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A Wealth of High-Dimensional Multimodal Data

Remote sensing data {hyperspectral, visible, LIDAR,...) Digitized paintings (infrared, X-Ray, visible)
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Hyperspectral Imaging (HSI) in Earth observation

HyperScoutl — the first miniaturized hyperspectral imager for space. Launched to an
orbit 540km above the Earth. (ESA program, led by Cosine Measurement Systems)
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HSI space technology - game changer in environmental monitoring

#7 Deutsches Zentrum
DLR fiir Luft- und Raumfahrt

German Aerospace Center

News /

Hyperspectral Earth observation instrument DESIS sets off for the ISS

29. June 2018

Image 222, Credit: DLR (CC-6Y 3.0/

DLR Earth Sensing Imaging Spectrometer (DESIS) installed on the International Space
Station (ISS). Monitors environmental changes on Earth.
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“Milk-carton-sized HyperScout making hyperspectral Earth views"
Space news feed, 20 May 2020
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Multimodal data analysis in art investigation

Extracting useful information
from multiple modalities, with

@ huge data
@ imperfect alignment
@ scarce annotations

@ erroneous annotations

(©Ghent, Kathedrale Kerkfabriek, Lukasweb
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Sparse representation
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Designed vs. Learned Dictionaries

o Designed dictionaries: wavelets, curvelets, shearlets...

» typically yield sparse representation of signals and images
» advantages: generic, fast computation

@ Learned dictionaries

» trained on a set of representative examples
» goal: optimally sparse representation for a given class of signals
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Sparse coding

& = argmin |y — Da|3 subject to  [allo < K
(87

& = argmin |lally  subject to |ly — Da||3 < ¢
(a2
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Sparse coding

& = argminly — Da3 subject to [l < K
(87

& = argmin [[aflo  subject to [ly — Da”% <e
(o7

Greedy algorithms
e Matching Pursuit (MP) [Mallat and Zhang, ‘93]
o OMP [Tropp,'04], CoSaMP [Needell and Tropp, ‘09]
e |HT [Blumensath and Davies, 09]
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Sparse coding

<

Convex relaxation:

& =argmin |af;  subject to |y — D3 <€
[0 %

& = arg min |y — Da3 + Al s
(87

LASSO [Tibshirani, '96], BPDN [Chen et al, ‘01]
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Sparse coding and dictionary learning

Y D A

D,A} = argminy ||Y — DA||2 subject to Vi, ||ajllo £ K
D.A F

A similar objective:

DAl = i ; bject to  ||Y — DA||% <
{D,A} arg min > lleillo  subject to || lF<e
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Iterate Two Steps: Sparse Coding and Dictionary Update

Set of examples Y

1 Sparse Coding

Fix D, find a sparse A

Dictionary update:

2 Dictionary Update
Update D

@ Maximum likelihood method of
[Olshausen and Field, 1997]

e MOD [Engan et al., 1999]
e K-SVD [Aharon et al., 2006]

Stopping criterion
reached?

{D.A}
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Learned Dictionaries of Image Atoms - Examples
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Examples of dictionaries trained by [Olshausen and Field, 1997] (left) and K-SVD
[Aharon et al., 2006] (right)
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Representation learning and sparse

Test example

ol R

~08% d_  +03* dy
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Representation learning and sparse coding

Natural Images Learned bases (¢, ¢n.)

Faces

lﬁhﬂakﬁﬁ

+03%  §p +O05* g E n !
[ay, ., ag) = [0,0, .., 0,0.8,0,..,0,0.3,0,..,0,0.5, 0]

(feature representation) More ‘:::;n;“:.:::y level, Qr "Q.J.-‘
IEHTIC’I
+04* \ .5
o

Represent as: [a,s=0.6, .,,a: s, a,;=04].

Test example
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Sparse Representation Classification
[Wright et al, 2009]

<

D
Dl/' D, Dy

a sample from
classm

& = argmin ||y — Da||3 subject to |jafo < K
(o7
rm(y) = [y = Dmbmll2, m=1,...M

class(y) = argmin rp(y)
m=1,...M
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise

Examples of stripe noise and mixed noise in a real hyperspectral image.

Huang, S., Zhang, H., Liao, W., and PiZurica, A. (2017). Robust joint sparsity model for
hyperspectral image classification. In IEEE ICIP 2017.
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Robust SRC for Hyperspectral Image Classification

Y= X + N + S

ideal image  Gaussian noise  sparse noise
{A.5) = arg min [[Y' — DA — S[IF + AlISll:  subject to [|Allrow0 < K
rm(Y) =Y =DmpAn—S|lp, m=1,.,.M

class(ycentrar) = argmin rp(Y)
m=1,....M

S. Huang, H. Zhang and A. Pizurica (2017). A Robust Sparse Representation Model for
Hyperspectral Image Classification. Sensors.
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Robust SRC for Hyperspectral Image Classification

ground truth SVM, OA=89.0%

Concrete
Soil
Grass

Asphalt
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Robust SRC for Hyperspectral Image Classification

Indian Pines (false color image) ground truth SVM, OA=80. 4%

Alfalfa Oats
B Com-notill Soybean-notill

B Com-minill Soybean-mintill

B Com Soybean-clean
Grass-pasture Wheat
Grass-trecs Woods
Grass s i Bldgs-grass-trece-drives
Hay-windrowed Stone-steel-towers
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Spectral Unmixing
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S.R Bijitha, P. Geetha and K.P. Soman (2016). Performance Analysis and Comparative Study
of Geometrical Approaches for Spectral Unmixing. International Journal of Scientific and
Engineering Research.
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Sparse Unmixing

Alunite Buddingtonite Chalcedony

I N
2 kilometers

Estimated fractional abundance maps (AVIRIS Cuprite subscene, USGS library).

R. Wang, H.-C. Li, A. Pizurica, J. Li, A. Plaza, and W. J. Emery (2017). Hyperspectral
Unmixing Using Double Reweighted Sparse Regression and Total Variation. IEEE Geoscience
and Remote Sensing Letters.
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Spectral clustering

No labelled data available — no supervised classification but instead clustering

Similarity matrix: W ¢ RMN*MN
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1..yn] € RN
G
i +
S fasasansd 1 dts
i i
oA =
HHE _
C

Cij # 0 —yjand y; are in the same subspace.

Similarity matrix: W = |C|+ |C|T

A. Pizurica
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Sparse Subspace Clustering

[Elhamifar and Vidal, 2013]

Self-representation model: Y = YC + N; Y = [y1...yn] € R™N

y~Yc=)yic = csys + cry7
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Joint Sparse Subspace Clustering - JSSC

C€1Cy C3Cy

~ d

-

= 'rV
=
Segmented HSI
C
$
€1C9C3Cy

——

row sparsity

S. Huang, H. Zhang and A. PiZurica (2019). Semi-supervised Sparse Subspace Clustering
Method With a Joint Sparsity Constraint for Hyperspectral Remote Sensing Images.

IEEE J. Sel. Topics in Earth Observation and Remote Sens.
27 / 69
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(D) OA=61.51 (2) OA=71.61 (h) OA=69.91 (i) DA=76.82 () OA=95.36

B Unisbelled MO Asphalt Il Meadows Trees Il Metal I Bare Soil WM Bitumen [ Brick Shadows
Pavia University image. (a) False color image, (b) Ground truth (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC (1 %
labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples)

[Huang et al., 2019]
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Nice, but ...

? - i f
I...l.. £ ] - Huge.
L complexity
I C € }RMNXMN

SSC becomes practically infeasible for very large scale data.

E.g. for the full Pavia University image 610 x 340, the size of C is 207400 x 207400
— 320,5 GB memory
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Sketching

Reduces greatly the size of the problem!

P. A. Traganitis and G. B. Giannakis (2018). Sketched subspace clustering.
IEEE Trans. Signal Process. [Traganitis and Giannakis, 2018]
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Sketched Sparse Subspace Clustering for Hyperspectral Images

B oxoere

DeRBm A ¢ RM™MN

«= Total variation (TV)
norm on each layer

7’

S. Huang, H. Zhang and A. PiZurica (2020).
Sketch-based Subspace Clustering of Hyperspectral Images. Remote Sensing.
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Sketched Sparse Subspace Clustering for Hyperspectral Images

Y ¢ ]R204><111104 =) C ¢ R111104x111104

Salinas: 16 Classes; 111104 pixels l our method

o (4
B\ \,
i Se |
» o _
i .
cmeans ssC s
False color Ground truth  OA=63.79 OA=74.36 0OA=80.28
Time=31s Time=269 s Time=335s
[ vraveed orocori-1 [l erocor2 [l Fovow [N Forowroven-piow Fallow-smooth [N tettuce- 7wk Vinyard-untrained swoble [ celery

Sollvinyad-devlop Cornweeds [N teroce i [ e sk — Grpesained

[Huang et al., 2020]
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Deep learning for HSI analysis

JEEE,
GEGSGIENGE]
IEI!_M_)]?:'_ SENSING

Hyperspectral.
Imaging
ot s

A comparative review
NICOLAS AUDEBERT, BERTRAND LE SAUX, AND SEBASTIEN LEFEVRE

N. Audebert, B. Le Saux, and S. Lefevre, IEEE Geosc. Remote Sens. Mag., June 2019.
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Convolutional Neural Networks (CNN)

led Fully-connected 1

poo
feature maps pooled  featuremaps feature maps
feature maps

classn

" Outputs

Output at location (i,/) of the k-th feature map in the /-th layer:
-1 W,—

M
Q. Z Z W "X ea) + 0)

m=
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Convolutional Neural Networks (CNN)

pooled Fully-connected

feature maps pooled  feature maps feature maps

feature maps

§ (pooling)

Predicted probabilities of class labels using the softmax rule:

e

P(class(x;j) = c) = T o
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Deep learning models in HSI classification

Q)é‘
& N
R & N N R
£ N
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S ® N g
(e 03 Tree'
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S} : “Tree” LAN  LAN
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& 2D + 1D CNN
1D CNN
A ~
A
9 _ Tros®
é -4
8 c @ FC1 FC2 FC3
2D CNN

N. Audebert, B. Le Saux, and S. Leféevre. Deep Learning for Classification of Hyperspectral
Data - A comparative Review. |IEEE Geosc. Remote Sens. Mag., June 2019.
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Spectral-spatial feature fusion with two-stream CNN

Global Feature Extraction Stream N\

|
5, . 5. ¥ .' |

SE-Conv, Poo].mg SE-Res SE-Res Pooling ' SE-Conv Mt Pooling JJ SE-Conv JF Pooling e
.‘ ., .r .’ ;7 '
|

|

Local Fenture Extractmn Stream

\
\
SE. Conv; SE-Cony j SE-Conv ! SE-Conv ,' Pooling gt ‘ . - K
F '.r f 5 —r
J' J' J" . |
) Sigmoid

Improving the performance in the case of limited labelled data.

X. Li, M. Ding and A. Pizurica. Deep Feature Fusion via Two-Stream Convolutional Neural
Network for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote
Sensing, 2020. [Li et al., 2020]
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Group CNN for HSI classification

u
]
u ]
u ]
\ ]
| W Softmax
i —P
[} o
L u
u
\ [ ]
. FC .
Classification
FC result
Grouped feature fusion
Multi-scale spectral Group spectral and spatial
feature extraction (MSSFE) feature extraction

Reducing the computational complexity - applicability to large scale data.

X. Li, M. Ding and A. PiZurica. Group Convolutional Neural Networks for Hyperspectral Image
Classification, ICIP 2018.
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Full Group CNN (FGCNN)

| =
—» i —p
| ]
Softmax

- Classification

Multi-scale spectral Discriminative spectral-spatial Lightweight
feature extraction (MSSFE) feature extraction (DSSFE) group feature fusion

X. Li, M. Ding and A. Pizurica. Full Group Convolutional Neural Networks for Robust
Spectral-Spatial Feature Learning (2020). IEEE Trans. Image Process. (in review)
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Full Group CNN (FGCNN)

Multi-kernel \ Py .
Depthwise Conv X' SE X' Shuffling X" Group Conv

X. Li, M. Ding and A. PiZurica. Full Group Convolutional Neural Networks for Robust
Spectral-Spatial Feature Learning (2020). IEEE Trans. Image Process. (in review)
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Full Group CNN (FGCNN)

Vertical Stream (7<1

X. Li, M. Ding and A. PiZurica. Full Group Convolutional Neural Networks for Robust
Spectral-Spatial Feature Learning (2020). IEEE Trans. Image Process. (in review)
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Full Group CNN (FGCNN)

X. Li, M. Ding and A. PiZurica. Full Group Convolutional Neural Networks for Robust
Spectral-Spatial Feature Learning (2020). IEEE Trans. Image Process. (in review)
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The Ghent Altarpiece

Hubert and Jan Van Eyck, completed in 1432.
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The current restoration of the Ghent Altarpiece




Ghent Altarpiece - Current Restoration Campaign
SclENce €he New Nork Eimes
A Master Work, the Ghent Altarpiece, Reawakens Stroke by Stroke

By MILAN SCHREUER ~ DEC. 19, 2016 o
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Ghent Altarpiece restoration — Phase 1

=

Overpaint © KIK-IRPA
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Ghent Altarpiece restoration — Phase 1
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Ghent Altarpiece restoration — Phase 2 (inner panels)

The Mystic Lamb — before and after the restoration.
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A multimodal approach

Macrophotography X-radiography Infrared macrophotography Macrophotography Infrared reflectography

Before treatment During treatment

(©Ghent, Kathedrale Kerkfabriek, Lukasweb
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A multiscale deep learning method for paint loss detection

Size: 5954 x 7546; processed in < 1 minute
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Deep learning in crack detection

-

o WPo- ; J ] . R P ly_{- \". “\
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Crack detection in roads reported in [Lei et al,2016], [Cha et al, 2017].
However, crack detection in paintings is much more challenging!
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A deep learning method for crack detection in paintings

Red Comp
Green Comp
Blue Comp
IR image
XR image

MF for RGB
MF for IR
MEF for XR

Kernels Convolution 1 Kernels Convolution 2 Kernels Convelution 3

3x3x8 3x3x12 3x3x24
@12 @24 @48 Fully Fully
connected 1 connected 2

— — — — _b[l

1%192 1x2

6x6x12 Ax4%24 2%2%48
8x8x8

R. Sizyakin, B. Cornelis, L. Meeus, M. Martens, V. Voronin, and A. PiZurica (2018). A deep
learning approach to crack detection in panel paintings. IP4Al.
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel
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Crack detection: Central panel

[Sizyakin et al., 2020] https://ieeexplore.ieee.org/document/9072114
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Context adaptative inpainting

Contextual
descriptor
!
Comparison of
contextual
descriptors

-
Selection of the
most contextually

=r ; - similar blocks

T. RuZi¢ and A. PiZurica et al. Context-aware patch-based image inpainting using Markov
random field modeling. IEEE Transactions on Image Processing 2015
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Global inpainting

position p
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Global inpainting

EG) =S Vi) + 3 Vilax). (1)

iev (ij)ee

[Komodakis and Tziritas, 2007], [RuZi¢ and PiZurica, 2015]

A. PiZurica Al systems for computer vision: Challenges in high-dimensional and multimodal image analysis



Global inpainting

Messages Beliefs

mpg(y) = min {Vog(apoay) + Vi) bolen) = =Vilay) = iy ()

+ Z My (2p) }

rir#q,(rp)€e
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Global inpainting: efficient inference

T. Ruzi¢ and A. PiZurica et al. Context-aware patch-based image inpainting using Markov
random field modeling. IEEE Transactions on Image Processing 2015
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Crack inpaiting

[PiZurica et al., 2015]
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Virtual Restoration

Left: original; Middle: automatic paint loss detection method [Meeus et al., 2019].
Right: MRF-based inpainting method [RuZi¢ and PiZurica, 2015]
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Research Group for Artificial Intelligence and Sparse Modelling - GAIM

Aleksandra Pizurica Shaoguang Huang Laurens Meeus Nina Zizaki¢ Xian Li Ting Zhao
3 (™
A/

Marko Panic Meizhu Li Srdan Lazendi¢ Roman Sizyakin Hrvoje Leventic Nicolas Vercheval

GAIM (https://gaim.ugent.be) is part of the Department Telecommunications and
Information Processing at the Faculty of Engineering of Ghent Univesity.
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Collaborators

Héléne Dubois Bart Devolder Ljiljana Platisa Tijana Ruzi¢ Bruno Cornelis Ann Dooms Max Martens  Ingrid Daubechies
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Special Issues

remote sensing

Special Issue "Spectral Unmixing of Hyperspectral
Remote Sensing Imagery"

| Submit to Special Issue ‘

| Submit Abstract to Special Issue ‘

| Review for Remote Sensing ‘ « Special Issue Editors

( « Special Issue Information
| Edit a Special Issue ‘

« Keywords

« Published Papers
Journal Menu
A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing Image

Remote Sensing Home Processing"”.
Aims & Scope
Editorial Board Deadline for manuscript submissions: 20 March 2021.

Guest Editors:
Shaoguang Huang, Aleksandra Pizurica, Hongyan Zhang and Mauro Dalla Mura
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Special Issues

remote sensing
Special Issue "Remote Sensing Image Denoising,

Restoration and Reconstruction”

‘ Submit to Special Issue ‘

‘ Submit Abstract to Special Issue ‘

‘ Review for Remote Sensing ‘ « Special Issue Editors

« Special Issue Information
‘ Edit a Special Issue ‘

« Keywords

« Published Papers

Journal Menu
A special issue of Remote Sensing (ISSN 2072-4282). This special issue belongs to the section "Remote Sensing Image

Remote Sensing Home Processing".

Aims & Scope

Editorial Board Deadline for manuscript submissions: 31 May 2021.
Reviewer Board Guest Editors:

Tanine RAard Karen Egiazarian, Aleksandra Pizurica and Vladimir Lukin
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