Data-Efficient Machine Learning for Physics-Based Simulations

Promovendus/a
Arun Kaintura
Faculteit
Faculteit Ingenieurswetenschappen en Architectuur
Vakgroep
Vakgroep Informatietechnologie
Curriculum
Master of Science (Advanced Computational and Civil Engineering Structural Studies), Technical University of Dresden, Duitsland, 2013
Academische graad
Doctor in de ingenieurswetenschappen
Taal proefschrift
Engels
Vertaling titel
Data-efficiënt machinaal leren voor fysicagebaseerde simulaties
Promotor(en)
prof. Tom Dhaene, vakgroep Informatietechnologie - dr. ir. Ivo Couckuyt, vakgroep Informatietechnologie
Examencommissie
voorzitter prof. Filip De Turck (academisch secretaris) - dr. ir. Ivo Couckuyt (vakgroep Informatietechnologie) - prof. Joris Degroote (vakgroep Mechanica van Stroming, Warmte en Verbranding) - prof. Dirk Deschrijver (vakgroep Informatietechnologie) - prof. Tom Dhaene (vakgroep Informatietechnologie) - ereprof. Luc Knockaert (vakgroep Informatietechnologie) - prof. Davy Pissoort (KU Leuven) - dr. Selvakumar Ulaganathan (Noesis Solutions, Leuven)

Korte beschrijving

Natuurkundige modellen worden aangewend om reële systemen voor te stellen en te vereenvoudigen. Niet enkel laten deze toe om het echte systeem te begrijpen, maar worden deze ook geacht de fysica van het probleem perfect te beschrijven. Numerieke methoden in de vorm van computer code worden vaak gebruikt om deze modellen op te lossen. Naast de accuraatheid en vermogen om fysische problemen te beschrijven hebben deze methoden verschillende problemen. In vele problemen is het computationeel duur om een computer model te construeren. Meer nog, deze modellen worden verondersteld deterministisch te zijn. In de realiteit zijn computersimulaties echter nooit in staat een reëel probleem exact te beschrijven, mede doordat deze afhangen van parameters die niet exact geweten zijn en waar dus een onzekerheid mee wordt geassocieerd. In deze dissertatie worden data efficiënte machine learning technieken ontwikkeld en aangewend om accurate, complexe systemen die afhangen van computationeel dure natuurkundige simulaties met onzekerheid op de input parameters te beschrijven. Hun effectiviteit en limitaties worden onderzocht voor surrogaatmodellering en onzerheidskwantificatie in verschillende toepassingsdomeinen. Speciale aandacht wordt gegeven aan hoog-dimensionale problemen in ingenieursontwerp en analyse met gebruik van polynomiale chaos expansies en een nieuw niet-intrusieve techniek in de surrogaatmodellering gebaseerd op Kriging en stochastische collocatie.

Praktisch

Wanneer
Maandag 25 februari 2019, 16:00
Waar
leslokaal 1.1, iGent, eerste verdieping, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde

Meer info

Contact
doctoraat.ea@ugent.be