

3D: a link from brains to photonic neural networks

D. Brunner, X. Porte, J. Moughames, M Kadic, M. Jacquot, L. Larger

FEMTO-ST / Optics Dept., CNRS Univ. Bourgogne-Franche-Comté, Besançon, France

AI FOR PHOTONICS

utbm

How it all began

BULLETIN OF MATHEMATICAL BIOPHYSICS VOLUME 5, 1943

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FROM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE, DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE, AND THE UNIVERSITY OF CHICAGO

Because of the "all-or-none" character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms, with the addition of more complicated logical means for nets containing circles; and that for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes. It is shown that many particular choices among possible neurophysiological assumptions are equivalent, in the sense that for every net behaving under one assumption, there exists another net which behaves under the other and gives the same results, although perhaps not in the same time. Various applications of the calculus are discussed.

The Organization of Behavior

A NEUROPSYCHOLOGICAL THEORY

D. O. HEBB McGull University 1949 New York · JOHN WILEY & SONS, Inc. London · CHAPMAN & HALL, Limited

- Neural networks are not a new idea
- Learning / training ideas already 6 years later

Neural network: what for?

Sci-Hub: Marie Curie?

Postman: Cat /Dog ?

Neural Networks

NNs and photonics

© Ramón y Cajal

The interconnect

• Curse (for electronics) and blessing (*maybe* for photonics)

• Scaling: $C \propto \frac{\pi \epsilon l}{\ln\left(\frac{d}{2a} + \sqrt{\frac{d^2}{4a^2} + 1}\right)}$

ECHNOLOGIES

o Only log. Ratio, linear in length

Photonics

- No capacities, no induction, low loss propagation
- But: **much** larger feature sizes

Li et al., Nature NT 12, 675 (2017).

Relevance of NN hardware:

MIT Technology Review

<u>=Q</u>

Artificial Intelligence / Machine Learning

Training a single Al model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

by Karen Hao

Jun 6, 2019

The privatization of AI research

The results underscore another growing problem in AI, too: the sheer intensity of resources now required to produce paperworthy results has made it increasingly challenging for people working in academia to continue contributing to research.

Reddy agrees. "Human brains can do amazing things with little power consumption," he says. "The bigger question is how can we build such machines." **'T**

Some context: 'slow' brain is very fast

© Simon Thorpe, ANR project ANACONDA

- Human eye: >500 M image sensors
- You are capable to infer several times a second

Energy and speed: ultimate benchmark

- + Optical propagation along nerve
- Reaction time: 200 to 400 ms
- **o** Brain operates at bandwidth of 'components'
- Parallelism

Energy and speed: ultimate benchmark

Table 1. Basic Statistics of Human N	eocortex	brain)		
Property	Value	Source	90 100	Whole body
Surface area (mm²)	190,000	[7, 24]	(re v	
Thickness (mm)	2.5	[6, 25]	hed	
Glucose Consumption (µmol/g/min)	0.40	[10-12]	JIN 10	
Glia/mm ³	38,000	[7]	co	
Neurons/mm ³	40,000	[6, 26]	ially	
Synapses/mm³	7 x 10 ⁸	[5, 27, 28]	tent	
Axon Length m/mm ³	4,000	[5]	d 1	
Average Axon Diameter (μm)	0.3	[5]	ergy	
Dendrite Length m/mm ³	400	[5]	ш :	
Average Dendrite Diameter (μm)	0.9	[5]	-	vvnole brall

TECHNOLOGIES

Spikes per second per neuron

1000

Figure 3. Fraction of Cortical Neurons that Can Be Active, as a Function of the Average Spike Rate in Those Neurons that Are Active

Brain: majority of energy by action potential & potentiation Ο

- Spiking, Signal:>90 % Ο
- Cortex: 44 % of E/Brain \bigcirc
- **Negligible emulation overhead** Ο
- The way to 20 W 0

Lennie, Current Biology 13, 493 (2003).

Architecture and energy consumption

- Silicon: ~10¹² Ops/W
- Brain: ~10¹⁴ Ops/W

But:

- MAC: ~1 pJ
- Synaptic event: ~5 fJ
- > Operation \neq 'Operation'

© Hussein Nur

© Ramón y Cajal

Human Connectome project

- 1. 3D connections: scalable
 - Neurons: 2D
 - **Connections: 3D**

- 2. Fractal branching
 - Space/resource efficient
 - Efficient transport

Dinc, Psaltis, Brunner, Photoniques 104, 34 (2020).

Rooting N inputs to N outputs

Fractal branching

- $C = b^{2l}$, b: bifurcations, l: layers
 - Exponential scaling (good)
- Straight connections: intersections
- Chirality removes 'shorts'
- Scale free: 'unit cell' design approach

3D long-range connected network:

3D printing: 2 photon polymerization (Nanoscribe) **Waveguides:** 1.2 µm diameter, 20 µm pitch

Moughames, et al., Optica 7, 640 (2020).

3D long-range connected network:

3D printing: 2 photon polymerization (Nanoscribe) **Waveguides:** 1.2 μm diameter, 20 μm pitch Lindenmann, et al., Opt. Express 20, 17667 (2019).

First functionality: 'Gabor' filters

Moughames, et al., arXiv:1912.08203 (2019).

3D Spatial filters (convolutional NN):

Moughames, et al., Optica 7, 640 (2020).

Array of Haar filters:

Ŵ	8		8	8	8	Ŵ
Ŵ	8	8	8	8	8	
	8	*	*	Ŵ		
	*					
				81	00 µ	<u>im</u>

Moughames, et al., Optica 7, 640 (2020).

NN breakthrough: long term effort

Parallel networks

Moughames, et al., arXiv:1912.08203 (2019).

Hardware-motivated learning

Bueno, et al., Optica 5, 756 (2015).

Photonic neurons

Liu et al., Laser and Photonics Reviews 9, 172 (2015). Heuser, et al., J. Appl. Phys 3, 116103 (2018).

Semenova, et al., Chaos 29, 103128 (2015).

Summary

- Physical substrates: topology inspiration from Brain
- Address hardware-motivated learning challenge
- Next:
 - Address hardware-motivated learning challenge
 - application "advantage"

Conference @ SPIE Optics and Photonics – most likely virtual

Emerging Topics in Artificial Intelligence **2021** OP112)

Conference Chairs: Giovanni Volpe, Göteborgs Univ. (Sweden); Joana B. Pereira, Karolinska Institute (Sweden); Daniel Brunner, Institut Franche-Comte Electronique Mecanique Thermique et Optique (France); Aydogan Ozcan, Univ. of California, Los Angeles (USA)

