
● Session will start at 10:05

● This session will be recorded.

● Please hold your questions until the end of the session.

● Please mute your microphone + turn off your camera
during the presentation.

● Slides are available via “Training & lectures” on HPC-UGent website

https://www.ugent.be/hpc/en/training/2022/introhpcugent
(see “Course material” at bottom of the page)

1

Practical info for Introduction to HPC-UGent training session

13 May 2022

Introduction to HPC-UGent

https://ugent.be/hpc

hpc@ugent.be

https://www.ugent.be/hpc

● An HPC-UGent tutorial is available on the HPC-UGent website

● Download it here: https://www.ugent.be/hpc/en/support/documentation.htm

● We will specifically use information from these chapters:

1) Introduction to HPC 6) Running jobs with input/output data

2) Getting an HPC account 8) Using the HPC-UGent web portal

3) Connecting to the HPC infrastructure 11) Fine-tuning job specifications

4) Running batch jobs 22) HPC-UGent interactive and debug cluster

Documentation

3

https://www.ugent.be/hpc/en/support/documentation.htm

● Part of ICT Department of Ghent University (DICT)

● Our mission:

HPC-UGent provides centralised scientific computing services, training,

and support for researchers from Ghent University, industry, and other

knowledge institutes.

● Our core values:

 Empowerment - Centralisation - Automation - Collaboration

HPC-UGent in a nutshell

4

The HPC-UGent team

5

Stijn De Weirdt
Technical lead

Kenneth Hoste
User support & training

Andy Georges
System administration

Balázs Hajgató
User support

Ewald Pauwels
Team lead

Wouter Depypere
System administration

Kenneth Waegeman
System administration (storage)

Álvaro Simón García
System administration (cloud)

Bart Verheyde
System administration

● High Performance Computing (HPC) is running computations on a

supercomputer, a system at the frontline of contemporary processing capacity

– particularly in terms of size, supported degree of parallelism,

network interconnect, and (total) available memory & disk space.

● A computer cluster consists of a set of loosely or tightly connected computers

(also called (worker)nodes) that work together so that in many respects they

can be viewed as a single system.

● HPC is also known as “supercomputing”, or more broadly “scientific computing”

What is High-Performance Computing (HPC)?

6

harness power of multiple interconnected cores/nodes/processing units

What is High-Performance Computing (HPC)?

7

What are supercomputers used for?

8

Modern servers, also referred to as (worker)nodes in the context of HPC,

include one or more sockets, each housing a multi-core processor

(next to memory, disk(s), network cards, …). A modern (micro)processor

consists of multiple cores that are used to execute computations.

Not shown here: local disk, network cards, GPUs, …

Terminology: cores, CPUs, processors, (worker)nodes

9

Example:
a single workernode
with two 16-core
processors running
a single core job

(worker)node

processor (in socket)

idle core

active core

memory (RAM)

In parallel software, many calculations are carried out simultaneously. This is based on the

principle that large problems can often be divided into smaller tasks, which are then solved

concurrently (“in parallel”).

Example: OpenFOAM can easily use 160 cores at the same time to solve a CFD problem.

There are two common parallel programming paradigms (among others):

● OpenMP for shared memory systems (multi-threading) → on cores of a single node

● MPI for distributed memory systems (multi-processing) → on cores of multiple nodes

Parallel vs sequential software (single-node or multi-node)

10

OpenMP software can
use multiple or all
cores in a single node

MPI software can
use (all) cores in
multiple nodes

Sequential (a.k.a. serial) software does not do calculations in parallel,

i.e. it only uses one single core of a single workernode.

This type of software does not run faster by just throwing cores (or nodes) at it...

But, you can run multiple instances at the same time!

Example: running a Python script 100 times on 100 cores to quickly analyse 100 datasets

Parallel vs sequential software (single-core)

11

Centralised hardware in UGent datacenter (S10 @ Sterre)

12

Different “tiers” of computational science

13

Tier-2
University

Tier-3
Personal workstation (desktop, laptop)

Tier-1
Regional / National

Tier-0
Europe

● HPC-UGent Tier-2 infrastructure consists of 8 clusters
(+ login nodes, shared storage, …)

● Different types of clusters:

● CPU-only batch cluster (no high-speed network, no fast access to shared storage)

● CPU-only compute clusters

● GPU clusters

● CPU-only interactive + debug cluster

● Available for academic researcher free of charge, funding through FWO;

usage by industry via a pay-as-you-use contract (after free exploratory period)

● All running Red Hat Enterprise Linux 8 (RHEL8) as operating system

HPC-UGent Tier-2 infrastructure

14https://www.ugent.be/hpc/en/infrastructure

https://www.ugent.be/hpc/en/infrastructure

● 96 workernodes, each with 36 cores (Intel Skylake) + ~88GB of memory

● No high-speed network between workernodes (10-Gbit Ethernet)

● No fast connection to shared filesystems (only via NFS)

● Default cluster

● Only recommended for single-core / single-node jobs that are not I/O-intensive

HPC-UGent Tier-2 batch cluster: victini

15https://www.ugent.be/hpc/en/infrastructure

https://www.ugent.be/hpc/en/infrastructure

● swalot: 128 nodes, each with 20 cores (Intel Haswell) + ~125GB of memory

● skitty: 72 nodes, each with 36 cores (Intel Skylake) + ~180GB of memory

● kirlia: 16 nodes, each with 36 cores (Intel Cascade Lake) + ~740GB of memory

● doduo: 128 cores, each with 96 cores (AMD Rome) + 250GB of memory

● All with:
○ high-speed Infiniband network between nodes

○ fast access to shared filesystems

○ local disk

HPC-UGent Tier-2 compute clusters

16https://www.ugent.be/hpc/en/infrastructure

https://www.ugent.be/hpc/en/infrastructure

● joltik: 10 nodes,

 each with 32 CPU cores (Intel Cascade Lake),

 4 NVIDIA V100 GPUs (32GB of GPU memory),

 ~250GB of system memory

● accelgor: 9 nodes,

 each with 48 CPU cores (AMD Milan),

 4 NVIDIA A100 GPUs (80GB of GPU memory),

 ~500GB of system memory

● Both with high-speed network, fast access to shared filesystems, local disk

HPC-UGent Tier-2 GPU clusters

17https://www.ugent.be/hpc/en/infrastructure

https://www.ugent.be/hpc/en/infrastructure

HPC-UGent Tier-2 interactive + debug cluster: slaking

18https://www.ugent.be/hpc/en/infrastructure

● 10 nodes, each with 24 cores (Intel Haswell) + ~500GB of memory

● Incl. high-speed network, fast access to shared storage, local disk

● Recycled hardware from old phanpy cluster (retired in March 2021)

● Heavily oversubscribed! More running jobs => jobs run slower

● Strict user limits:

● max. 3 jobs running, 5 jobs in queue

● 8 cores + 27GB of memory in use (in total)

● ⇒ No waiting time for jobs to start, perfect for debug jobs or interactive use

● See also dedicated Chapter 22 in HPC-UGent tutorial

https://www.ugent.be/hpc/en/infrastructure

https://docs.vscentrum.be/en/latest/hardware.html

VSC Tier-2 infrastructure

19

● VSC account can be used to access HPC infrastructure provided by other VSC hubs

● Your $VSC_HOME and $VSC_DATA directories are available on each of these systems

https://docs.vscentrum.be/en/latest/hardware.html

● Project-based access (free of charge, funded by FWO)

● 3 cut-off dates per year for submitting project proposals

● Project duration is typically 8 months

● 500k - 5M core cores (CPU-only) or 1k - 25k GPU hours

VSC Tier-1 compute cluster “Hortense”

20

https://www.vscentrum.be/compute

https://docs.vscentrum.be/en/latest/gent/tier1_hortense.html

phase I: dodrio

compute@vscentrum.be● Hosted, operated, and supported by HPC-UGent team

● 336 CPU-only nodes, each with 128 AMD Rome cores + 256/512GB of memory

● 20 GPU nodes, each with 48 AMD Rome cores + 4x NVIDIA A100 (40GB) + 256GB mem.

● High-speed Infiniband network (HDR-100) + 3PB of dedicated scratch storage

https://www.vscentrum.be/compute
https://docs.vscentrum.be/en/latest/gent/tier1_hortense.html
mailto:compute@vscentrum.be

● Project-based access

● Free of charge

● Self-managed virtual machines

● For use cases that are not a
good fit for compute clusters

● More info:
https://www.vscentrum.be/cloud

● Contact: cloud@vscentrum.be

21

VSC Tier-1 cloud

https://www.vscentrum.be/cloud
mailto:cloud@vscentrum.be

● All members of UGent association can request a VSC account

● Researchers & staff

● Master/Bachelor students

● VSC account can be used to access HPC infrastructure on all VSC sites

● Subscribed to hpc-announce and hpc-users mailing lists

● Beware of using HPC for teaching/exam purposes!

● No guarantee on HPC availability (due unexpected power outage, maintenance, …)

● Have a backup plan at hand

● Advisable teaching/exam formula: project work

● See also Chapter 2 in HPC-UGent tutorial

Getting a VSC account

22https://www.ugent.be/hpc/en/access/faq/access

https://www.ugent.be/hpc/en/access/faq/access

You can manage your VSC account via the VSC account page

https://account.vscentrum.be

Can be used to join/leave user groups, consult storage usage, request more storage quota, …

Managing your VSC account

https://account.vscentrum.be

1. Connect to login nodes

2. Transfer your files

3. (Compile your code and test it)

4. Create a job script

5. Submit your job

6. Be patient

- Your job gets into the queue

- Your job gets executed

- Your job finishes

7. Inspect and/or move your results

Workflow on HPC-UGent infrastructure

24

High-level overview of HPC-UGent infrastructure

25

Option 2: using the HPC-UGent web portal: https://login.hpc.ugent.be

○ Powered by Open OnDemand

○ Works with a standard internet browser (Firefox, Chrome, …)

○ Does not require SSH private key (only login via UGent account)

○ Provides file browser, shell session, desktop environment, …

○ See Chapter 8 of the HPC-UGent documentation

Option 1: using SSH (classic way): login.hpc.ugent.be

● Requires SSH client + SSH private key

● Windows: PuTTy - macOS/Linux: ssh command

● See Chapter 3 of the HPC-UGent documentation

● For transferring files: scp or rsync command, WinSCP, Cyberduck, …

Connecting to the HPC-UGent login nodes

26

https://login.hpc.ugent.be
https://openondemand.org/
https://www.ugent.be/hpc/en/support/documentation.htm
https://www.ugent.be/hpc/en/support/documentation.htm

Linux command line interface (shell)

27

● Linux shell environment is standard way of using HPC systems

● Involves typing + executing shell commands or scripts (bash)

● Example commands: ls, cd, mkdir, cp, mv, rm, export, echo, …

● Commands can be “piped” together to do more complex operations

● May feel arhaic, but is actually very powerful…

● Same scripting language as used in job scripts

● Learning the basics is strongly recommended!

● See separate basic Linux tutorial at https://www.ugent.be/hpc/en/support/documentation.htm

https://www.ugent.be/hpc/en/support/documentation.htm

Transferring files to/from HPC-UGent infrastructure

28

● Transferring files/to from the HPC-UGent infrastructure is done via the login nodes

● Options:
● Using file browser in HPC-UGent web portal (see “Files” menu item)

● On Linux or macOS:

○ Using scp or rsync command in terminal window

○ Using a graphical like the built-in file manager or Cyberduck

● On Windows: using WinSCP (left: own system, right: HPC; drag-and-drop)

See also section 3.2 of

HPC-UGent documentation

https://cyberduck.io
https://winscp.net

Submitting and managing jobs on HPC-UGent clusters

● HPC-UGent clusters run Slurm as resource manager + job scheduler

● Torque (PBS) frontend is (still) available and recommended (via jobcli project)

○ qsub command to submit jobs, qdel command to delete jobs

○ qstat command to list queued + running jobs

○ qalter command to change jobs (before they start running)

○ qhold command to put jobs on hold, qrls to release them again

● Use --help to get list of available options for each command

● Use --debug to get more information about what’s going on behind the scenes

● Use --dryrun to inspect what will be done (without actually doing it)

29

https://slurm.schedmd.com

A job script is shell script (a text file that includes shell commands) which specifies:

● The resources that are required by the calculation

(number of nodes/cores, amount of memory, how much time is required, …)

● The software that is used for the calculation (usually via module load commands)

● The steps that should be done to execute the calculation (starting from home dir.),

specified as shell commands, typically:

○ 1) staging in of input files

○ 2) running the calculation

○ 3) staging out of results

What is a job script?

30

#!/bin/bash

echo "I am a minimal job script"

● Required resources can be specified via #PBS lines in job script

● Or via options to job submission command (qsub -l ...)

● Maximum walltime of jobs on HPC-UGent clusters: 72 hours (3 days)

● For longer calculations: break it up in shorter jobs, use a different (faster) cluster,

use more cores (if software scales), use some form of “checkpointing”, …

Required resources are specified via #PBS directives

31

#!/bin/bash

#PBS -N solving_42 # job name

#PBS -l nodes=1:ppn=4 # single-node job, 4 cores

#PBS -l walltime=10:00:00 # max. 10h of wall time

#PBS -l vmem=50gb # 50GB of (virtual) memory required

rest of job script goes here ...

● Scientific software is made available via environment modules

● A module prepares the environment for using a particular software application

● Module naming scheme: <name>/<version>-<toolchain>[-<suffix>]

● Load a module to update the session or job environment for using the software:

 module load SciPy-bundle/2021.10-intel-2021b

● Modules that are required as dependencies will be loaded automatically

● To see list of currently loaded modules, run module list (or ml)

Central software stack via modules [1/2]

32

● To get an overview of all available modules, run module avail (or ml av)

● To see available versions for specific software, run module avail soft_name/

● To unload all currently loaded modules, run module purge

● Modules are installed using a particular toolchain (foss, intel, …),

which includes C/C++/Fortran compilers, MPI library, BLAS/LAPACK/FFT libraries

● You should only combine modules that were installed with the same toolchain,

or a subtoolchain thereof (for example foss/2021b + GCC/11.2.0)

● See also section 4.1 in HPC-UGent documentation

Central software stack via modules [2/2]

33

https://www.ugent.be/hpc/en/support/documentation.htm

Useful environment variables for job scripts

● $PBS_JOBID: job id of running job

● $PBS_O_WORKDIR: directory from which job was submitted on login node

○ It is common to use cd $PBS_O_WORKDIR at beginning of a job script

● $PBS_ARRAYID: array id of running job

○ Only relevant when submitting array jobs (qsub -t)

● $TMPDIR: local unique directory specific to running job

○ Cleaned up automatically when job is done, so make sure to copy result files!

● $EBROOTXYZ, $EBVERSIONXYZ: root directory/version for software package XYZ

○ Only available when module for XYZ is loaded 34

(these are only defined in the context of a running job!)

● See Section 6.2 in HPC-UGent documentation

● Think about input/output:

○ How and where will you stage in your data and input files?

○ How and where will you stage out your output and result files?

● Manually (on login nodes) vs automatically (as a part of job script)

● Home filesystem ($VSC_HOME): only for limited number of small files & scripts

● Data filesystem ($VSC_DATA*): ‘long-term’ storage, large files

● Scratch filesystems ($VSC_SCRATCH*): for ‘live’ input/output data in jobs

Input/output data and shared filesystems

35

https://www.ugent.be/hpc/en/support/documentation.htm

Storage quota

● Home directory ($VSC_HOME): 3GB (fixed!)

● Personal data directory ($VSC_DATA): 25GB (fixed!)

● Personal scratch directory ($VSC_SCRATCH): 25GB (fixed!)

● Current quota usage can be consulted on VSC accountpage

● More storage quota (100s of GBs, even TBs) available for virtual organisations (VOs);

see Section 6.7 in HPC-UGent documentation

● Additional quota can be requested via VSC accountpage (“Edit” tab)

● Shared directories with VO members: $VSC_DATA_VO, $VSC_SCRATCH_VO

● Personal VO subdirectories: $VSC_DATA_VO_USER, $VSC_SCRATCH_VO_USER
36

https://account.vscentrum.be
https://www.ugent.be/hpc/en/support/documentation.htm
https://account.vscentrum.be/django/vo/edit

See “View Account” tab on VSC accountpage (https://account.vscentrum.be)

(for now, only data volumes, not number of files (inode quota))

Current storage usage - personal directories

37

https://account.vscentrum.be

Current storage usage - own VO directories

See “View Account” tab on VSC accountpage (https://account.vscentrum.be)

(for now, only data volumes, not number of files (inode quota))

38

https://account.vscentrum.be

Current storage usage - total usage in VO directories

39

● See “View VO” tab on VSC accountpage

(for now, only data volumes, not number of files (inode quota))

● Detailed info per VO member can only be consulted by VO administrators!

https://account.vscentrum.be/django/vo

Full example job script (single-core job)

40

#!/bin/bash

#PBS -N count_example # job name

#PBS -l nodes=1:ppn=1 # single-node job, single core

#PBS -l walltime=2:00:00 # max. 2h of wall time

module load Python/3.9.6-GCCcore-11.2.0

copy input data from location where job was submitted from

cp $PBS_O_WORKDIR/input.txt $TMPDIR

go to temporary working directory (on local disk) & run Python code

cd $TMPDIR

python -c "print(len(open('input.txt').read()))" > output.txt

copy back output data, ensure unique filename using $PBS_JOBID

cp output.txt $VSC_DATA/output_${PBS_JOBID}.txt

Full example job script (multi-node MPI job)

41

#!/bin/bash

#PBS -N mpi_hello # job name

#PBS -l nodes=2:ppn=all # 2 nodes, all cores per node

#PBS -l walltime=2:00:00 # max. 2h of wall time

module load intel/2021b

module load vsc-mympirun

go to working directory, compile and run MPI hello world program

cd $PBS_O_WORKDIR

mpicc mpi_hello.c -o mpi_hello

mympirun ./mpi_hello

Job output files

● Your job script may produce informative/warning/error messages.

○ Two output files are created for each job: stdout (*.o*) + stderr (*.e*)

○ Located in directory where job was submitted from (by default)

○ Messages produced by a particular command in the job script

can be "caught" and redirected to a particular file instead.

 example > out.log 2> err.log

(see section 5.1 of our Linux tutorial for more details)

● In addition, the software used for the calculation may have generated

additional output or result files (very software-specific). 42

● Submit job scripts from a login node to a cluster for execution using qsub command:

$ module swap cluster/slaking

$ qsub example.sh

12345

● An overview of the active jobs is available via the qstat command:

$ qstat

Job ID Name User Time Use S Queue

------- ----------- -------------- -------- - -------

12345 example vsc40023 1:32:57 R slaking

● To remove a job that is no longer necessary, use the qdel command: qdel 12345

Job submission and management workflow

43

● All HPC-UGent clusters use a fair-share scheduling policy.

● No guarantees on when job will start (and impossible to predict), so plan ahead!

● Job priority is determined by various factors:

○ Historical usage
■ Aim is to balance usage over users
■ Infrequent/frequent users => higher/lower priority

○ Requested resources (# nodes/cores, walltime, memory, ...)
■ Larger resource request => lower priority

○ Time waiting in queue
■ Queued jobs get higher priority over time

○ User limits
■ Avoid that a single user fills up an entire cluster

Job scheduling

44

● Use case: lots of ((very) short) single-core tasks

● Submitting lots of tiny jobs (minutes of walltime) is not a good idea

○ Overhead for each job (node health checks), lots of bookkeeping (output files, etc.)

● Better options:

○ Array jobs

■ Single job script, each (sub)job is assigned a unique id (via $PBS_ARRAYID)

○ GNU parallel

■ General-purpose tool to easily run commands in parallel with different inputs

○ Worker (see Chapter 12 in HPC-UGent documentation)

■ One single job that processes a bunch of tasks (multi-core or even multi-node)

■ Job script is parameterized, submit with wsub rather than qsub

Embarrassingly parallel jobs

45

https://www.gnu.org/software/parallel/parallel_tutorial.html
https://www.ugent.be/hpc/en/support/documentation.htm

● To submit a request for software installation, use the request form:

 https://www.ugent.be/hpc/en/support/software-installation-request

● Requests may take a while to process, so be patient…

● Make the request sooner rather than later!

● All software installations are done using EasyBuild

● Originally developed by HPC-UGent, now a worldwide community of experts!

● See also https://easybuild.io

Software installations

46

https://www.ugent.be/hpc/en/support/software-installation-request
https://easybuild.io

Don't hesitate to contact the HPC-UGent support team via hpc@ugent.be

● Help us help you, always include:

○ VSC login id

○ Clear description of problem (or question), include error messages, …

○ Location of job script and output/error files in your account

○ Preferably don’t send files in attachment, we prefer to look at it ‘in context’...

○ Also mention job IDs, which cluster was used, …

● Preferably use your UGent email address.

● Alternatives:

○ Short (Teams) meeting (for complex problems, big projects)

○ hpc-users mailing list

Questions, problems, getting help

47

mailto:hpc@ugent.be

