

Center of Expertise

24/08/2018

CENTER OF EXPERTISE (COE)

NB-Photonics

Training

One stop shop for photonics @ UGent

Center of Expertise

Collaborative Research

- A UGent platform that brings together photonics and photonics related expertise of more than 21 profs from 10 departments within the field of nano- and bio-technology.
- CoE co-ordinates the access to the extensive knowledge, infrastructure and facilities of its members.
- CoE acts as a liaison between the members and the users (both within and outside UGent).

SERVICES OFFERED BY THE CENTER

- Simple consultation
- Characterization using existing tools
- Design of tools enabled by photonics
- Building tools enabled by photonics

To know more about the services and how to avail them visit the website (nb-photonics.ugent.be) and/or contact Kamal Kaur (Kamalpreet.Kaur@Ugent.be)

<One stop Shop> for photonics!

Speaker	Research group
prof. Dirk Poelman	LumiLab
prof. Johan Bauwelinck	IDLab
dr. Toon Brans	LGBPP
dr. Felix Mattelaer	CoCooN
dr. Pieter Geiregat	PCN
dr. Tom Gheysens	PBM
prof. Bart Kuyken	PRG
prof. Kristiaan Neyts	LCP
prof. Andre Skirtach	Nano and Bio-Photonics
prof. Geert Van Steenberge	CMST
dr. Thomas Vervust	NaMiFab

LumiLab

department of solid state sciences Ghent university © @UgentLumiLab

FACULTY OF SCIENCES – CHEMISTRY AND SOLID STATE PHYSICS

- Photoluminescence spectroscopy:
 - Emission spectra
 - Excitation spectra
 - Decay spectra
- SEM-EDX-CL micro-spectroscopy
- UV-Vis-NIR spectrophotometry

PHOTOLUMINESCENCE SPECTROSCOPY

- Photoluminescence spectroscopy:
- Emission spectra
- Excitation spectra
- Decay spectra

SEM-EDX-CL SPECTROSCOPY

- Imaging (SE/BSE)
- Composition (EDX)
- CL light emission (spectroscopy)

Available online at www.sciencedirect.com

CERAMICS INTERNATIONAL

Ceramics International 42 (2016) 5497-5503

www.elsevier.com/locate/ceramint

Photoluminescence and phase related cathodoluminescence dynamics of Pr^{3+} doped in a double phase of $ZnTa_2O_6$ and $ZnAl_2O_4$

L.L. Noto^{a,c,*}, S.K.K. Shaat^a, D. Poelman^b, P.F. Smet^b, L. Martin^b, M.Y.A. Yagoub^a, S.M. Dhlamini^c, O.M. Ntwaeaborwa^a, H.C. Swart^{a,**}

Fig. 4. The backscattered electron image (top) and maps in false colour of the elements in ZnTaAlO₅:Pr³⁺.

UV-VIS-NIR SPECTROPHOTOMETRY

Lumilab, Dept Solid State Sciences

PCN group, Department of Chemistry

- 175 3300 nm
- Specular R, T
- Diffuse R, T

UV-VIS-NIR SPECTROPHOTOMETRY

- Gas atmospheres
- Temperature dependence
- Wafer mapping

11

UV-VIS-NIR SPECTROPHOTOMETRY

Lasers Med Sci

DOI 10.1007/s10103-013-1307-4

ORIGINAL ARTICLE

Roeland J. De Moor

wavelength region

Maarten A. Meire · Dirk Poelman ·

Eclipsbrilletjes belicht

Noot van de redactie: Dit is een interessant artikel uit 2001, maar door veranderingen in materialen wellicht niet meer geheel bij de tijd. Moderne eclipsbrillen moeten voldoen aan ISO-keurmerk 12312-2. Helaas is de vermelding van dit keurmerk geen garantie, aangezien er ook namaakbrillen in omloop zijn

Naar aanleiding van de totale zonsverduistering van 11 augustus 1999 was er -- terecht -- heel wat te doen rond de veiligheid van de verschillende soorten eclipsbrilletjes. De conclusie was, dat enkel de 'echte' eclipsbrilletjes voldeden en dat alle alternatieven zoals floppy-schijfjes, CD's en fotonegatieven gevaarlijk waren voor directe zonnewaarneming. Met een nieuwe totale verduistering voor de deur, leek het ons interessant om de verschillende soorten eclipsfilters nog eens van naderbij te bekijken.

Zonsverduistering

Twee kinderen, met eclipsbrilletjes op, zijnde de kinderversie van het Woowoo-brilletje (type 11 in het artikel) en een brilletje met metaallaag (type 8 in het artikel) (Foto: Dirk Poelman)

Aan de hand van optische transmissiemetingen zullen we trachten duidelijk te maken waarom de alternatieve filters af te raden zijn. Een filtertje dat visueel een aangenaam en voldoende donker beeld geeft, kan in de praktijk inderdaad heel onveilig zijn!

Een filter voor het waarnemen van de zon moet de hoeveelheid straling die het oog binnendringt, tot een aanvaardbare waarde beperken. Enige tijd geleden stelde Dr.

Ralph Chou een stel specificaties voorop waaraan minstens moet voldaan zijn (deze specificaties werden overgenomen als voorwaarden voor CE-markering). Er wordt hierbij een maximale transmissie (fractie van het licht die doorgelaten wordt) opgegeven in de verschillende golflengtegebieden van de zonnestraling. Deze transmissie kan uitgedrukt worden in %, of in optische dichtheden (O.D.). De optische dichtheid O.D. = log (1/T), met T de transmissie. Volgend tabelletje geeft de correspondentie tussen beide eenheden

Fe^{II} Spin Transition Materials Including an Amino–Ester 1,2,4-

Marinela M. Dîrtu,[†] Anil D. Naik,[†] Aurelian Rotaru,[‡] Leonard Spinu,[§] Dirk Poelman,^{||} and Yann Garcia^{*,†}

Triazole Derivative, Operating at, below, and above Room

pubs.acs.org/IC

Article

RSC Advances

PAPER

Cite this: RSC Adv., 2015, 5, 22334

Temperature

Optical properties of root canal irrigants in the 300–3,000-nm

Au@UiO-66: a base free oxidation catalyst⁺

K. Leus,^a P. Concepcion,^b M. Vandichel,^c M. Meledina,^d A. Grirrane,^b D. Esquivel,^a S. Turner,^d D. Poelman,^e M. Waroquier,^c V. Van Speybroeck,^c G. Van Tendeloo,^d H. García^b and P. Van Der Voort^{*a}

IDLab

HIGH-SPEED OPTICAL TRANSCEIVERS

Exponentially increasing data consumption is expanding the applications of optical communication and driving the development of faster and more efficient transceivers

Metro and access

HPC

Datacenter

Beyond 5G

GHENT UNIVERSITY

HIGH-SPEED OPTICAL TRANSCEIVERS

HIGH-SPEED OPTICAL TRANSCEIVERS

EQUIPMENT: RF - MMWAVE

- Faradized lab
- Network analyzer: 4-port up to 67GHz
- Signal generation up to 70GHz
- Signal analyzer up to 26.5GHz
- Range of TRx, mixers... for system experiments

EQUIPMENT: BROADBAND - OPTICAL

- Bit-error-rate tester: up to 50Gb/s
- 4-ch 92GSa/s AWG (H)
- Optical spectrum analyzer: 0.6 1.75um
- 70GHz sampling scope
- 63GHz real-time scope (H)
- Tunable lasers for O-, C- and L-band
- Range of optical Tx/Rx, tunable lasers, filters, optical amplifiers, dispersion emulation ... for system experiments otonics

LABORATORY OF GENERAL BIOCHEMISTRY AND PHYSICAL PHARMACY

Delivery of exogenous macromolecular materials into the cellular cytosol

Cell membrane = barrier

TECHNOLOGICAL SOLUTION

NP-sensitized photoporation

PULSED LASER LIGHT

NANOPARTICLE

Vapour nanobubble (VNB)

MECHANICAL ENERGY (@ nano-scale)

21

TECHNOLOGICAL SOLUTION

NP-sensitized photoporation

EXAMPLE APPLICATION

Image-guided spatial selective delivery

Find target cells

Photoporate target cells

Transfected target cells

THE PHOTONICS INVOLVED

Wavelength tunable pulsed laser sources

...

pulse durations: fs, ps, ns wavelengths: 500 nm – 1500 nm average power: µW – mW – W

Nonlinear spectroscopy Time resolved fluorescence Multiphoton microscopy Material processing

....

CENTRE FOR ADVANCED LIGHT MICROSCOPY

Advanced Light Microscopy servicing facility for research in Life Sciences

CoCooN CONFORMAL COATING OF NANOMATERIALS

MATERIALS RESEARCH EFFECT OF TEMPERATURE & COMPOSITION

Traditional approach: a lot of « cooking&looking »

MATERIALS RESEARCH EFFECT OF TEMPERATURE & COMPOSITION

nb-photonics

Traditional approach: a lot of « cooking&looking »

Our approach:

1) In-situ characterization during annealing

INFRASTRUCTURE FOR IN-SITU CHARACTERIZATION

MATERIALS RESEARCH EFFECT OF TEMPERATURE & COMPOSITION

Temperature

Composition

Traditional approach: a lot of « cooking&looking »

Our approach:

1) In-situ characterization during annealing

2) Deposition of thin film combinatorial libraries

INFRASTRUCTURE FOR COMBINATORIAL THIN FILM RESEARCH

Electrical (IV/CV/R_s)

ATOMIC LAYER DEPOSITION

Vapour phase deposition technique

Self-saturating surface reactions enable

- Atomic level thickness control
- Conformal deposition onto 3D surfaces

Ideally suited for 3D nanocoatings & surface engineering

INFRASTRUCTURE FOR ATOMIC LAYER DEPOSITION

- 10 home-built ALD reactors
- In situ characterization during ALD for advanced process characterization
 - Ellipsometry
 - Mass Spectroscopy
 - FTIR
 - Synchrotron-based techniques

Available coating materials: ZnO, TiO₂, Al₂O₃, Fe₂O₃, VO₂, V₂O₅, HfO₂, ZrO₂, SnO₂, In₂O₃, Ga₂O₃, MnO_x, AlPO₄, FePO₄, Pt, Ru, Ag, TiN, VN, ...

<u>UGENT - COCOON GROUP</u>

In situ characterization
 during annealing

Combinatorial techniques for screening of material libraries

— ALD for precision coatings

Physics and Chemistry of Nanostructures Group

PHYSICS AND CHEMISTRY OF NANOSTRUCTURES

- Synthesis of nanostructured materials (metals, semiconductors) for applications in photonics (large area & integrated) and catalysis.
 Thin film deposition (spin & dip-coating, langmuir) and large area
- Thin film deposition (spin & dip-coating, langmu device fabrication (PV, LEDs,..)
- Ultrafast optical and single photon spectroscopy (UV/VIS/NIR)

Department of Chemistry (WE06)

Prof. Moreels

SYNTHESIS AND THIN FILM DEPOSITION

- Fully equipped wet chemistry lab for the synthesis of II/VI and III/V semiconductor nanocrystals; metal and metal-oxide systems; 2D materials (TMDCs, II/VI, ...), ...
- **Gloveboxes** for air-free handling with spincoater/dipcoater/evaporation.
- **Cleanroom** with dipcoater, Langmuir deposition & printing.

ULTRAFAST OPTICAL SPECTROSCOPY

Oscillator

Newport MaiTai ; 80 MHz @ 800 nm, 1W , 110 fs + SHG/pulse picker

Amplified system

4 mJ pulses @ 800 nm, 110 femtoseconds, 1 kHz

Ultrafast Setups

- 1. Pump-probe spectroscopy
- 2. Ultrafast Luminescence
- Excitation: 800/400/267 nm and an OPA (280 2400 nm)
- Probe: 350 1650 nm
- Luminescence: 350 750 nm
- Typical time resolution = 150 fs

-photonics Center for Nano- and Biophotonics Ghent University

PUMP-PROBE SPECTROSCOPY

Ghent University

SINGLE PHOTON SPECTROSCOPY

Update 2018:

"Cryostat for microscopy (4K) and higher spectral resolution"

Devices Single dots

Polymer Chemistry and Biomaterials Group

Polymer Chemistry & Biomaterials Group

HYDROGEL APPLICATIONS AND PROJECTS

Meniscal applications

Drug screening applications

Nose stent

Adv. drug delivery

Ocular applications

Vascular stent

Optical applications

Wound dressing applications

CURRENT MATERIAL RANGE @ PBM

Biodegradable polyesters

- **Commercial FDA approved: PLA, PCL, etc.**
- In-house synthesis PDLLA, PLAMA, PMA, etc.

Photo-crosslinkable hydrogels: (modified) gelatin, (modified) alginate, etc.

Acrylate end-capped urethane based (AUP) photocrosslinkable macromonomers

EQUIPMENT TOOLKIT

ATR-imaging

XPS

SCA

Ellipsometer

QCM

Mech. tester

100 Q Prover DSC Rheometer **TGA**

Light microscope

SEM

Texturo

PROCESSING TECHNIQUES

ULTIMAKER

BIOPLOTTER

ES & ES/3D

ACCESS VIA B-PHOT (VUB) 45

x1.500

x40,000

3.0kV

100nm VUB_SUR 3.0kV SEM

2PP

Photonics Research Group

nnec

GHENT

UNIVERSIT

PHOTONICS RESEARCH GROUP

Research Group of Ghent University

- Faculty of Engineering and Architecture
- Department of Information Technology (INTEC)
- Associated laboratory of IMEC
- Member of the Center for Nano- & Biophotonics (NB photonics)

Technology Research

- Photonic Integration: Systems on a chip
- On silicon: "Silicon Photonics"
- Enhanced with new materials:
 III-V, ferro-electrics, graphene, ...

Applications

- High-speed telecom and datacom
- Sensing for life sciences: visible and Mid-IR
- Optical information processing

9 Professors16 postdocs50 PhD students10 support staff

20+ nationalities
6 ERC grants
4 spin-off companies
50 journal papers/year
Class 100 clean rooms
M.Sc. Photonics program

EXPERTISE OF PHOTONICS RESEARCH GROUP

Expertise in relation to research domain (=photonic integration) **Design of photonic ICs** Fabrication of photonic ICs (collaboration with imec) Testing of photonic ICs Applications of photonic ICs (telecom, sensing, life science)

Expertise in relation to infrastructure

Optical measurement labs Clean room technologies \Rightarrow Namifab

Expertise in relation to general knowledge of optics and photonics Consulting

PHOTONIC IC EXAMPLES

Laser Doppler vibrometry

Microwave photonics

Neuromorphic computing

Programmable photonic circuits

Glucose sensing

OPTICAL CHARACTERIZATION - SOURCES

High power tunable lasers 5100-5300 nm

OPTICAL CHARACTERIZATION - SOURCES

AT TELECOM WAVELENGTHS (1300-1550 NM)

- □ Various tunable lasers and filters (@1300nm and @1550nm)
- □ High bandwidth detectors (45 GHz) and receivers (40 Gb/s)
- \Box Erbium Doped Fiber Amplifiers (λ -range: 1530-1610 nm) and
 - Semiconductor Optical Amplifiers (@ 1300nm)
- Optical intensity and phase modulators (40 Gb/s, for 1300 and 1550 nm)
- □ Plus high speed cables, connectors, probes,....

SIGNAL GENERATION AND PROCESSING

- Pulse Pattern Generators and Error Detectors (Anritsu: 2 x 9.9-12.5 Gb/s, Alnair: 19.5-
 - 21 and 39-43 Gb/s)
- Digital sampling oscilloscopes (Tektronix 30 GHz, LeCroy 100GHz scope, with IDLab-Design: Keysight 67 GHz)
- Keysight 32 Gbaud Arbitrary Waveform Generator (with IDLab-Design)
- Electrical spectrum analysers and RF generators up to 44 GHz
 - (Rohde&Schwarz, Agilent)

Liquid Crystals and Photonics

LIQUID CRYSTALS AND PHOTONICS GROUP

Technology

- Liquid Crystals
- OLEDs
- Piezo-layers
- Thin films
- ALD
- photoalignment and phase gratings

Characterization

- Polarization
 microscopy
- Spectroscopy
- E-O switching
- Optical trapping microscopy
- E-ink switching
- Solar cells

Modeling

LC director
LC transmission
OLED optics
E-ink switching
Particle trapping
Interference microscopy

LIQUID CRYSTAL DEVICES

Surface photo-alignment

& 3D structures

VCSEL tuning

Phase gratings (>95% diffraction)

Filters

Lenses

Lasers

chiral nematic liquid crystal lasing

excitation pulse 0.5ns, 532nm, 30µJ

PARTICLE MANIPULATION AND CHARACTERIZATION

Vac

- Fluorescence/Confocal microscopy
- Optical tweezers
- Advanced illumination
- particle scattering, transport simulation

Optical manipulation of colloidal particles

Accurate force and charge measurements

particle orientation

CHARACTERIZATION OF SOLAR CELLS

IV as a function of light Intensity and temperature

Resistivity and Hall measurements

External Quantum Efficiency measurements

PIEZO-ELECTRIC MATERIALS

PZT (= $PbZr_xTi_{1-x}0_3$) High quality thin film on glass or Si Piezo-electric Ferro-electric: high dielectric constant Strong electro-optic effect Strong optical nonlinearity

High speed electro-optic modulators on SiN or Si waveguides

PZT in liquid crystal lenses

ORGANIC LIGHT EMITTING DIODES (OLEDS)

OLED deposition

Improve light extraction by diffraction grating

Nano & Biophotonics

Department Molecular Biotechnology

NanoBioTechnology group (A Skirtach). Now at the Campus Coupure -> Campus Proeftuin (naast Ghelamco arena).

Nano-Bio-materials

Particulate (nano- and micrometer) drug delivery carriers.

Research activities in the area of microcapsules and particles stem from earlier activities of prof. Skirtach, while he was still at Max-Planck Institute, where the polymeric capsules had been invented. The capsules are made by sequential deposition of polymers on the surface of particles, which serve as templates and which are subsequently removed (by dissolution) without affecting the polymeric shell. Different application areas of microcapsules are currently pursued, particularly noticeable are those in biomedicine. The group of prof. Skirtach pursues development of next generation of drug delivery carriers and other applications in biomedicine and bio-engineering.

Coatings for cell growth and tissue engineering.

An essential novelty, which is unique to our group, is to combine research on films with that on particles for creating novel surfaces and: a) assuring drug delivery; b) controlling the release; c) enhancing and controlling mechanical properties for facilitating cell and tissue growth. Two types of coatings are investigated: those based on polymers and those based on hydrogels. Cell adhesion studies are aimed at the end goal -designing of versatile coatings for tissue engineering.

Microscopy

The Faculty of Bioscience Engineering and University possesses a state of the art imaging center. Two recent developments at the Faculty have important implications for this area. First, the Light Microscopy Division (LiMiD) has been setup at the Faculty coordinated by the Department of Molecular Biotechnology, to which the applicants group belongs. The center is focused on fluorescence microscopy techniques, more specifically fluorescent bright-field and confocal light microscopy. Together with a scanning electron microscope (SEM), these developments are directed towards establishment of a more broad image acquisition facilities at the Faculty and University-wide.

Microscopy (1): LiMiD (with input from W. De Vos)

WIDEFIELD MICROSCOPY

NIKON TE-2000

AUTOMATED ND ACQUISITION MICROMANIPULATION

NIKON Ti

NIKON A1r

ROUTINE SCREENING AUTOMATED ND ACQUISITION

PML BODIES

BIORAD RADIANCE

nb-photonics

SIMPLE CONFOCAL APPLICATIONS **TWO-PHOTON: DEEP TISSUE**

LIVE CELL IMAGING ADVANCED CONFOCAL APPLICATIONS

Microscopy (2): Raman – MODULAR <- equipped with an optical table

– Microscopy (3): FTIR

– Microscopy (3): FTIR

Nanotopography

Mechanical properties

– Approach

Could be a partner on measurement and Nanosciece Could be a partner on Biotechnology Could also be a *bridge* between measurement & medicine, biology, plants

Thank you for attention!

Centre for Microsystems Technology

CENTRE FOR MICROSYSTEMS TECHNOLOGY

Expertise on printing technologies for photonics fabrication

POLYMER NANOPHOTONIC SENSORS

Ultra-thin foil-based sensors for measuring e.g. strain, pressure or temperature

Low thickness allows:

- Surface mounting or embedding inside (mechanical) structures
- Large mechanical deformations

Operating wavelength ≈1550 nm

3 sensors: 0°, 45° and 90° oriented

In collaboration with UGent / MaTCh

sensor

Photodiode / laser integration in thin foils

(laser based) flip-chip integration

3D GLASS PHOTONICS

Monolithic integration of microphotonic waveguides and microfluidic channels in fused silica

In collaboration with UGent / PRG

7 µm MFD @ 635nm

MATERIAL OR COMPONENT ASSEMBLY

Laser-induced forward-transfer for selective and high-speed transfer and assembly

devices are printed onto receiver substrate

Donor and receiver substrate after transfer of thin silicon chips in checkerboard pattern (200 micron size)

Transfer of polymer disks, forming spherical shaped lenses after thermal reflow on the receiver

In collaboration with UGent / PRG

PHOTONICS-ELECTRONICS INTEGRATION

Aerosol jet printing for very short, non-planar, or unconventional metallic interconnections.

In collaboration with UGent / IDLab / PRG

Signal Signal Signal

Laser chip glued to low cost plastic foil, electrically interconnected by printing

NaMiFab

NAMIFAB - EXPERTISE CENTRE FOR NANO- AND MICROFABRICATION

NAMIFAB EXPERTISE CENTRE

NaMiFab UGent (BOF funding):

 \rightarrow Is an expertise centre for Nano-and Microfabrication.

 \rightarrow Our mission: Open up state of the art test and **research infrastructure** for the entire UGent research community, working in diverse domains.

Prof. Dries Van Thourhout (PRG) **Promotor**

Dries.VanThourhout@ugent.be

Prof. Jan Vanfleteren (CMST) Copromotor

Jan. Vanfleteren @ugent.be

dr. Ir. Thomas Vervust (UGent) **Project coordination**

75

Thomas.Vervust@ugent.be fm

GHENT UNIVERSITY

NAMIFAB EXPERTISE CENTRE

PRG

Expertise Centre for Nano- and Microfabrication

PRG: Photonics Research Group CMST: Centre for Microsystems Technology LCP: Liquid Crystals and Photonics Group

NaMiFab UGent

NAMIFAB EXPERTISE CENTRE

Medical and health

USE CASE EXAMPLES

Different lasers available for

laser structuring, cutting, drilling and welding applications on a variety of substrates

Perforations in a PDMS catheter (0.4mm wall thickness) (Biofluid, Tissue and Solid Mechanics for Medical Applications group)

- \rightarrow Knowhow and infrastructure for designing, realizing and inspecting <u>nano- and microsystems</u> of very diverse shape, dimensions and complexity
- → List of test and research infrastructure on www.ugent.be/namifab/en/infrastructure
- \rightarrow Summary of posibilities on next slides as a reference

Nano- and microfabrication technologies:

Photolitography (pattern definition)

- \rightarrow Photomask alignment and exposure (resolution down to 800nm)
- \rightarrow Laser direct imaging (resolution down to 1µm)
- \rightarrow Electron beam lithography (resolution down to 10nm)

Layer deposition

- \rightarrow Spin coating
- \rightarrow Plasma deposition
- \rightarrow Sputter deposition
- \rightarrow Electron beam evaporation
- \rightarrow Thermal evaporation for deposition of organic layers
- \rightarrow Atomic layer deposition (aluminium oxide)

Etching

- \rightarrow Development, etch and strip line for flexible PCBs
- \rightarrow Plasma etching (RIE, ICP, Oxygen)
- \rightarrow HF-vapor etching

Flexible PCB processing

Plasma deposition

Thermal evaporation

Plasma etching GHENT UNIVERSITY

Nano- and microfabrication technologies:

Material structuring

- \rightarrow Laser structuring, cutting, drilling and welding on a variety of substrates
- \rightarrow Microinjection moulding of small parts (<1g)
- \rightarrow Dicing, lapping, polishing
- \rightarrow Lamination, imprinting
- \rightarrow Vacuum forming

Assembly

- \rightarrow Die and flip-chip bonding (± 5µm accuracy)
- \rightarrow Accurate (± 1µm) placement of chips and toher 3D structures
- \rightarrow Micro-Transfer-printing (µTP)
- \rightarrow Wafer bonding
- \rightarrow Automated needle dispensing
- → Screenprinting
- \rightarrow Reflow soldering
- \rightarrow Wire bonding
- \rightarrow Aerosol-jet printing (print metallic conductive inks)
- \rightarrow Liquid crystal device assembly

Micromoulding

Assembled smart label

Vacuum forming

Jet printed silver tracks

Sample inspection:

Microscopy

- \rightarrow Optical microscopy (mm to μm size features)
- \rightarrow Electron microscopy: SEM, FEG-SEM with in situ FIB
 - \rightarrow Au & C coating for SEM

Profilometry

- \rightarrow 3D optical profilometry
- \rightarrow Step height measurement (stylus 2.5 or 25 $\mu m)$

Cross sectioning

- \rightarrow Sample molding in resins followed by grinding and polishing
- \rightarrow Ion beam polisher
- \rightarrow FIB local cross sections integrated in a FEG SEM instrument

Surface analysis

- \rightarrow Contact angle
- \rightarrow Soldarability, Critical Cleanliness Control

Material analysis

 \rightarrow SEM+EDS

Reliability testing and failure analysis:

Mechanical testing

- \rightarrow Peel test (90° & 180°)
- \rightarrow Component shear and pull testing
- → Stress/strain measurements
- \rightarrow Standardized washing tests

Climate chamber testing

- \rightarrow Temperature storage (37 200 °C)
- \rightarrow Temperature-humidity testing (10 95 °C, 10 98 % RH)
- \rightarrow Temperature cycling (-70 °C to 180 °C) with in-situ resistance measurement

(INSTRON)

Universal Testing Machine

Universal Bond Tester

Humidity testing

Thermal cycling

