

About data, models and other magic: a brief introduction to machine learning

WHAT IS MACHINE LEARNING?

Machine learning components

- Optimise (=learn)
- model parameters
- to minimise a loss function
- using example data

D.A.T.A!

Learning algorithm (optimization)

Parametric mathematical model

Cost function (loss function)

Types of machine learning

Supervised learning:

- Approximate functional relationship between input (features) and desired output (labels)
- Data contains examples of input and desired output

Unsupervised learning:

- Learn «what normally occurs»:
 model the «structure» or probability density profile of data
- Data contains examples of feature combinations (no labels)

Reinforcement learning:

- Learn strategy to maximize future «reward»:
 desired output not known/enforced, reward has no closed-form
 mathematical relation to model output
- Data contains no desired outputs

Types of supervised ML: regression

Regression: labels are continuous

Example (2 features): "model" is a surface in 3D

Types of supervised ML: classification

Classification:

labels are discrete ("classes")

Example (2 features):

"model" gives a surface for each class, intersection boundaries between surfaces define classification boundaries

Complex supervised ML: images

Image classification:

- Single label: classes are mutually exclusive, label is one category from a set
- Multi-label: Image can belong to multiple classes (label is a vector of 0's and 1's)

Object detection:

- Find all objects from each class
- Mixture of classification (which class) and regression (bounding box)

Image segmentation:

- Find all pixels belonging to (objects of) certain categories
- = classification of each pixel

Unsupervised ML example: Gaussian mixtures

Assumptions:

- Data contains k subgroups
- Each subgroup occurs with a certain probability
- Features in each subgroup follow joint Gaussian distribution

Model training:

Subgroup probabilities & Gaussian parameters that best fit the data

Properties:

- Model only uses the data (no labels)
- Generative model:
 new "realistic" data can be generated by sampling from the model

Al vs machine learning (vs deep learning)

AI: Intelligence demonstrated by machines rather than humans or animals.

ML: Giving computers the skills to learn without explicit programming

DL: Is an ML subset, examining algorithms that learn and improve on their own. Not shown on the timeline: the AI winters!

Why now?

- (Machine learning has been around for more than half a century!)
- But: powerful machine learning needs LOTS of data and serious computing power!

What skills do you need?

THE ULTIMATE GOAL: GENERALISATION

What is a good model?

What we know thus far ...

Comparing models, based on loss

Initial conclusion: model 2 is the better model?

ML is more than just optimisation!

The goal is GENERALISATION!!!

- Machine learning learns from examples:
 - A finite set of observations (the observed features)
 and what the model should output for them
 (the labels)
 - For each model we make, we can only measure how well it performs on any example from this set
 - And from all possible models, we want to choose the best
 - But 'the best' means a model that performs well for data that we haven't seen yet
 - ◆ And the problem with a finite set is ... that it's finite

How to evaluate generalization?

Let's not trust our models ... and test them on new data!

Ideally: both scores should be similar!

Comparing models - revisited

Model 2: train SSE = 9.83 test SSE = 52.02 Big gap!

Updated conclusion: model 1 is the better model!

WHERE DOES THIS GAP COME FROM?

Data is never perfect:

- Some information may be missing from your features
- Your features may contain noise
- Your labels may contain noise

Simple and complex models

Best fit to training data, for different model complexities

These models are underfitting:

- they are not complex enough
- they can not approximate the training data
- they can not approximate the ground truth in any decent way!

Simple and complex models

Best fit to training data, for different model complexities

- Model on the right: overfitting!
- Good model: constrain the complexity by regularization!
- Tune complexity of (potentially) powerful models with hyperparameters

Which hyperparameters to choose??

In real life we don't know the ground truth!

Choosing the best model

Choose the model that performs best on unseen data

But now, your test data is "spoiled": test scores will likely be optimistic!

Training, validation and testing

Get more data if you can!!

3 times the same model, trained with different amounts of data

Overfitting will decrease if you get more data!

Training, validation and testing

Train set:

- Must be large enough to avoid overfitting
- Must be representative for data your model will be used on (features & labels)
- Must be representative for what you want your model to do

Validation and test sets:

- Must fulfill same conditions as train set
- & Data in each set must be independent
- In order to give an accurate estimate of model quality on unseen data

PROBLEMS WITH DATA

Data issues

- Not enough data
 - to learn the desired relation
 - AND average out all irrelevant effects
- Incomplete information
 - E.g. Cookie example: some information that determines the label is missing
- Data is inaccurate
 - e.g. measurement noise
 - e.g. mistakes in the labels
- Data bias
 - this part of the talk!

A close up of a lush green field Tags: grass, field, sheep, standing, rainbow, man

A herd of sheep grazing on a lush green hillside Tags: grazing, sheep, mountain, cattle, horse

Most sheep in the data occur in "sheepy" landscapes Model has learned connection between landscape and sheep

Overfitting on **context** in training data!

GHENT UNIVERSITY

Some innocent examples ...

A close up of a hillside next to a rocky hill Tags: hillside, grazing, sheep, giraffe, herd

A group of orange flowers in a field Image credit: Richard Leeming @RM_Leeming - CC-BY License

Some innocent examples ...

NeuralTalk2: A flock of birds flying in the air Microsoft Azure: A group of giraffe standing next to a tree Image: Fred Dunn, https://www.flickr.com/photos/gratapictures - CC-BY-NC

Automated Inference on Criminality using Face Images

Xiaolin Wu Shanghai Jiao Tong University Xi Zhang Shanghai Jiao Tong University

xwu510@gmail.com

zhangxi_19930818@sjtu.edu.cn

Distinguish between criminals and non-criminals, based on images from government data bases

(a) Three samples in criminal ID photo set S_c .

(b) Three samples in non-criminal ID photo set S_n

Model concluded that angle of mouth corners was crucial determining factor!

Sounds stupid, but similar mistakes happen all the time!

Impact of historical bias

Image Representations Learned With Unsupervised Pre-Training Contain Human-like Biases

Ryan Steed ryansteed@cmu.edu Carnegie Mellon University Pittsburgh, Pennsylvania, USA Aylin Caliskan aylin@gwu.edu George Washington University Washington, District of Columbia, USA

arXiv:2010.15052v3

Figure 1: Unilever using AI-powered job candidate assessment tool HireVue [35].

"Historical bias":

Models learn to mimic the patterns in the data

If these patterns are racist of discriminatory, the model will pick them up

THE INTERPLAY BETWEEN MODEL, TASK AND DATA

Which model for my task?

- Variability in the data:
 model needs to be able to
 "average out" what is not
 important
- Complex (nonlinear) relation: model needs to be able to mimic complex (highly nonlinear) functions
- BUT:
 More complex models
 "overfit faster"
 OR "need more data to avoid overfitting"

Identify the least complex model that is capable of solving the task

Everything is connected!

- Think carefully about how to set up your experiment
- Try to make your task easier: data cleaning, preprocessing, possibly feature engineering
- Try to have a good baseline: how far do I get with a simple model?

Adapting your data to task and model

GETTING STARTED

The importance of a systematic approach

Many beginners do this:

The importance of a systematic approach

Many beginners do this:

The importance of a systematic approach

Many beginners do this:

Summary: data, task and model

Data

- Must contain enough information to solve the task
- Must be representative sample from "the world"
- Enough data to cover all kinds of variability
- Understand (difficulties in) your data!

Labels

- Define the task
- Must be sufficiently accurate

Model features

- Extracted from original data: cleaning, transformations, compression
- Final remaining inputs to the model

Model

- Mathematical transformation
- Transforms features into predictions
- Must be sufficiently "powerful" to approximate labels
- Understand the models and hyperparameters you use!

Scientific approach

What you SHOULD do after your first dissapointment is this:

Hypothesis: your explanation for observations (errors, gaps, ...)

Action plan: best way to improve

If your hypothesis was not correct: find an explanation before moving on

Understand the models you use and their properties

Understand your data

Analyse your model errors: visualise, understand what is happening!

Where to start

- 1. Learn about the models
- 2. Learn about your data (and if necessary: first learn how to use data analysis and visualisation libraries)
- 3. Easyly accessible ML libraries:
 - sklearn: common "traditional" ML techniques, preprocessing, data splitting, ...
 - Tensorflow: specifically for neural networks and deep learning

