained (2021)

Q-score: 50 99.999% 10 mistakes in genome

MiSeq (2020) Q-score: 50 99.999% 10 mistakes in genome

Vereecke et al., 2020 BMC Bioinformatics

Importance of HPC – GWAS

- Need for highly accurate & complete genomes
- Compare ALL genomes of 1 species (e.g. M. bovis)
- o Identify genes & point mutations associated with phenotypes (e.g. virulence or AMR)
- More genomes = Higher resolution

Importance of HPC – GWAS

o 100 Belgian *M. bovis* genomes

CPU

 Resistance to Critical Antimicrobial Enrofloxacin (Fluoroquinolone)

Bokma & Vereecke et al., 2021; Under Review

Nick Vereecke

PhD Fellow dr. Sebastiaan Theuns

nick.vereecke@pathosense.com +32 (0)9 264 73 87 +32 (0)467 03 78 04 Μ

DEPARTMENT VIROLOGY, PARASITOLOGY, AND IMMUNOLOGY **RESEARCH GROUP OF VIROLOGY**

E

