PROGRAMMABLE PHOTONIC INTEGRATED CIRCUITS

Wim Bogaerts

NB Photonics – 11 October 2019

WIM BOGAERTS

1998 – Ghent University - M.Sc. Engineering - Applied Physics 2004 – Ghent University, imec - Ph.D. EE. Engineering (Photonics)

"Nanophotonic Waveguides and Photonic Crystals in SOI"

2004 – 2010 – Ghent University, imec - Postdoc

2010 – Lecturer

mec

GHENT

UNIVERSITY

2011 – Senior lecturer (tenure)

2013 – Black belt in LEAN

- 2014 Spin-off company Luceda Photonics
- 2016 ERC consolidator grant PhotonicSWARM
- 2018 Travelling Lecturer for the OSA
- 2019 Invited Professor at EPFL (Q-LAB)

PROGRAMMABLE PHOTONICS: WHAT IS IN A NAME?

Programmable Photonics

We manipulate functionality in software

We manipulate light on a small scale

PROGRAMMABLE PHOTONICS: WHAT IS IN A NAME?

Programmable Photonics

We manipulate light in software on a small scale

Why? Because light contains information

3000

Beams of light contain information

- **Total power** •
- Intensity profile •
- Phase profile •
- Wavelength •
- Polarization ullet

unec

IIIII GHENT

UNIVERSITY

Beams of light contain information

- Total power
- Intensity profile
- Phase profile
- Wavelength
- Polarization

nnec

Can we process this information? yes, as the beam propagates

(Fresnel diffraction) 6

Using optical elements

- Lenses
- Mirrors
- Polarizers
- Shutters
- Spatial filters
- Wavelength filters
- Phase plates

unec

GHENT

UNIVERSITY

• Spatial light modulators

MANIPULATING BEAMS OF LIGHT IN FREE SPACE

Using optical elements

- Lenses
- Mirrors
- Polarizers
- Shutters
- Spatial filters
- Wavelength filters
- Phase plates

unec

GHENT

UNIVERSITY

Still quite coarse

Active, granular manipulation

- Spatial light modulators
 - amplitude
 - phase
 - polarization
- Micromirror arrays
- Grating light valves
- Deformable mirrors

unec

GHENT

UNIVERSITY

Can be controlled in Software

DISCRETIZED LINEAR OPERATIONS

Discretized linear operation

Matrix is unitary if

- no reflection
- no loss

DISCRETIZED LINEAR OPERATIONS (RECK 1994)

Processing with

Mirror tunable phase shifters • tunable beam splitters • Ν N-1 N-2 (N-1) universität innsbruck Reck et al. Phys. Rev. Lett. 1994 14

UNIVERSAL LINEAR OPTICS (MILLER 2013)

Processing with

- tunable phase shifters
- tunable beam splitters
- + monitor detectors
- + control algorithms

Stanford University

CONTRUCTING AN ARBITRARY T-MATRIX

Singular Value Decomposition: A general $m \times n$ matrix

can be decomposed into:

- A unitary $m \times m$ matrix
- A diagonal $m \times n$ matrix
- A unitary $n \times n$ matrix

(this is not the only way to construct this matrix)

nec

MANIPULATING BEAMS OF LIGHT IN FREE SPACE

Using optical elements

- Lenses
- Mirrors
- Polarizers
- Shutters
- Spatial filters
- Wavelength filters
- Phase plates

unec

GHENT

UNIVERSITY

- Spatial light modulators
- Does not scale very well

UNIVERSITY

PHOTONIC INTEGRATED CIRCUITS: WHAT'S IN A NAME?

Probably something to do with light...

Photonic Integrated Circuit

Combining stuff together into something coherent

signals travel around from one element to another

PHOTONIC INTEGRATED CIRCUITS (PIC)

Integration of (many) optical functions on a chip

GHENT

UNIVERSITY

unec

WHAT IS <u>SILICON</u> PHOTONICS?

The implementation of <u>high density</u> photonic integrated circuits by means of CMOS process technology in a CMOS fab

Complex functionality, compact chip, low cost, high volumes

WHY SILICON PHOTONICS?

Large scale manufacturing

Submicron-scale waveguides

MORE THAN JUST PHOTONS

Silicon photonics goes beyond the optical chip

SILICON PHOTONIC CIRCUITS TODAY

Rapidly growing integration

- O(1000) components on a chip
- photonics + electronic drivers
- different applications

 (still mostly communication)
- Relatively small chip volumes (compared to electronics)

All photonic circuits are ASICs

GHEN

UNIVERSI

nec

FLEXIBLE OPTICAL COMMUNICATION

Today: if you want to change protocol...

you need to make a new chip

PROTOTYPING A NEW ELECTRONIC CIRCUIT

Select a suitable programmable IC: FPGA, DSP, µC (1d)

Program and test the chip (1-4w)

Only then, if needed:

• Design ASIC ...

unec

GHENT

UNIVERSITY

WHERE ARE THE PHOTONIC FPGAS?

or programmable photonics

reconfigurable photonics

photonic processors

universal photonic circuits ...

Photonic Integrated Circuits

that can be reconfigured

using software

to perform different functions.

PROGRAMMABLE PHOTONIC CHIP

Can processes signals in the optical domain

- balancing
- filtering
- transformations

Both on Optical and RF

36

OPTICAL LINEAR PROCESSING

 S_{11}

Linear optical circuits can be described by an S-matrix

 $out_p = S_{pq}.in_q$

- Frequency domain
- Complex numbers
- Wavelength dependent
- Includes reflection
- Reciprocal

OPTICAL LINEAR PROCESSING (TRANSMISSIVE)

Transmissive linear optical circuits can be described by an

T-matrix

$$out_p = T_{pq}.in_q$$

- Frequency domain
- Complex numbers
- Wavelength dependent

unec

GHEN

UNIVERSITY

- NO REFLECTION
- IF NO LOSS \Rightarrow T is unitary

IMPLEMENTING T-MATRICES ON A CHIP

Network of phase shifters and tunable 2x2 couplers (beamsplitters)

Stanford University

Miller, OpEx 2013 40

FIRST PROGRAMMABLE T-MATRIX CIRCUIT

First implementation in silica (low contrast): 2015

6x6 T-matrix

Application: linear optical quantum operations: CNOT gate, boson sampling, random walks, etc. University of

Carolan et al. Science 2015 41

FIRST T-MATRIX CIRCUIT IN SILICON

UNIVERSAL LINEAR CIRCUIT IN SILICON

GHENT

UNIVERSITY

unec

Tunable couplers = MZI with thermo-optic phase shifters

Ribeiro et al, Optica 2016 43
ADAPTIVE BEAM COUPLER

Circuit adapts itself to maximize output to a single mode waveguide

Local feedback loops stabilize the entire circuit.

GHENT

UNIVERSITY

unec

Comparison between feedback stabilized and non-stabilized

Ribeiro et al, Optica 2016 44

LARGE-SCALE T-MATRIX CIRCUIT

Michael Hochberg (opsis), Michael Fanto (RIT), Paul Alsing (AFRL), Stefan Preble (RIT), Philip Walther (U. Vienna)

WHERE ARE MATRIX MULTIPLICATIONS USEFUL?

Pattern Recognition Linear Quantum Optics Artificial Neural Networks

QUANTUM PHOTONICS CIRCUITS

A whole string of demonstrations

Quantum transport simulations in a programmable nanophotonic processor

Nicholas C. Harris^{1*}, Gregory R. Steinbreche¹, Mihika Prabhu¹, Yoav Lahini², Jacob Mower¹, Darius Bunandar³, Changchen Chen⁴, Franco N. C. Wong⁴, Tom Baehr-Jones⁵, Michael Hochberg⁵, Seth Lloyd⁶ and Dirk Englund¹

optica

Optimal design for universal multiport interferometers

William R. Clements,* Peter C. Humphreys, Benjamin J. Metcalf, W. Steven Kolthammer, and Ian A. Walmsley

OPEN

Experimental access to higher-dimensional entangled quantum systems using integrated optics

CHRISTOPH SCHAEFF,^{1,5} ROBERT POLSTER,¹ MARCUS HUBER,^{2,3} SVEN RAMELOW,¹ AND ANTON ZEILINGER^{1,4,*}

Vol. 2. No. 6 / June 2015 / Optica 523

Modular linear optical circuits

 $\begin{array}{l} {\sf Paolo \ L. \ Mennea,^1 \ William \ R. \ Clements,^2 \ Devin \ H. \ Smith,^1 \ James \ C. \ Gates,^1 \odot \ Benjamin \ J. \ Metcalf,^2 \ Rex \ H. \ S. \ Bannerman,^1 \odot \ Roel \ Burgwal,^2 \ Jelmer \ J. \ Renema,^2 \ W. \ Steven \ Kolthammer,^{23} \ Ian \ A. \ Walmsley,^2 \ and \ Peter \ G. \ R. \ Smith^{1,*} \end{array}$

Directional coupler Phase

Received 27 Jul 2015 | Accepted 14 Dec 2015 | Published 4 Feb 2016

Suppression law of quantum states

in a 3D photonic fast Fourier transform chip

Andrea Crespi^{1,2}, Roberto Osellame^{1,2}, Roberta Ramponi^{1,2}, Marco Bentivegna³, Fulvio Flamini³, Nicolò Spagnola³, Niko Viggianiello³, Luca Innocenti^{3,4}, Paolo Mataloni³ & Fabio Sciarrino³

9 67 8: π/2 3

nature **communications**

ARTICLE

PHOTONIC ACCELERATORS FOR AI

Neural networks need fast multiplications of large matrices

OPTICAL T-MATRIX HAS LIMITS

Strict separation of inputs and outputs

Difficult to implement flexible delays (e.g. filters)

MORE GENERIC: FULL S-MATRIX PROCESSING

Adding feedback (loops)

- Zhuang 2015: Square Meshes •
- Capmany 2016: Triangular/Hexagonal meshes •

HEXAGONAL MESH CIRCUIT

Photonics Research Labs

- 7 hexagonal cores
- 30 tunable couplers
 (2 heaters per coupler)
- >100 possible circuits

D. Pérez, et al., Nature Comms. 8, 636, 2017

Light can be arbitrarily routed

Light can be arbitrarily routed

Light can be arbitrarily routed

Light can be arbitrarily routed

Multiple routes in the same mesh

Light can be arbitrarily routed

Multiple routes in the same mesh

Edges can be shared

Light can be arbitrarily routed

Multiple routes in the same mesh

Edges can be shared

GHENT

UNIVERSITY

unec

Crossings are not a problem

SPLITTING LIGHT

Couplers control arbitrary splitting ratios Power distribution networks

Multicasting

IIII GHENT

SPLITTING AND COMBINING LIGHT

Couplers control arbitrary splitting ratios Phase shifters keep everything in phase

IIII GHENT

MACH-ZEHNDER INTERFEROMETERS

Basic building block for FIR filters

Delay can be adjusted per unit lengths

RING RESONATORS

Loop light in itself

Coupler ring resonators together

UNIVERSITY

I. Zand, in preparation 65

PARASITIC OUTPUTS...

ເກາຍc

Light goes everywhere it can...

ROUTING A PATH

UNIVERSITY

1% random Variations on the nominal coupling

I. Zand, in preparation 69

ROUTING A PATH

3% random Variations on the nominal coupling

I. Zand, in preparation 70

OPTIMIZING THE 'UNUSED' COUPLERS

3% random Variations on the nominal coupling

SCALING UP THE HEXAGONAL MESH

ເງຍ

Ribeiro et al., in preparation 77

LARGE-SCALE OPTICAL MESHES

LARGE-SCALE OPTICAL MESHES

THE ESSENTIAL ACTUATOR BLOCKS

Phase Shifters Tunable Couplers V_{c} V_{c} $S_{out1} = S_{in1}(1-\kappa) + S_{in2}\kappa$ S_{in1} $\Delta \phi(V_c)$ $\kappa(V_c)$ $s_{out} = s_{in} \cdot e^{j\Delta\phi(V_c)}$ S_{in} S_{in2} $S_{out2} = S_{in1}\kappa + S_{in2}(1-\kappa)$

- Symmetric MZI with phase shifter in both arms
- Directional coupler as splitter/combiners
- Side-strip heater with integrated diode as phase shifter

GHENT

UNIVERSITY

unec

MAKING THE TUNABLE COUPLER BROADBAND AND TOLERANT

Use two coupler stages

MAKING THE TUNABLE COUPLER BROADBAND AND TOLERANT

Broadband coupling over 50nm

Tolerant to fabrication variations

in the directional couplers

in percentage

coupling

best

I

GHENT

UNIVERSITY

60

Δ(

20

1530

1535

1540

unec

PHOTONIC PHASE SHIFTERS: REDUCE POWER CONSUMPTION?

GHENT

UNIVERSITY

MOVABLE WAVEGUIDE APPROACHES IN SILICON PHOTONICS

Han et al., Optica, 2018

Courtesy: Niels Quack 85

MORPHIC: PHOTONIC MEMS FOR PROGRAMMABLE CIRCUITS

MEMS enable low (zero) power reprogramming of generic silicon photonics circuitry.

<u>Mems-based zerO-power</u> <u>Reconfigurable</u> <u>PH</u>otonic <u>IC</u>s

SILICON PHOTONICS MEMS PROCESS DEVELOPMENT

Silicon Photonic MEMS process.

Extend IMEC's wafer-level iSiPP50G process on a die level (EPFL, KTH)

- opening
- passivation

unec

- underetch (release)
- sealing

GHENT

UNIVERSITY

aorphic

DEVICE EXAMPLE: FREESTANDING ADIABATIC COUPLER

MEMS-BASED PHASE SHIFTER

In-plane actuation with Comb drive

Edinger et al. Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics. 32nd IEEE MEMS conference (2019) 91

silicon photonics. 32nd IEEE MEMS conference (2019)

92

LARGE-SCALE OPTICAL MESHES

MORE THAN JUST PHOTONS

It is not just the optical chip

Packaged interfaces ullet

UNIVERSIT

CONTROLLING MANY ELECTRO-OPTICAL ELEMENTS

Flip-chip / 3D stacking

- Many connections
- Custom ASIC

Wire-bonding

- flexible
- limited connections

Monolithic:

- Very powerful
- Complex process/design

MATRIX ADDRESSING OF HEATERS WITH DIODES

Diodes enable Matrix addressing

unec

UNIVERSITY

MATRIX ADDRESSING OF HEATERS WITH DIODES

Time-multiplexing the control

IIII GHENT

UNIVERSITY

MORE THAN JUST PHOTONS

INTERFACES AND PROGRAMMING TOOLS

Programmable circuits are part of a system

- Photonics
- Electronics

unec

• Software

GHENT

UNIVERSITY

- Optical interfaces
- Electrical and RF interfaces

Develop packaging and programming tools

user Fidres appendidetoristiciti

software

digital electronics

analog electronics

photonics

PROGRAMMABLE CIRCUITS: THE LOGIC STACK

payload

Control system

- Electronic driver / readout ullet
- **Digital control** ullet
- Local feedback loops ullet
- Software control \bullet

unec

GHENT

UNIVERSITY

High-level programming ullet

Porphic

FROM IDEA TO PROGRAMMABLE CIRCUIT

How to program functionality?

- translate specifications to programming code for control circuit
- sequential programming strategies
- trade-off for different metrics (loss, phase errors, balance)

Programming code

set_current(k, I)
read_monitor(k, 1)

read monitor(k, 2)

for k in range(N):

USING GRAPH ALGORITHMS TO ROUTE IN PROGRAMMABLE MESHES

Translate circuit into "photonic graph"

EMBEDDING PHOTONIC RULES IS NOT TRIVIAL

GRAPH MAPPING

Directed or undirected Weighted or unweighted Introduce artificial nodes

Compatible with existing algorithms?

unec

<u>IIII</u> GHENT

UNIVERSITY

DIFFERENT ALGORITHMS

Many routing problems are NP

Different algorithms

- Integer Linear Programming (small systems)
- Multi-commodity flow algorithms
- Heuristics

with congestion negotiation

Example: Multi-path routing

X. Chen, in preparation 117

DISTRIBUTION PROBLEMS

Without congestion cost

With congestion cost (e.g. nonlinear losses, TPA)

X. Chen, in preparation 118

LARGE-SCALE OPTICAL MESHES

GHENT

UNIVERSITY

unec

ullet

 \bullet

ullet

•

•

unec

GHENT

UNIVERSITY

GENERIC PROGRAMMABLE OPTICAL PROCESSOR

Add optical functionality to the linear circuit

- Fast modulation and photodetectors for RF input/output
- Light sources
- Amplifiers

GHENT

UNIVERSITY

- Fiber input/output
- Long delay lines

unec

49-core hexagonal mesh

4 RF phase modulators

16 optical IOs (fiber arrav)

10 RF detectors

336 tuners

49-core hexagonal mesh

16 optical IOs (fiber arrav)

336 tuners

Fabricated in IMEC

IIII GHENT

UNIVERSITY

unec

Observation method: BF mage type: Color sna Objective Zoom: 1 mm Electrical IO₁₂₆ **Optical IO Optical Core**

High Speed Modulators and Photodetectors

Partially wire-bonded (miniBee)

6 hex cells

2 address matrices of 3x10

129

What is next?

- Programming simple wavelength filters
- Connecting all 336 phase shifters
- Interfacing the RF elements (packaging with Tyndall)
- Application demonstrations
 - microwave processing
 - filtering

mec

GHEN[®]

UNIVERSI

- spectrometers
- transceivers

PROGRAMMABLE TRANSCEIVER

PROGRAMMABLE TRANSCEIVERS

aorphic

EXAMPLE: SWITCH MATRIX

Switching network

- Different switch architectures possible
- Multicasting and broadcasting • 8 fibers out 8 fibers in 8 fibers out MEMS switches BENES network routing network 8 fibers in **IIII** GHENT unec 137 UNIVERSITY

EXAMPLE: OPTICAL BEAM FORMING

Fast beam-forming network

- distribution network (phase and amplitude)
- fast modulation ullet8 fibers out fast phase modulators fast phase modulators Jaser in 8 fibers out MEMS 2×2 distribution couplers network length matching laser in network **IIII** GHENT unec UNIVERSITY

aorphic

aorphic

EXAMPLE: MICROWAVE PHOTONICS

multi-channel programmable microwave filter

photodetector input • balanced optical filter bank **4** RF ulletdetectors outputs modulator output ${\color{black}\bullet}$ modulators 4 RF inputs Jaser in programmable 4 RF inputs ring filter bank laser in modulators balanced programmable detectors ring filter network **4** RF outputs GHENT unec 139 UNIVERSITY

CHANGING THE ECOSYSTEM

SUMMARY: PROGRAMMABLE PICS

Programmable PICs can become a game-changer:

- Rapid prototyping and development
- High performance
- Different applications

Scaling exposes new challenges

- power consumption
- accumulated loss/parasitics
- control

GHEN

UNIVERSI

packaging

unec

• programming algorithms

THANKS TO THE TEAM

Ang Li

Iman Zand

Xiangfeng Chen

Yinghao Ye Yufei Xing Antonio Ribeiro Umar Khan Lukas Van Iseghem Abdul Rahim Mi Wang Hong Deng Banafsheh Abasahl

MORPHIC

Collaborators at IMEC, EPFL, KTH, Tyndall, Commscope and VLC

SOURCE MATERIAL

Jose Capmany (UP. Valencia) Joel Carpenter (U. Queensland) Dirk Englund (MIT) Hasitha Jayatilleka (UBC) Andrea Melloni (Poli. di Milano) David A.B. Miller (Stanford) Niels Quack (EPFL) Graham Reed (U. Southampton) Josh Silverstone (U. Bristol)

PHOTONICS RESEARCH GROUP

Wim Bogaerts

- **Professor in Silicon Photonics**
- E wim.bogaerts@ugent.be
- T +32 9 264 3324
- PhotonicsUGent
 - @WimBogaerts

Y

www.photonics.intec.ugent.be

Part of this work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 780283, and the European Research Council under grant 725555.

