

m 🕻

Lab

15 Peychiatry

Gh Ghent

DOCTORAL SCHOOLS

An introduction to health economic evaluations, with a focus on mental healthcare

Lieven Annemans

Ghent University

Lieven.annemans@ugent.be

January 2020

Outline

- I. Why health economic evaluations
- II. Basics of cost-effectiveness analysis
- III. Models
- IV. Prospective health economic evaluations Q&A
- V. Health economic evaluations and decision making

Q&A

Q&A

The conflicting goals of healthcare policy

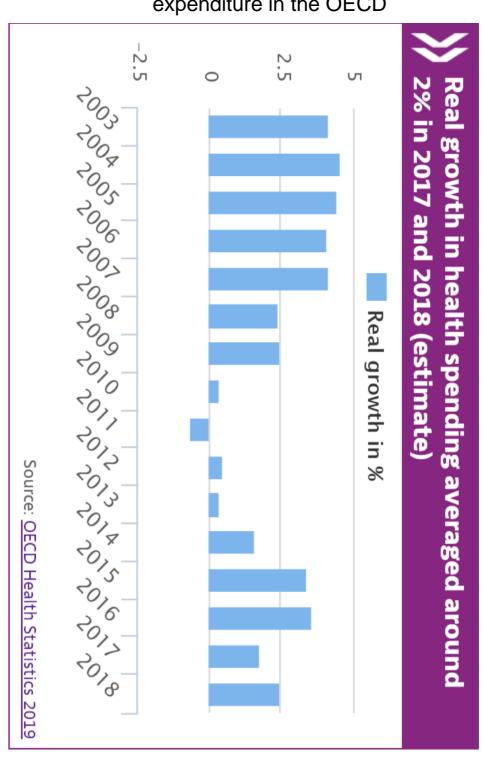
Typical characteristics of the health care system

Uncertainty

- ↑ Mental health
- → Health insurance
 - Moral hazard,
 - "adverse selection"
- Asymmetric information

↑ Mental health

- → Possibility of supplier-induced demand!
- Externalities


↑ Mental health

- Societal consequences of illnesss
 - → Crucial role for governments

Annual growth of public health expenditure in the OECD

Recommended approach

to <u>optimize the health of the population within the limits of the available resources</u>, and within an <u>ethical framework</u> built on equity and solidarity principles.

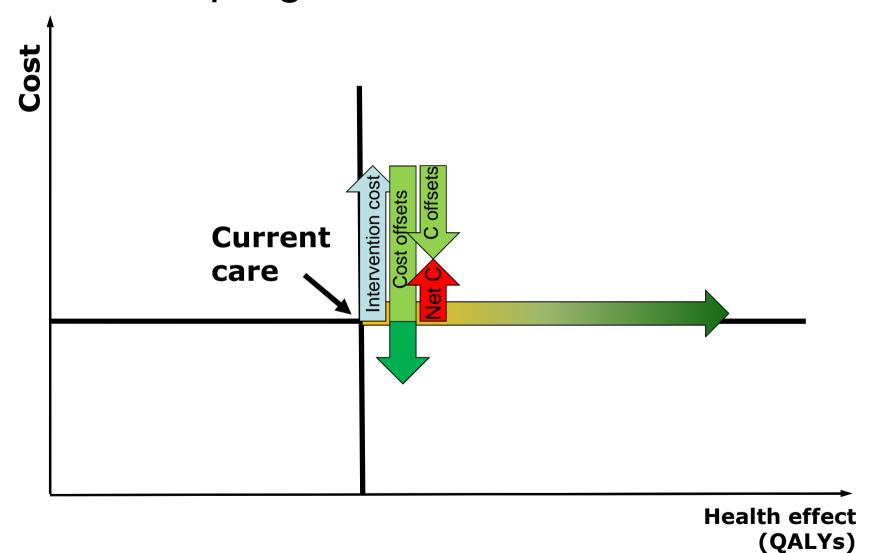
EU Council of Ministers of Health Dec 2010

What does it mean for innovative technologies/medicines/programmes?

→ "We need to <u>make available</u> innovative technologies/medicines/programmes that offer an <u>added</u> therapeutic/societal benefit at an <u>acceptable cost</u> and <u>fill</u> unmet medical needs"

→ Decisions on pricing, reimbursement, recommending usage, more and more based on health economic evaluations

- OECD 2003
- EU Council of Ministers of Health Dec 2010

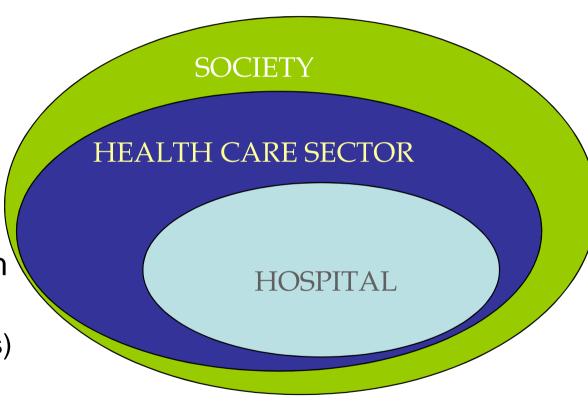


Outline

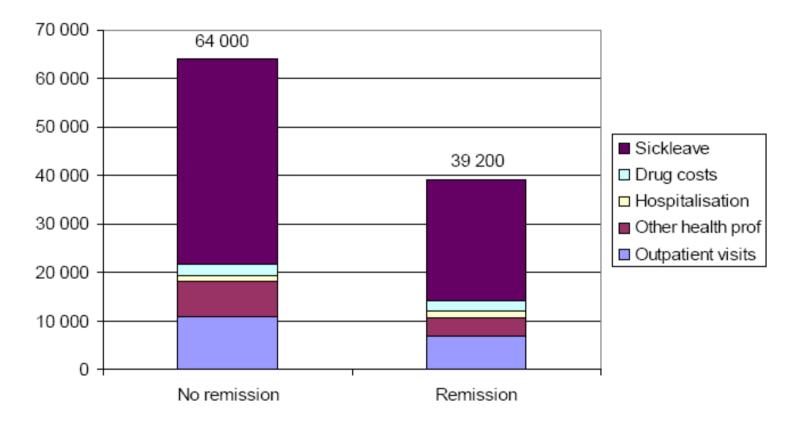
- Why health economic evaluations
- II. Basics of cost-effectiveness analysis
- III. Models
- IV. Prospective health economic evaluations
- V. Health economic evaluations and decision making

New health programmes → costs and effects

Costs and savings



Possible Study Perspectives


- Society: both costs/savings within and outside the healthcare sector
 - Includes cost of absenteeism and presenteeism
 - Includes transportation costs
- Health care payers: only costs/savings within the health care sector

(NOTE: third party payer & patients)

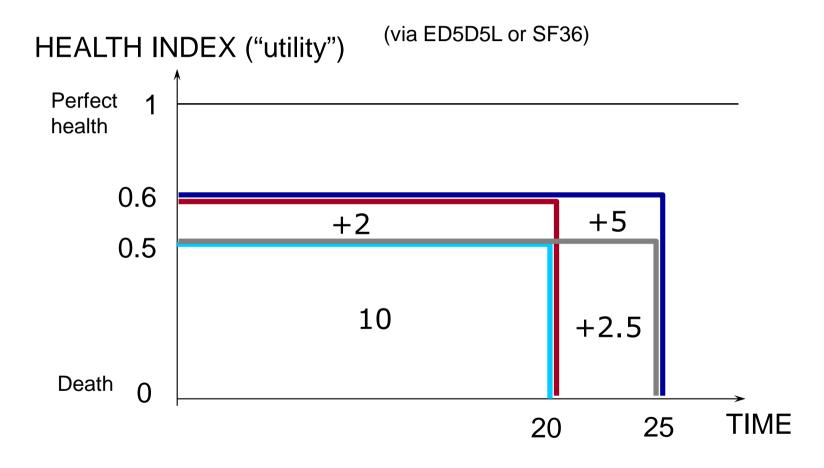
Hospital: only costs/savings incurred by the hospital

Andlin-Sobocki P et al. The mission is remission - health economic consequences of achieving remission in antidepressant treatment of depression (costs in SKR)

Depression-related 6-month cost per patient by remission attainment status

Health Effects

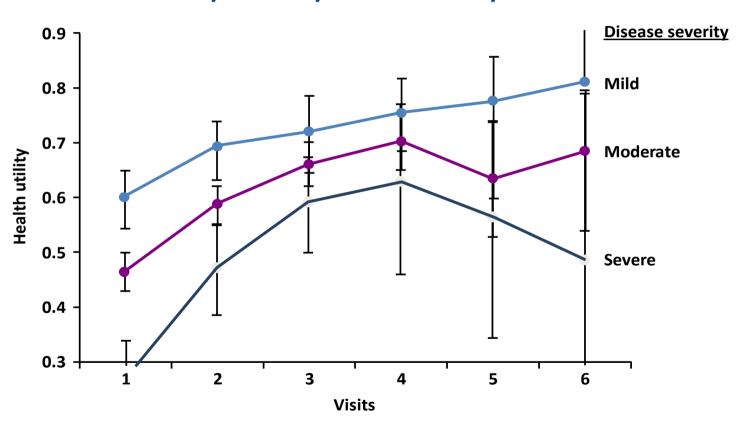
Quality



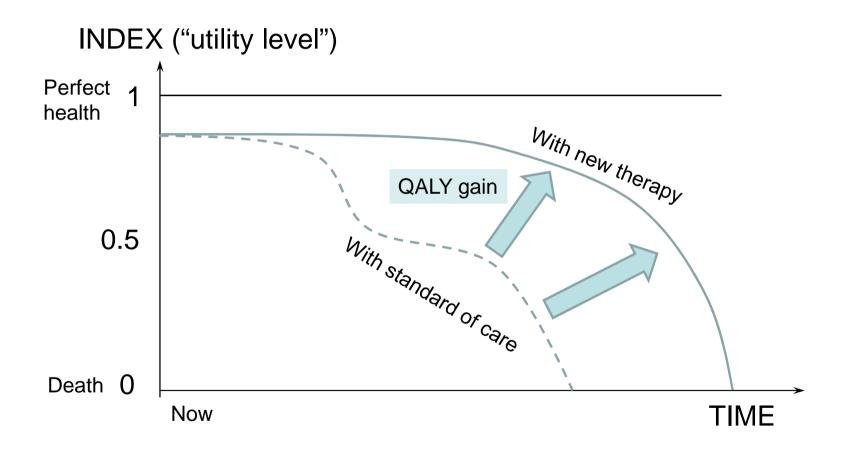
ife

Quality Adjusted Life Years

EQ-5D Domain		Response Category		
	1	I have no problems walking		
	2	I have slight problems walking		
	3	I have moderate problems walking		
Mobility	4	I have severe problems walking		
	5	I am unable to walk		
		I have no problems washing or dressing myself		
		I have slight problems washing or dressing myself		
Self-Care		I have moderate problems washing or dressing		
		I have severe problems washing or dressing		
		I am unable to wash or dress myself		
		I have no problems doing my usual activities		
		I have slight problems doing my usual activities		
Usual Activities		I have moderate problems doing my usual		
		I have severe problems doing my usual activities		
		I am unable to do my usual activities		
		I have no pain or discomfort		
		I have slight pain or discomfort		
Pain or Discomt	fort	I have moderate pain or discomfort		
r din or Biodomiore		I have severe pain or discomfort		
		I have extreme pain or discomfort		
		I am not anxious or depressed		
		I am slightly anxious or depressed		
Anxiety or Depression		I am moderately anxious or depressed		
		I am severely anxious or depressed		
		I am extremely anxious or depressed		



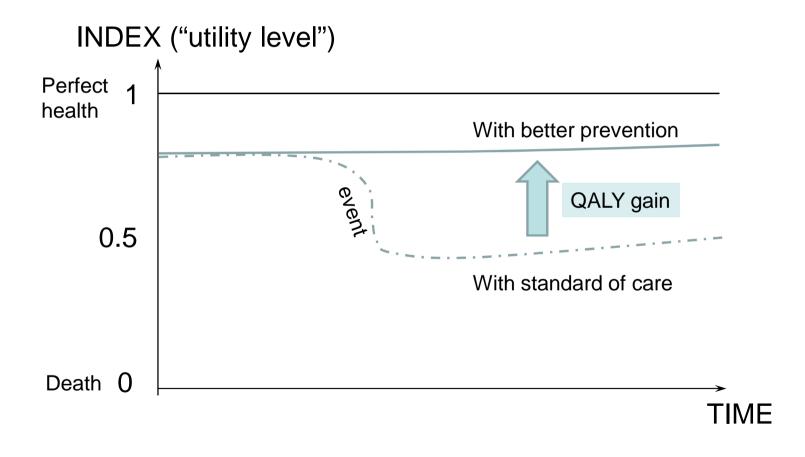
Algorithm: to a utility score


=0.286	State 23245		
-0.282	Minus AD level 5	0.282	Anxiety/depression = 5
		0.282	Anxiety/depression = 4
		0.099	Anxiety/depression = 3
		0.072	Anxiety/depression = 2
		0.298	Pain/discomfort = 5
-0.244	Minus PD level 4	0.244	Pain/discomfort = 4
		0.079	Pain/discomfort = 3
		0.059	Pain/discomfort = 2
		0.165	Usual activities = 5
		0.165	Usual activities = 4
		0.067	Usual activities = 3
-0.048	Minus UA level 2	0.048	Usual activities = 2
		0.208	Self care = 5
		0.176	Self care = 4
-0.083	Minus SC level 3	0.083	Self care = 3
		0.059	Self care = 2
		0.255	Mobility = 5
		0.207	Mobility = 4
		0.074	Mobility = 3
-0.057	Minus MO level 2	0.057	Mobility = 2
=1.000	Constant	1.000	constant
th state 2324	Example: the value for health state 23245	land	EQ-5D-5L value set for England

Example: "utilities" in depressed patients in primary care

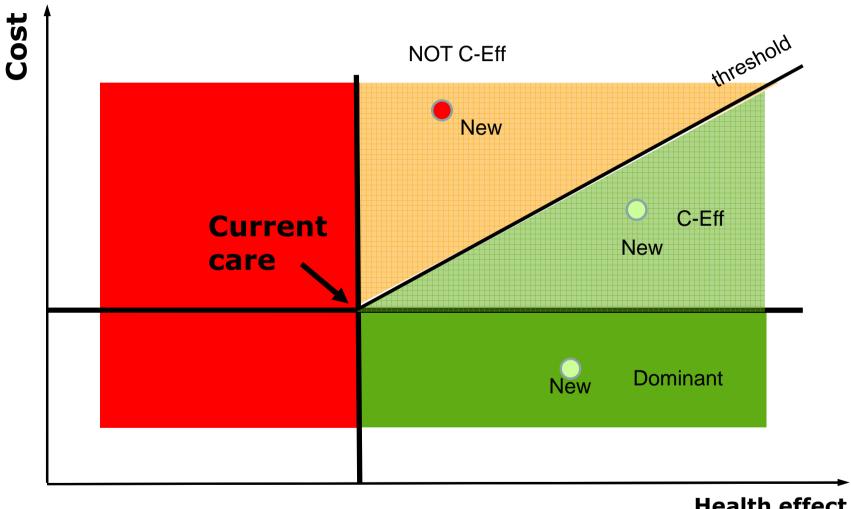
Utility scores by disease severity over time

Gain in QALY by avoiding progression

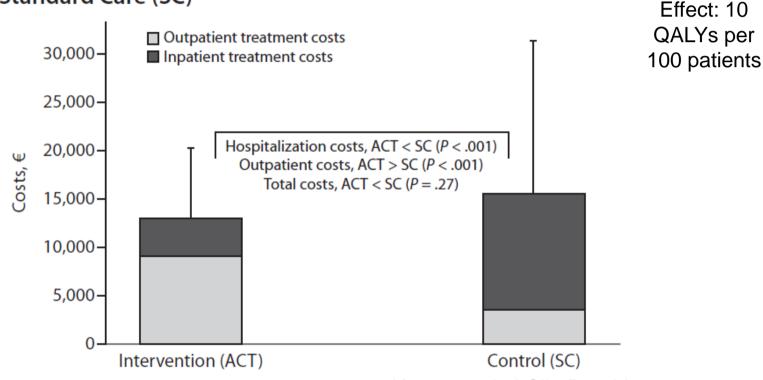


Example schizophrenia

0.919 (0.023)
0.825 (0.028)
0.769 (0.036)
0.815 (0.030)
0.604 (0.042)
0.722 (0.037)



Gain in QALY by avoiding an event



Cost-effectiveness: 3 possibilities

Example: assertive community treatment in patients with schizophrenia: dominant

Figure 1. 12-Month Outpatient Costs and Hospitalization Costs, Assertive Community Treatment (ACT) Versus Standard Care (SC)^a

So the KEY outcome is the

Incremental Cost-Effectiveness Ratio (ICER)

ICER =
$$\frac{C_{\text{new}} - C_{\text{current}}}{\text{Eff}_{\text{new}} - \text{Eff}_{\text{current}}}$$

Which then needs to be under the threshold!

Note: Cost difference = net cost (= including possible savings/extras)
Note 2: some authors prefer ICUR (incremental **cost-utility** analysis)

Where is the threshold?

- BENCHMARKING
 e.g. cost-effectiveness of caring for a dialysis patient
 historically 50,000 \$ per QALY (+/- 200,000\$ for 4 QALYs)
 (note: now +/- 100,000\$ per QALY)
- WHO CHOICE Highly cost-effective (< GDP per capita);
 Cost-effective (between one and three times GDP per capita);
 (e.g. Belgium = +/- €37000)
 (recently challenged by the WHO)
- At the discretion of the decision maker (official: England: 30,000£ per QALY; not official: Belgium 40,000€/QALY)

(recently challenged)

suppose: a new therapy for patients with major depression; threshold is 40,000€/QALY

cost 20,000€

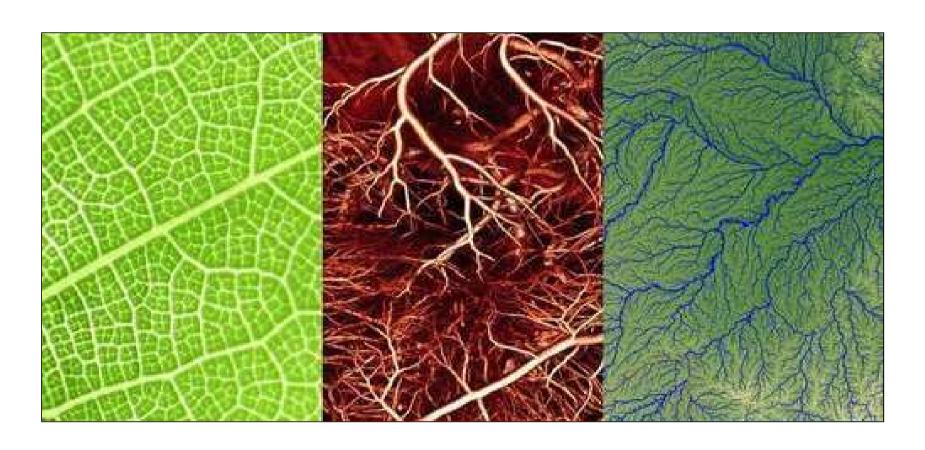
health benefit 2 QALYs

BUT suppose: another new therapy for major depression

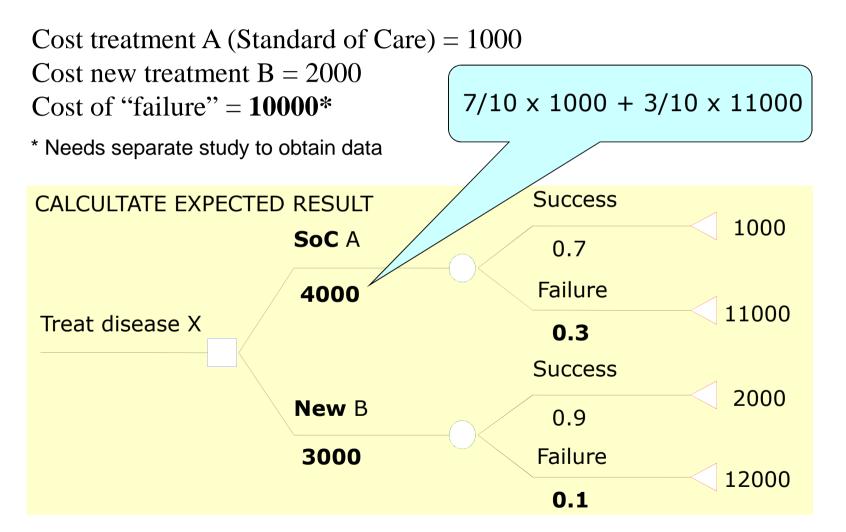
cost 20,000€

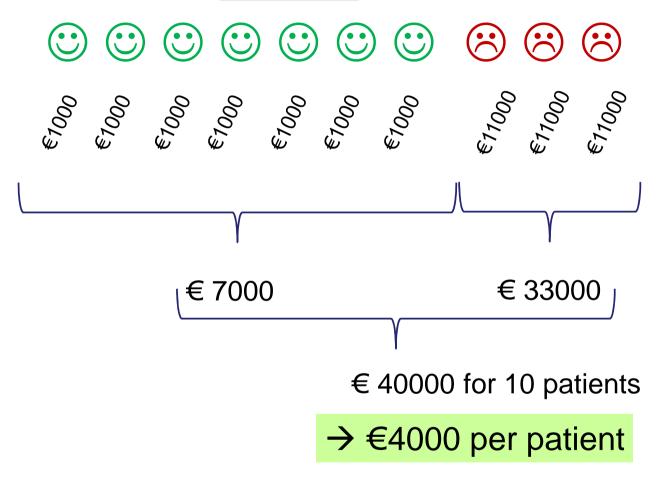
health benefit 0.2 QALYs

→ 100,000€/QALY


Note

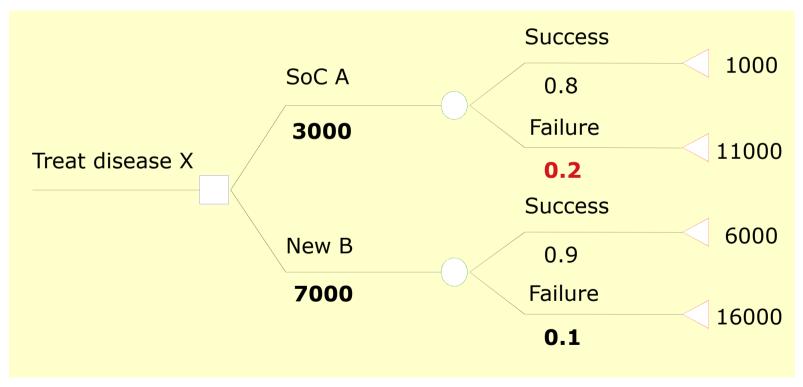
Cost analysis = an economic evaluation whereby effects are not considered


Cost-minimisation = an economic evaluation whereby effects are considered (proven) to be equal


III. Models

Method = decision tree; example

Calculation for treatment A, per 10 patients


FASTER: $0.7 \times 1000 + 0.3 \times 11000 = 4000$

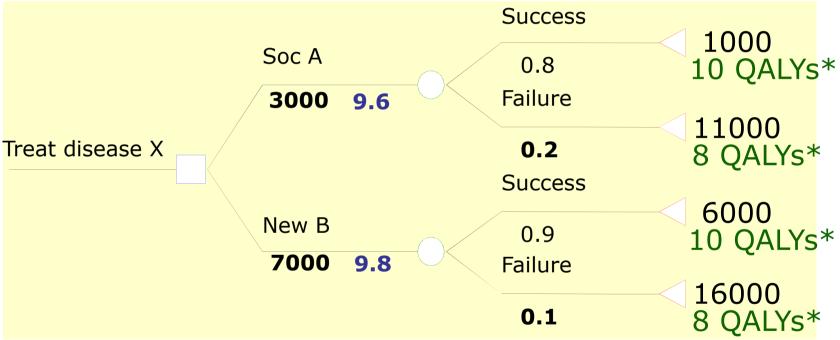
Change inputs → new result

Cost treatment A = 1000

Cost new treatment B = 6000

Cost of Failure = 10000

What about the QALYs?


Cost treatment A = 1000

If disease: -2 QALYs*

Cost medicine B = 6000

* Needs again separate study to obtain data

Cost of Failure = 10000

ICER = 4000/0.2 = 20000 € /QALY gained

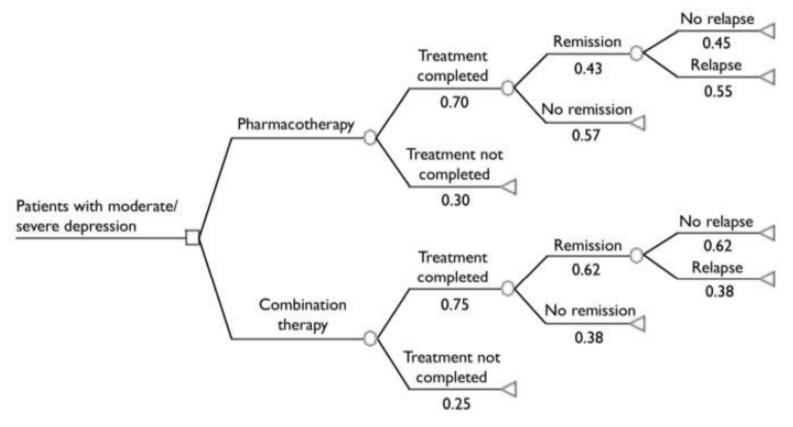
Incremental Cost-Effectiveness Ratio

What is 'Failure' in such decision trees? Some examples

Failure?

34

Depression


Schizophrenia

Alcohol dependence

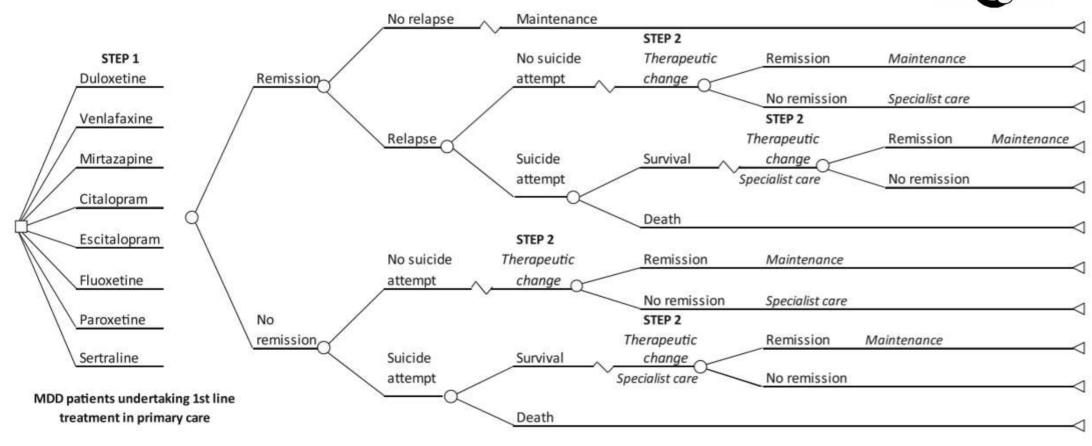
Alzheimer's

. . .

Example: Depression: combination (psycho + pharma) vs pharma alone

Note: Psuccess = 0.70*0.43*0.45 = 0.135

Simon et al, Br J Psych, 2006


Results (15 months)

	Pharmaco- therapy	Combination therapy	Difference
Costs, £1			
Total healthcare cost per person	660	1297	6 37
Effects			
Probability of successful treatment per person	0.14	0.29	0.16
QALY per person with severe depression	0.52	0.63	0.11
QALY per person with moderate depression	0.84	0.89	0.04
Cost-effectiveness, £1 (95% CI)			
Cost per additional successfully treated patient	4056 (1400-18 300)		
Cost per QALY gained with severe depression	5777 (1900–33 800)		
Cost per QALY gained with moderate depression	14 540 (4800-79 400)		

Simon et al, Br J Psych, 2006

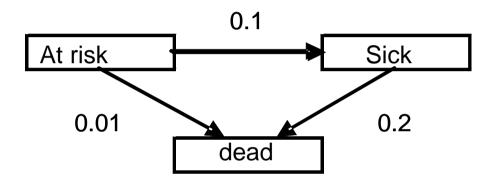
Example 2 depression

Markov models

Principle:

- Patients are in disease specific <u>health states</u>
- Time is divided into periods (cycles)
- During each cycle the patient can move from one health state to another (transition).

The risk of this transition = "transition probability"


Note:

Medline citations ["QALY" AND "Markov"] up to now: > 3000 citations

Markov Model – simple example

• 3 health states (at risk, sick, death); 1 cycle = 1 year

	Upon start	after 1 year	after 2 years	after 3 years
At risk	1000	890	89 ⁷⁹²	705
Sick	0	100	169	214
Dead	0	10	³ 39	81
Total	1000	1000	1000	1000

Changing the model

NEW PREVENTIVE TREATMENT: At risk → sick: 0.05 per year! (50% reduction)

	Upon start	after 1 year	after 2 years	after 3 years
At risk	1000	940	884	831
Sick	0	50	87	114
Dead	0	10	29	<u>56</u>
Total	1000	1000	1000	1000

Model <u>predicts</u> less deaths

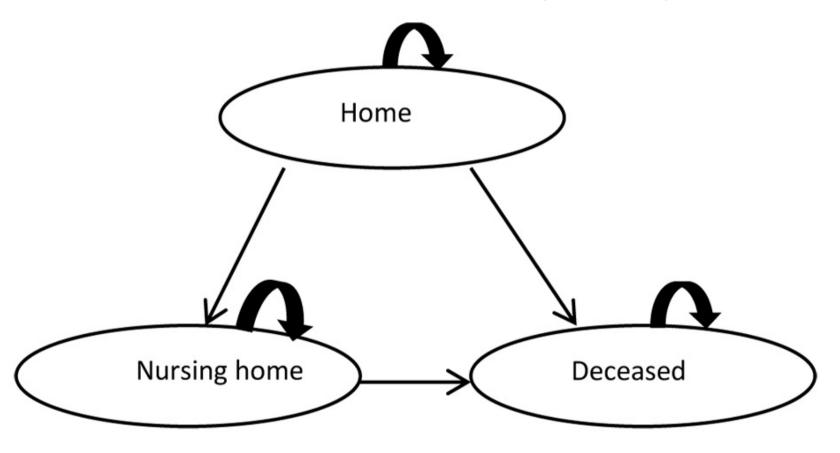
Example: depression

Depression Depressed Not depressed Usual care Depressed A Not depressed Depressed Dead

Collaborative care

Not depressed

Camacho EM, et al. BMJ Open 2016


The terminal nodes (4) of the decision tree correspond to Markov states A and B, representing the pathway from the tree into the Markov model

Alzheimer's

Alzheimer's dementia: budget impact and costutility analysis of a combination treatment with a cholinesterase inhibitor and memantine in Switzerland

Alena M. Pfeila, Reto W. Kressigb, Thomas D. Szucsa

Model Pfeil et al (2012)

Pfeil et al. Swiss Med Wkly. 2012;142:w13676

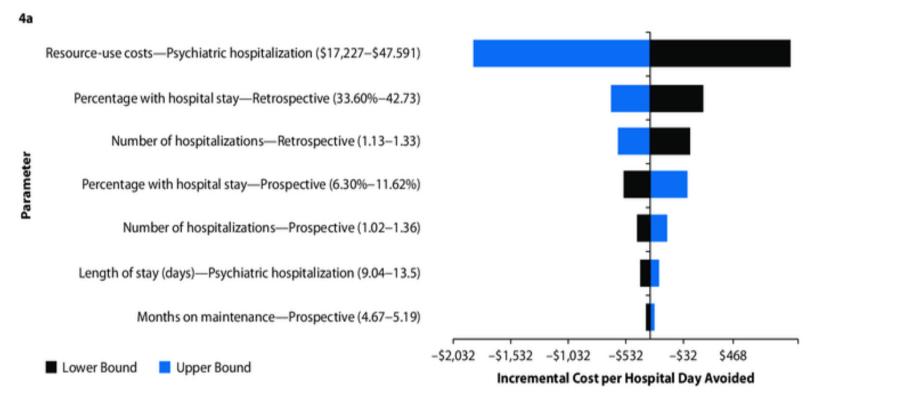
Results Pfeil et al (2012)

Tx	Survival (yrs)	Time Home	Time Nursing Home	QALYs	COSTS
ChE-I	3.33	2.65	0.48	1.87	67394
ChE-I + M	3.33	3.3	0.03	1.99	39738
Diff	0	+0.45	-0.45	+0.12	-27656

Pfeil et al. Swiss Med Wkly. 2012;142:w13676

HOW TO MAKE MODELS CREDIBLE AND RELIABLE?

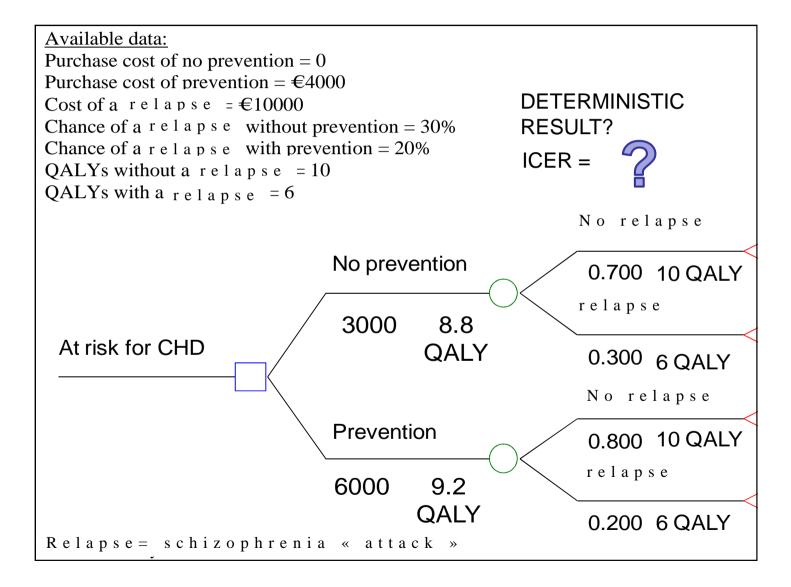
- 1. Validation of structure: does the structure reflect real life? → clinical experts
- 2. Validation of calculations: → peer review
- 3. Validation of outcomes: compare outcomes predicted by the "current" arm with real observations QUALIFIED
- 4. Show various sensitivity analyses



APPROVED

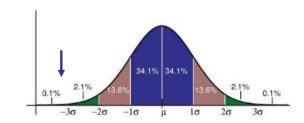
AUTHORIZED

CERTIFIED


Example: Tornado diagram

Wilson et al, 2016 – retrospective prospective analysis on switching to aripriprazole once monthly

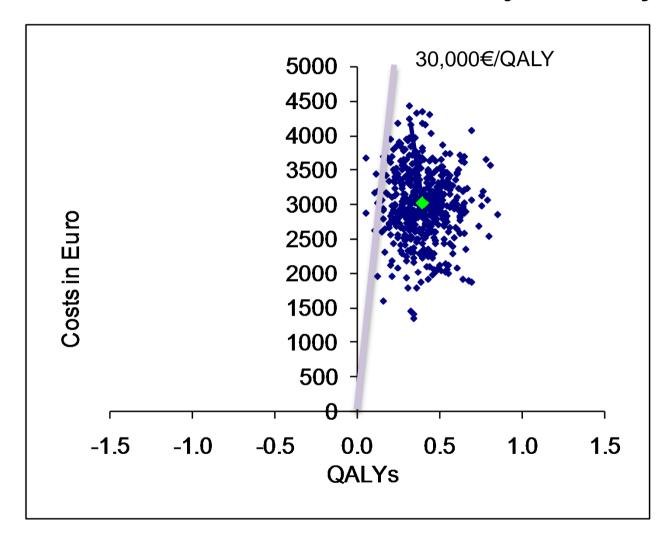
Probabilistic sens. Analysis (= Monte Carlo analysis): example


Probability distribution of inputs

- Suppose the cost of prevention is not €4,000 as was originally the case, but a normal distribution with average = €4,000 and standard error = €500.
- The cost of a relapse is not €10,000, but a normal distribution with average = €10,000 and standard error = €1,000.
- The number of QALYs if there is no relapse is not 10, but a normal distribution with an average of 10 and a standard error of 1.
- The number of QALYs in case of a relapse is not 6, but a normal distribution with an average of 6 and a standard error of 1.

Computer runs the model **500** times. For every new calculation, the computer takes a value chosen **at random** from the respective probability distributions.

When the model is calculated for the first time, for example, the computer might use:


- Cost of prevention = €3,790 (and not €4,000)
- Cost of relapse = €8,530 (and not €10,000)
- Number of QALYs without relapse = 10.5 (and not 10)
- Number of QALYs with relapse = 6.2 (and not 6).

→ With these inputs, the model leads to an ICER of € 6,712 per QALY (check ©)

Probabilistic sensitivity analysis

Role of indication/use

The ICER for memantine is £'32,100 per/QALY.

The probability that memantine is cost-effective in a moderate to severe cohort compared with BSC at a WTP of £'30,000 per QALY is 38% (and 28% at a WTP of £'20,000 per QALY).

Bond et al, Health Technol Assess. 2012;16(21):1-470.

In conclusion: which model when?

- "All models are wrong, but some are useful"
 (B. Jönsson)
- "Different models have different strengths and weaknesses. The task of the modeler is to find the best type of model to match the problem to be solved" (D. Eddy)
- Mostly
 - acute disease without sequelae → decision tree
 - Sequelae, recurrence, chronic, ... → Markov
 - Very complex: discrete event simulation

Outline

- Why health economic evaluations
- II. Basics of cost-effectiveness analysis
- III. Models
- IV. Prospective health economic evaluations
- V. Health economic evaluations and decision making

Prospective Research for Health Economic Evaluations.

Some Conflicts Between the Clinical Purpose and the Health Economic Purpose.

We have an IDEA!

 We are preparing a comparative clinical trial Let us also collect economic (<u>= medical</u> resource use) data within the trial ("piggy-backing")!

GOOD IDEA or BAD IDEA?

• There may be some conflicts...

Does it have an implication for trials

Purpose, environment and instructions of a clinical trial

The clinical trialist view The health economist's view

- Purpose = Authorisation
- Controlled environment Real life environment

- Purpose = Reimbursement
- Strict protocol instructions "Do what you normally do"

Patients, Time Horizon, Drop-outs

- Exclude confounders
 - Avoid co-morbidities
 - Avoid elderly
- Limited time
- Drop-outs not analysed Follow Drop-outs

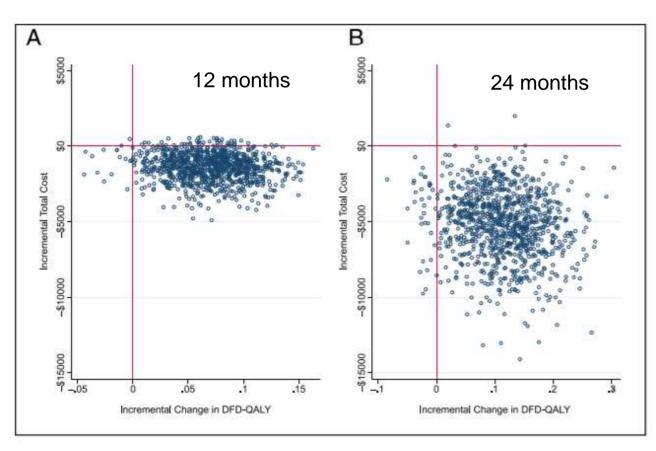
- Only exclude if contraindicated
 - Include co-morbidities
 - Include elderly
- Time to include all relevant costs and outcomes

In conclusion

- High internal validity
- Low external validity
- Low internal validity
- High external validity

Compromise: pragmatic/naturalistic trial?

- 1. Start with an original clinical trial protocol
- 2. Discuss inclusion and exclusion criteria
- 3. Discuss with clinical experts the differences between protocol and real life practice
 - → obtain consensus on *mandatory* visits reflecting as much as possible real life
- Plan measures to <u>follow up drop outs</u> (e.g. diary, nurse calls,...)
 (informed consent!)


Based on ISPOR task Force prospective health economic evaluations (Ramsey et al 2015)

NOTE: Relative effectiveness = the extent to which an intervention does more good than harm compared to one or more intervention alternatives for achieving the **desired**results when provided under the usual circumstances of health care practice.

Efficacy		Effectiveness
Highly selected Placebo/"golden standard" Surrogate endpoints Strict protocol instructions	Patients Comparator Outcomes Design	Closer to real life Most likely to be replaced Clinical Relevant Endpoints Closer to routine follow up

Cost-effectiveness of Cognitive Behavioral Therapy for Depressed Youth Declining Antidepressants

John F. Dickerson, PhD,^a Frances L. Lynch, PhD,^a Michael C. Leo, PhD,^a Lynn L. DeBar, PhD,^b John Pearson, MD,^a Gregory N. Clarke, PhD^a

Outline

- Why health economic evaluations
- II. Basics of cost-effectiveness analysis
- III. Models
- IV. Prospective health economic evaluations
- V. Health economic evaluations and decision making

Three challenges!

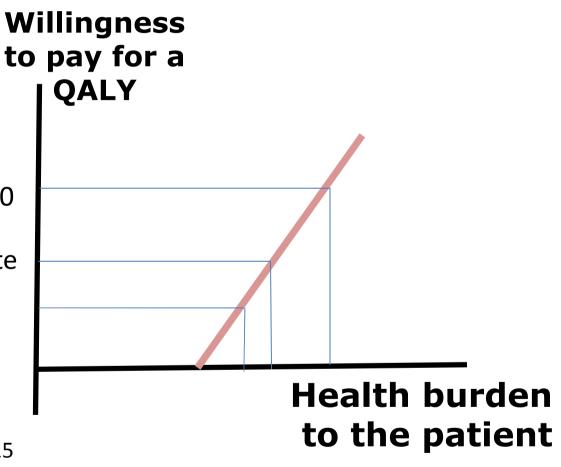
- 1. Medical need
- 2. Budget impact and financial incentives
- 3. Uncertainty

Medical Need

(Scitovsky)

Low need

→ no funding


Acceptable
health

High need
→ more solidarity
→ invest more

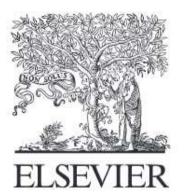
NL: first attempt for adapted thresholds

Zorginstituut NI (ZIN): variable threshold

- €80,000 per QALY for severe condition, even up to €100,000 at end-of life
- €50,000 per QALY for moderate burden
- €20,000 per QALY for mild burden

ZIN. Kosteneffectiviteit in de praktijk | 26 juni 2015

→ 2nd element : Budget impact


"The economic and equity rationale for carrying out budget impact analyses is <u>opportunity cost</u> = benefits forgone by using resources in one way rather than another"

→ There is a need for economic evaluations to address the issue on how to allocate resources *efficiently*, and for budget impact studies to address the issue of *affordability*

- → Need for well documented estimates at population level!
- → Need for very clear description of the target population
- → Need for a stratified approach wherever possible

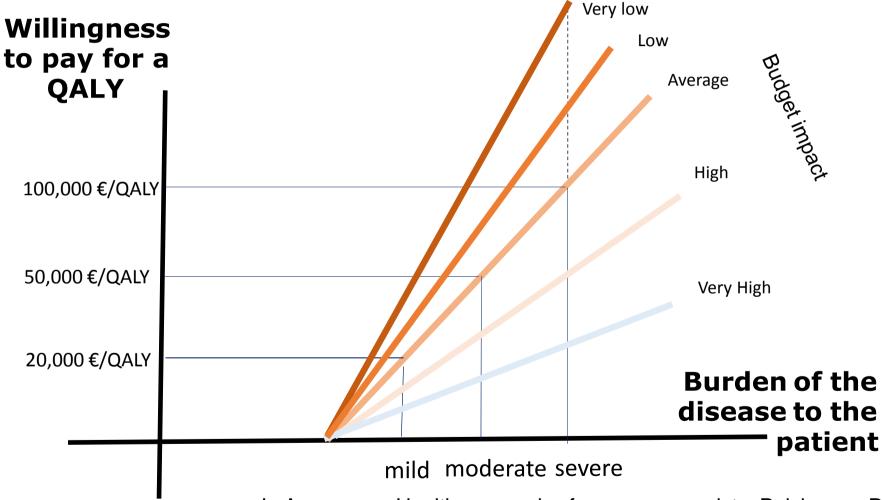
How to deal with the paradox: cost-effective but unaffordable?

VALUE IN HEALTH 21 (2018) 266-275

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/jval


Resolving the "Cost-Effective but Unaffordable" Paradox: Estimating the Health Opportunity Costs of Nonmarginal Budget Impacts

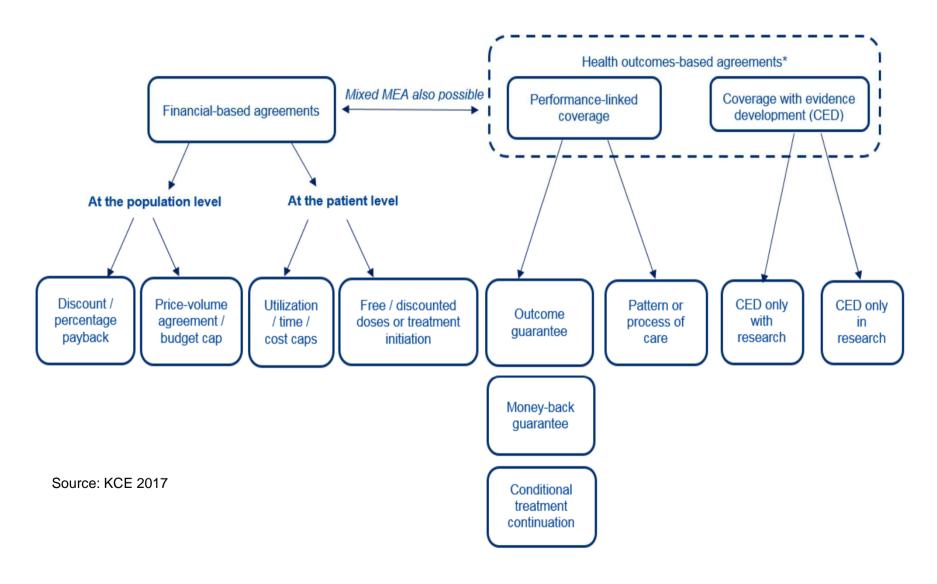
James Lomas, MSc, PhD^{1,*}, Karl Claxton, MSc, PhD^{1,2}, Stephen Martin, MSc, PhD², Marta Soares, MSc, PhD¹

¹Centre for Health Economics, University of York, UK; ²Department of Economics and Related Studies, University of York, UK

How to link all of this? Value Informed & Affordable Prices

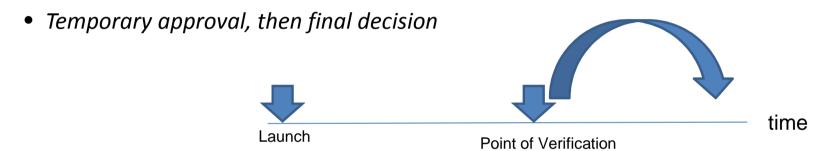
L. Annemans. Health economics for non-economists. Pelckmans Pro, June 2018

67


Problem 3: *uncertainty*

The typical Dilemma at Submission CATCH 22

Protagonist of the treatment



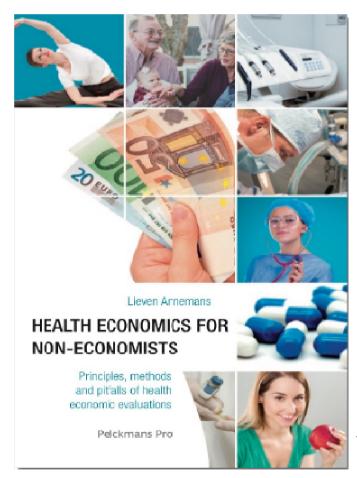
outcomes based agreements!

Key approaches on population level

1. Coverage upon evidence development

- 2. Performance Linked Reimbursement (outcomes guarantee)
 - Not as good as promised → industry pays back

Yes, but...


- Administrative burden
- Confounders
- Treatment is part of broader treatment sequence
- Role of health professionals
- Role of patients?
- Data quality
- Is a registry really real life?
- ...

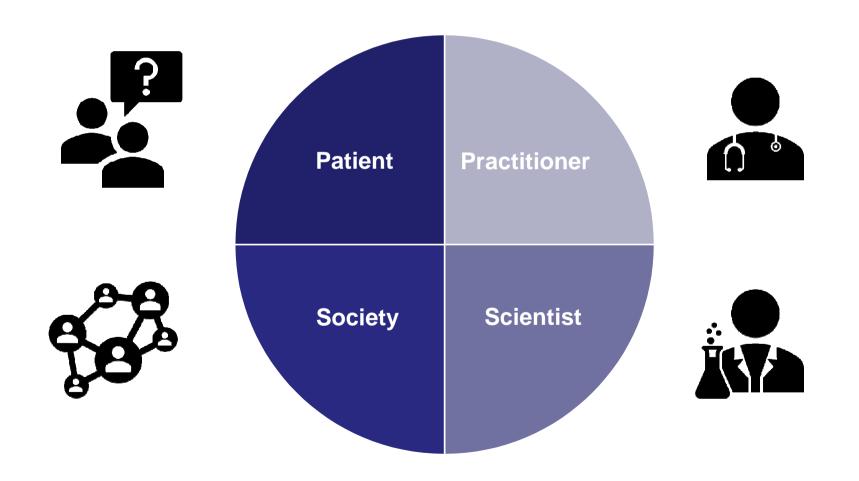
Discussion

- The basics are straightforward
- 2 main methods: modelling or prospective
- Need for sensitivity analysis
- Other elements play a role in decision making
- Increasing need for real life data

Annemans L. Health Economics for non-economists. Pelckmans Pro, June 2018.

https://nolledz.com/product/health-economics-for-non-economists/

Discussion


The impact of an economical discourse on mental health care and its stakeholders

Moderators:

Stakeholders

The impact of an economical discourse on patients

Patient (service user) perspective

- What does it cost me when cost-effectiveness drives my treatment?
 - Freedom of choice, available time, number of sessions, autonomy, shared decision making,...
- If cost-effective therapy does not work (fast enough) for me, it says there's something wrong with me.

The impact of an economical discourse on practitioners and clinical practice

Practitioner perspective

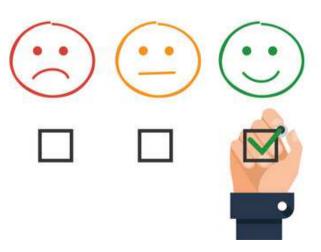
- Who gains what? Therapeutic value for patients is not translatable to economical value.
- Putting health care into economical terms makes therapy (intervention) a commodity.
- Commodifying treatments introduces exclusion of the toughest psychiatric (more complex) cases.

The impact of an economical discourse on science and scientists

Scientist perspective

- It's not my job. Economic evaluation interferes with scientific rigor!
- When funding agencies focus on cost-effectiveness, they shape research agenda's
- Quantification of experiences cannot be translated directly in economic calculations
- Cost-effectiveness emphasizes cure rather than care

The impact of an economical discourse on society


Societal perspective

- To keep mental health care affordable, patients should be stimulated to end therapy as quickly as possible (steppedcare-model)
- Cost-effectiveness will enlarge the focus on prevention, screening, testing and evaluation: this interferes with people's privacy and right to decide for themselves.

Evaluate this course!

https://nl.surveymonkey.com/r/D79X72J

