FACULTY OF MEDICINE AND HEALTH SCIENCES

Novel peptide tools to inhibit the IP₃ receptor/ connexin-43 hemichannel calcium signaling axis Siyu Tao Department of Basic and Applied Medical Sciences, Physiology Group

Thesis submitted to fulfill the requirements for the degree of "Doctor in Health Sciences" 2024

Summary

Inositol 1,4,5-trisphosphate receptors (IP₃Rs) are ubiquitous, large, tetrameric intracellular Ca²⁺ release channels primarily located at the membrane of the endoplasmic reticulum (ER) of biological cells. They are a basic constituent of the IP₃-Ca²⁺ signaling pathway that serves as a fundamental mechanism for transmitting signals and regulating a wide range of cellular processes and physiological responses. Mammalian cells express three distinct IP₃R subtypes (IP₃R1, IP₃R2 and IP₃R3), which possess ~70% homology despite originating from different genes. Currently, most therapeutic IP₃R antagonists have shortcomings in terms of selectivity and side effects. The first challenge in this PhD thesis work was to obtain molecular tools to interfere with IP₃R function without affecting connexin-based channels.

Thus, in the *first* part of this PhD thesis, inspired by recent work that revealed a regulatory mechanism in type-3 IP₃Rs (IP₃R3) whereby a loop extending from ARM2 between the a_{ARM2} -1 and a_{ARM2} -2 domain occupies the IP₃-binding site and competitively inhibits IP_3 binding, we identified a novel peptide tool called IP3RPEP6 composed of a sequence located at the end of the ARM2 structure of IP₃R2 that interacts with the IP₃-binding site and competitively inhibits IP₃-binding and subsequent activation of Ca²⁺ channel opening. Our results indicate that IP3RPEP6 inhibits the activation of IP₃R2 and IP₃R3 with more limited effects on IP₃R1. Importantly, IP3RPEP6 does not affect connexin-43 (Cx43) hemichannels (HCs) nor ryanodine receptor (RyR) activation, which is another intracellular Ca²⁺ release channel. As such, IP3RPEP6 is not compromised by side effects associated with other IP₃R inhibitors and enables the accurate observation and assessment of IP₃R-specific responses.

The IP_3 -Ca²⁺ signaling axis has many cross-points with connexins. Activation of IP_3R signaling modulates gap junctional coupling but also affects hemichannels, i.e. the precursor channels of gap junctions, which are more strongly

activated to open in response to IP₃-triggered [Ca²⁺]_i elevation than by Ca²⁺ entry. Given that IP₃-Ca²⁺ signaling efficiently activates HC opening, we **next** investigated whether HC opening could contribute to the cellular Ca²⁺ responses induced by IP₃ elevation. We found that IP₃-induced Ca²⁺ changes also contained a component resulting from Cx43 HC opening, which altered the EC₅₀ and Hill slopes of carbachol-induced IP₃-dependent Ca²⁺ responses. Therefore, Cx43 HCs should be blocked to reliably assess the properties of IP₃-triggered Ca²⁺ responses, to ensure an unbiased assessment of the pharmacological properties derived from such experiments.

Recent research in host lab revealed that activation of type-2 RyRs (RyR2) also activates downstream opening of Cx43 HCs. Such activation depended on molecular interactions between RyR2 and Cx43 in ventricular cardiomyocytes. Interestingly, IP₃Rs have also been reported to interact and coimmunoprecipitate with Cx43 in ventricular cardiomyocytes. Therefore, in the *second* part of this thesis, we aimed to determine whether there is a direct protein-mediated link between the activation of IP₃R2 and Cx43 HC opening. Our results delineate a direct protein-protein interaction between IP₃R2 and Cx43 in Cx43 overexpressing HEK-293 cells and astrocytes, and further provide a new peptide tool IP₃RHCIp which has a micromolar affinity with the CT tail of Cx43. We subsequently showed that IP₃RHCIp inhibits Cx43 HC opening triggered by IP₃R activation by preventing HC activation.

In conclusion, my work demonstrates the intimate linkage between IP_3 - Ca^{2+} signaling and signaling through Cx43 HCs. We developed new peptide tools allowing interference with these two prominent players of Ca^{2+} signaling, charting a new inspirational wave of research focused on determining the contribution of these two players in astrocytic as well as cardiomyocyte signaling.

Examination board

<u>Supervisor</u> Prof. Dr. Luc Leybaert Ghent University, Belgium

Doctoral Advisory Committee

Prof. Dr. Frank Bosmans Ghent University, Belgium

Dr. Katja Witschas Ghent University, Belgium

Members of the Examination Committee

Prof. Dr. Jan Gettemans (Chairman) Ghent University, Belgium

Prof. Dr. Alain Labro (Secretary) Ghent University, Belgium

Prof. Dr. Llewelyn Roderick KU Leuven, Belgium

Prof. Dr. Geneviève Dupont Université libre de Bruxelles, Belgium

Prof. Dr. Dmitri Krysko Ghent University, Belgium

Prof. Dr. Frank Bosmans Ghent University, Belgium

Dr. Tim Vervliet KU Leuven, Belgium

Selected publications

(*shared authorship)

Tao S, Hulpiau P, de Ridder I, Witschas K, Bultynck G, Leybaert L. An IP3 receptor-based peptide interfering with IP3/calcium induced opening of Cx43 hemichannels. *In preparation for submission*

Tao S, Hulpiau P, Wagner L.E, Witschas K, Yule D.I, Bultynck G, Leybaert L. IP3RPEP6, a novel peptide inhibitor of IP3 receptor channels that does not affect connexin-43 hemichannels. *Acta Physiologica*. 2024; 10.1111/apha.14086

Lissoni A*, **Tao S***, Allewaert R, Witschas K, Leybaert L. Cx43 Hemichannel and Panx1 Channel Modulation by Gap19 and 10Panx1 Peptides. *International Journal of Molecular Sciences*. 2023; 24(14):11612

Patent

Patent number EP 23169580.0 at European Patent Office (EPO), 2023-2024: Inositol 1,4,5-trisphosphate receptor inhibitor peptides and uses thereof

Short Curriculum Vitae

2019 – Present **Doctoral Researcher,** Ghent University, Belgium

2016 – 2019 Master of Medicine, Jilin University, China

2012 – 2016 Bachelor of Science, Shandong University, China

CONTACT

Faculty of Medicine and Health Sciences Department of Basic and Applied Medical Sciences Physiology Group, Ghent University

<u>Siyu.Tao@UGent.be</u> T +32 494416226 www.ugent.be

I hereby acknowledge financial support from China Scholarship Council (CSC no. 201906170050).

