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A Wealth of High-Dimensional Multimodal Data
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Hyperspectral Imaging (HSI) in Earth observation

Image credit: Novus Light Technologies Today, December 2018.

HyperScout1 – the first miniaturized hyperspectral imager for space. Launched to an
orbit 540km above the Earth. (ESA program, led by Cosine Measurement Systems)
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HSI space technology - game changer in environmental monitoring

DLR Earth Sensing Imaging Spectrometer (DESIS) installed on the International Space
Station (ISS). Monitors environmental changes on Earth.
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“Milk-carton-sized HyperScout making hyperspectral Earth views”
Space news feed, 20 May 2020

HyperScout view of Netherlands (courtesy: cosine)
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Multimodal data analysis in art investigation

Extracting useful information
from multiple modalities, with

huge data

imperfect alignment

scarce annotations

erroneous annotations

©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Sparse representation
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Designed vs. Learned Dictionaries

Designed dictionaries: wavelets, curvelets, shearlets...
I typically yield sparse representation of signals and images
I advantages: generic, fast computation

Learned dictionaries
I trained on a set of representative examples
I goal: optimally sparse representation for a given class of signals
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Sparse coding

α̂ = arg min
α
‖y − Dα‖2

2 subject to ‖α‖0 ≤ K

α̂ = arg min
α
‖α‖0 subject to ‖y − Dα‖2

2 ≤ ε
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Sparse coding

α̂ = arg min
α
‖y − Dα‖2

2 subject to ‖α‖0 ≤ K

α̂ = arg min
α
‖α‖0 subject to ‖y − Dα‖2

2 ≤ ε

Greedy algorithms

Matching Pursuit (MP) [Mallat and Zhang, ‘93]

OMP [Tropp,‘04], CoSaMP [Needell and Tropp, ‘09]

IHT [Blumensath and Davies, 09]
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Sparse coding

Convex relaxation:

α̂ = arg min
α
‖α‖1 subject to ‖y − Dα‖2

2 ≤ ε

α̂ = arg min
α
‖y − Dα‖2

2 + λ‖α‖1

LASSO [Tibshirani, ‘96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

{D̂, Â} = arg min
D,A

{
‖Y − DA‖2

F

}
subject to ∀i , ‖αi‖0 ≤ K

A similar objective:

{D̂, Â} = arg min
D,A

∑
i

‖αi‖0 subject to ‖Y − DA‖2
F ≤ ε
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Iterate Two Steps: Sparse Coding and Dictionary Update

Dictionary update:

Maximum likelihood method of
[Olshausen and Field, 1997]

MOD [Engan et al., 1999]

K-SVD [Aharon et al., 2006]
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Learned Dictionaries of Image Atoms - Examples

Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and K-SVD
[Aharon et al., 2006] (right)
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Representation learning and sparse coding
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Representation learning and sparse coding
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Sparse Representation Classification

[Wright et al, 2009]

α̂ = arg min
α
‖y − Dα‖2

2 subject to ‖α‖0 ≤ K

rm(y) = ‖y − Dmα̂m‖2, m = 1, ...,M

class(y) = arg min
m=1,...,M

rm(y)
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Robust SRC for Hyperspectral Image Classification

Y = X︸︷︷︸
ideal image

+ N︸︷︷︸
Gaussian noise

+ S︸︷︷︸
sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and Pižurica, A. (2017). Robust joint sparsity model for

hyperspectral image classification. In IEEE ICIP 2017.
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Robust SRC for Hyperspectral Image Classification

Y = X︸︷︷︸
ideal image

+ N︸︷︷︸
Gaussian noise

+ S︸︷︷︸
sparse noise

{Â, Ŝ} = arg min
A,S
‖Y − DA− S‖2

F + λ‖S‖1 subject to ‖A‖row ,0 ≤ K

rm(Y) = ‖Y − DmÂm − Ŝ‖F , m = 1, ...,M

class(ycentral) = arg min
m=1,...,M

rm(Y)

S. Huang, H. Zhang and A. Pižurica (2017). A Robust Sparse Representation Model for

Hyperspectral Image Classification. Sensors.
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Robust SRC for Hyperspectral Image Classification
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Robust SRC for Hyperspectral Image Classification
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Spectral Unmixing

S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and Comparative Study

of Geometrical Approaches for Spectral Unmixing. International Journal of Scientific and

Engineering Research.
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Sparse Unmixing

Estimated fractional abundance maps (AVIRIS Cuprite subscene, USGS library).

R. Wang, H.-C. Li, A. Pižurica, J. Li, A. Plaza, and W. J. Emery (2017). Hyperspectral

Unmixing Using Double Reweighted Sparse Regression and Total Variation. IEEE Geoscience

and Remote Sensing Letters.
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Spectral clustering

No labelled data available → no supervised classification but instead clustering
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yN ] ∈ Rm×N

Ci ,j 6= 0→ yi and yj are in the same subspace.

Similarity matrix: W = |C |+ |C |T
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yN ] ∈ Rm×N

y ≈ Yc =
∑

i yici = c5y5 + c7y7

Ci ,j 6= 0→ yi and yj are in the same subspace.

Similarity matrix: W = |C |+ |C |T
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Joint Sparse Subspace Clustering - JSSC

S. Huang, H. Zhang and A. Pižurica (2019). Semi-supervised Sparse Subspace Clustering
Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images.

IEEE J. Sel. Topics in Earth Observation and Remote Sens.
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Joint Sparse Subspace Clustering - JSSC

Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC (1 %
labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

[Huang et al., 2019]
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Nice, but ...

SSC becomes practically infeasible for very large scale data.

E.g. for the full Pavia University image 610 × 340, the size of C is 207400 × 207400
→ 320,5 GB memory
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Sketching

Reduces greatly the size of the problem!

P. A. Traganitis and G. B. Giannakis (2018). Sketched subspace clustering.

IEEE Trans. Signal Process. [Traganitis and Giannakis, 2018]
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Sketched Sparse Subspace Clustering for Hyperspectral Images

S. Huang, H. Zhang and A. Pižurica (2020).

Sketch-based Subspace Clustering of Hyperspectral Images. Remote Sensing.
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Sketched Sparse Subspace Clustering for Hyperspectral Images

[Huang et al., 2020]
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Deep learning for HSI analysis

N. Audebert, B. Le Saux, and S. Lefèvre, IEEE Geosc. Remote Sens. Mag., June 2019.
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Convolutional Neural Networks (CNN)

Output at location (i , j) of the k-th feature map in the l-th layer:

x l ,ki ,j = σ(
M∑

m=1

Hl−1∑
p=0

Wl−1∑
q=0

w l ,k,m
p,q x

(l−1),m
(i+p),(j+q) + bl ,k)
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Convolutional Neural Networks (CNN)

Predicted probabilities of class labels using the softmax rule:

P(class(xi ,j) = c) =
ezc∑
k e

zk
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Deep learning models in HSI classification

N. Audebert, B. Le Saux, and S. Lefèvre. Deep Learning for Classification of Hyperspectral

Data - A comparative Review. IEEE Geosc. Remote Sens. Mag., June 2019.
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Spectral-spatial feature fusion with two-stream CNN

Improving the performance in the case of limited labelled data.

X. Li, M. Ding and A. Pižurica. Deep Feature Fusion via Two-Stream Convolutional Neural

Network for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote

Sensing, 2020. [Li et al., 2020]

A. Pižurica AI systems for computer vision: Challenges in high-dimensional and multimodal image analysis 37 / 69



Group CNN for HSI classification

Reducing the computational complexity - applicability to large scale data.

X. Li, M. Ding and A. Pižurica. Group Convolutional Neural Networks for Hyperspectral Image

Classification, ICIP 2018.
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Full Group CNN (FGCNN)

X. Li, M. Ding and A. Pižurica. Full Group Convolutional Neural Networks for Robust

Spectral-Spatial Feature Learning (2020). IEEE Trans. Image Process. (in review)
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Full Group CNN (FGCNN)

X. Li, M. Ding and A. Pižurica. Full Group Convolutional Neural Networks for Robust

Spectral-Spatial Feature Learning (2020). IEEE Trans. Image Process. (in review)
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Full Group CNN (FGCNN)

X. Li, M. Ding and A. Pižurica. Full Group Convolutional Neural Networks for Robust

Spectral-Spatial Feature Learning (2020). IEEE Trans. Image Process. (in review)
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Full Group CNN (FGCNN)

X. Li, M. Ding and A. Pižurica. Full Group Convolutional Neural Networks for Robust

Spectral-Spatial Feature Learning (2020). IEEE Trans. Image Process. (in review)
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The current restoration of the Ghent Altarpiece

Ongoing conservation-restoration treatment (started in 2012).A. Pižurica AI systems for computer vision: Challenges in high-dimensional and multimodal image analysis 45 / 69



Ghent Altarpiece - Current Restoration Campaign
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Ghent Altarpiece restoration – Phase 1
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Ghent Altarpiece restoration – Phase 1
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Ghent Altarpiece restoration – Phase 2 (inner panels)

The Mystic Lamb – before and after the restoration.
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A multimodal approach

©Ghent, Kathedrale Kerkfabriek, Lukasweb
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A multiscale deep learning method for paint loss detection

Size: 5954 × 7546; processed in < 1 minute
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Deep learning in crack detection

Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017].
However, crack detection in paintings is much more challenging!
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A deep learning method for crack detection in paintings

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. Pižurica (2018). A deep

learning approach to crack detection in panel paintings. IP4AI.
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel

[Sizyakin et al., 2020] https://ieeexplore.ieee.org/document/9072114
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Context adaptative inpainting

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov

random field modeling. IEEE Transactions on Image Processing 2015
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Global inpainting
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Global inpainting

E (x) =
∑
i∈ν

Vi (xi ) +
∑
〈i ,j〉∈ε

Vij(xi , xj), (1)

[Komodakis and Tziritas, 2007], [Ružić and Pižurica, 2015]
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Global inpainting
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Global inpainting: efficient inference

T. Ružić and A. Pižurica et al. Context-aware patch-based image inpainting using Markov

random field modeling. IEEE Transactions on Image Processing 2015
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Crack inpaiting

[Pižurica et al., 2015]
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Virtual Restoration

Left: original; Middle: automatic paint loss detection method [Meeus et al., 2019].
Right: MRF-based inpainting method [Ružić and Pižurica, 2015]
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Research Group for Artificial Intelligence and Sparse Modelling - GAIM

GAIM (https://gaim.ugent.be) is part of the Department Telecommunications and
Information Processing at the Faculty of Engineering of Ghent Univesity.
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Collaborators
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Special Issues
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Sketch-based subspace clustering of hyperspectral images.
Remote Sensing, 12(5).
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Semisupervised sparse subspace clustering method with a joint sparsity constraint
for hyperspectral remote sensing images.
IEEE Journal of Selected Topics in Applied Earth Observation and Remote
Sensing, 12(3):989–999.

Li, X., Ding, M., and Pižurica, A. (2020).
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A. Pižurica AI systems for computer vision: Challenges in high-dimensional and multimodal image analysis 69 / 69
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