Can a book make you happy?

Predicting emotional links between genre, plot, and reader response

Srishti Sharma Dr. Federico Pianzola Registered Report on OSF (<u>https://osf.io/xg6d4/</u>)

Emotions elicited by stories are vital to the relationship a reader shares with a book

Sentiment Analysis

Emotion Detection

Dumbledore loves karaoke. **POSITIVE**

Snape hates roller skating. **NEGATIVE**

Ron enjoyed a pumpkin pie. **JOY**

Draco sneered at Potter.

ANGER

Hypotheses

"framing effect" (Tversky and Kahneman 1981; Levin and Gaeth 1988)

01

The sentiment of a book has a positive linear relationship with the sentiment of its reviews.

02

The variation of sentiment in the story's ending has a stronger linear relation with the reviews' sentiment

03

The total amplitude difference of the emotion arc of a story has a positive linear relation with the sentiment of the reviews

04

Stories with a rhythmic-beat sentiment elicit a more positive sentiment in reviews

Methodology

Data

~450 books 9 different genres 800K+ Goodreads reviews

Analyses

Features

- avg. book sentiment
- avg. review sentiment
- emotions exhibited in book
- emotions exhibited in reviews

Story arc

- sentence-level sentiment scores of books (as performed by M. Jockers 2014)
- k-means clustering with DBA

Dataset Curation

Genres: Bestseller (Jockers); children; history and biography; fantasy and paranormal; mystery, thriller, and crime; romance; young adult; scifi ; Classics (M. Walsh and Antoniak 2021a)

Books

Properties:

- Only unique fiction novels in English are included
- 50 most reviewed books selected per genre
- 2 new genres introduced based on "popular shelves"
- 40% of books written by female authors (gender neutral)
- Unique authors for each genre (to exclude book series)

Meta-Data

- Author's gender (manually tagged)
- List of genre tags ("shelves") most frequently assigned to the book and their corresponding number of users

Dataset

Curation

(contd.)

Reviews

Source:

- <u>UCSD Dataset</u>: Romance, thriller, history, fantasy, children and young adult, sci-fi
- GoodReads scraping: Classics, Bestsellers

Properties:

- Reviews are extracted only in English language
- Reviews for each book collated into one long text
- Scraped reviews are more recent than the rest
- Character names to be masked

Data Preprocessing

Books:

- Manual removal of unwanted text
- Sentence tokenization
- Masking of character names

Reviews:

- Collated into one text per book
- Sentence tokenization
- Masking of author and character names

Masking:

- Using "spacy" for named entity recognition
- Replacing all entities tagged as **PERSON**

Masking Names

(model used: cardiffnlp/ twitter-roberta-base-sentiment)

Compute Computation time on cpu: 0.044 s NEGATIVE NEUTRAL POSITIVE	0.0 0.3 0.6
Computation time on cpu: 0.044 s NEGATIVE NEUTRAL POSITIVE Voldemortloves karaoke.	0.0 0.3 0.6
NEGATIVE NEUTRAL POSITIVE Voldemortloves karaoke.	0.0 0.3 0.6
NEUTRAL POSITIVE Voldemortloves karaoke.	0.3
POSITIVE Voldemortloves karaoke.	0.6
Voldemort loves karaoke.	
Compute	
Computation time on cpu: 0.037 s	
NEGATIVE	0.1
NEUTRAL	0.1
Computation time on cpu: 0.037 s	_

Sentiment analysis & emotion detection:

- Evaluation based on genre
- Transformers based approach
 - fine-tuned for emotion detection (Plutchik's wheel)
 - base model to be used XLM-RoBERTa
- Dictionaries based approach
 - Using Syuzhet where "surprise and anticipation" are to be excluded due to ambiguity

Story arc:

- Moving window score calculation
- K means clustering with DBA as distance metric

Transformer based SA

(currently working)

Models tested:

- DISTILBERT-BASE-EMOTION: 'f1': 0.45
- J-HARTMANN/EMOTION-ENGLISH-ROBERTA-LARGE: 'f1': 0.475
- *CARDIFFNLP TWITTER-XLM-EMOTION: 'f1': 0.50

Books:

- Fine-tuned XLM-RoBERTa for SA and emotions
- Annotated dataset used <u>DENS</u>

Reviews:

- Fine-tuned XLM-RoBERTa over movie reviews (provided by Alessandro Fossati)
- Annotated datasets used GoEmotions, CARER, Movie Reviews

Sentiment story arc

(next steps)

Story arc of Harry Potter and the Sorcerer's Stone

Conclusion

Thoughts

- Working with literary texts is complex and requires better frameworks that account for the vast variety of styles and languages in literature
- Online Reviews as a means of reader response has its limitations which should be kept in mind while performing any form of analysis
- Emotion detection as a technique still needs refining and can be improved with the availability of, as always, more data!

Acknowledgements

- Dr. Federico Pianzola
- Entire team at Ghent Centre for Digital Humanities
- Els Lefever & Pranaydeep Singh, LT3 Team
- H2020 CLS Infra Project

