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Voorwoord

In de afgelopen weken werd me meermaals gevraagd of ik, met wat ik nu weet,
nog aan een doctoraat zou beginnen. Het antwoord mag misschien evident
lijken vanuit het beeld van de ingenieur wiens boek netjes afgedrukt voor u
openligt en die breedglimlachend en zichtbaar opgelucht zijn werk staat te
presenteren op een openbare verdediging. Mijn IBiTech collega’s zullen echter
bevestigen dat je dat beeld toch enigszins moet relativeren. En toch ı́s het
antwoord evident, maar dan wel om een aantal bijkomende redenen. Eerst
en vooral hebben de vier voorbije jaren me als geen andere ervaring geholpen
om mezelf te leren kennen, niet in het minst mijn beperkingen. Daarenboven
heb ik elke dag de kans gekregen om die beperkingen te overwinnen. Of
dat laatste gelukt is, laat ik in het midden, maar het staat vast dat mijn
promotor, prof. Verdonck, me een aantal niet louter wetenschappelijke
kwaliteiten heeft bijgebracht waarvan ik de voordelen in mijn huidige job al
ondervind. Ten tweede heb ik steeds mijn eigen weg kunnen kiezen, zowel
op inhoudelijk vlak als voor de dagdagelijkse invulling van mijn onderzoek.
Dergelijke vrijheid, die voor mij persoonlijk echt wel belangrijk en bevorderlijk
is geweest, was enkel mogelijk dankzij een grenzeloos vertrouwen vanwege
mijn promotoren. Ik kan prof. Verdonck en prof. Ceelen daarvoor dan ook
niet genoeg bedanken. Tenslotte heeft mijn doctoraatsonderzoek me uiteraard
een grote wetenschappelijk voldoening gegeven, ondanks of misschien dankzij,
de vele onoverkomelijke knelpunten waarmee ik in die vier jaar geconfronteerd
werd. Gelukkig was er op dergelijke momenten het ongebreidelde positivisme
van prof. Segers, wiens luisterbereidheid stilaan legendarische vormen begint
aan te nemen. Ik zou nog een heel aantal andere redenen kunnen bedenken,
maar U heeft al begrepen dat het antwoord op de openingsvraag volmondig
’ja’ is.

Ik wil hier uiteraard een aantal mensen vermelden die me met raad en daad
bijgestaan hebben. In de eerste plaats wil ik Prof. Ceelen bedanken, die de
bezieler van deze doctoraatsthesis was en me op experimenteel vlak vaak heeft
geholpen. Ook Dr. Debergh, Dr. Verhulst, Dr. Smeets en prof. De Deene ben
ik zeer erkentelijk, alsook al mijn IBiTech collega’s en alle leden van de jury.
Ik wil ook mijn ex-ex-collega Marloes uitgebreid bedanken, wiens Latexkennis
en gedrevenheid op zich misschien al een doctoraat verdienen. Tenslotte hoop
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ik voor Koen dat Cercle Brugge ooit kampioen mag worden, uiteraard het
liefst na een intensieve en spannende strijd met AA Gent, en als het dan nog
even kan, in tweede klasse.

De afgelopen vier jaar hebben me evenwel ook veel voldoening geschonken op
andere vlakken. Mijn ouders hebben steeds een resem van ’service flat diensten’
verstrokken die het uitvoeren van doctoraatsonderzoek zoveel gemakkelijker en
aangenamer maakten. Niet zozeer de gemakken die hiermee gepaard gingen,
maar veeleer het besef van hun tomeloze inzet en bereidwilligheid om me
op alle, voor hen mogelijke, manieren vooruit te proberen helpen, zijn de
echte bron van geluk. Ook mijn broers en zussen, en in het bijzonder de
ondertussen negen nichtjes en neefjes zijn die term meer dan waardig. Verder
hoop ik dat Ken en Bart evenveel plezier beleefd hebben aan de (te?) vele fifa-
en voetbaluren en dat Rudy zijn secretarispensioen nog niet te gauw aanvraagt.

Rest me tenslotte nog mijn vriendin Inge te bedanken, omdat ze het al zo lang
uithoudt met mij en een onmisbare bron van geluk is. Zonder het allicht zelf te
beseffen heeft ze een belangrijke inhoudelijke invloed gehad op dit proefschrift,
door op om het even welk uur van dag of nacht naar mijn problemen te willen
luisteren.
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Samenvatting

Dynamische contrastversterkte magnetische resonantiebeeldvorming (DCE-
MRI) is een functionele beeldvormingstechniek die, na de injectie van een
contraststofbolus, de signaalintensiteit in een specifiek weefsel opvolgt. De
techniek kent een groot succes in tumoren, waarin de signaalintensiteit typisch
sterk stijgt na contraststofinjectie, een fenomeen dat aankleuring wordt
genoemd. De fysiologische achtergrond van deze aankleuring is zogenaamde
angiogenese, i.e. de vorming van nieuwe bloedvaten in een tumor uit het ver-
takken van de bestaande omliggende bloedvaten. Zolang zijn afmetingen klein
zijn (1-2mm) kan diffusie de tumor voorzien in zijn zuurstof- en energiebehoef-
ten. Een groeiende tumor heeft echter nood aan een eigen vasculair netwerk
om aan zijn toenemende zuurstof- en energiebehoeften te voldoen. Dit gebeurt
doordat de tumorcellen zogenaamde angiogenese-stimulerende factoren gaan
uitscheiden, wanneer zij in een hypoxische toestand komen. Zoals de naam het
zegt, veroorzaken zulke moleculen de vorming van nieuwe tumorbloedvaten
door angiogenese. In normaal weefsel gebeurt angiogenese gestaag, door
een imbalans tussen angiogenese-stimulerende en angiogenese-inhibiterende
factoren, die lichtjes overhelt in de richting van stimulatie. In tumorweefsel
echter, is deze imbalans zodanig sterk, dat de groei van het vasculaire netwerk
zeer snel en ongecontroleerd optreedt. Als gevolg hebben tumorbloedvaten een
aantal morfologische kenmerken die hen onderscheidt van normale bloedvaten.
Zo worden zij gekenmerkt door een chaotische structuur, met een grote
heterogeniteit in dichtheid en bloedstroom. Ook vertonen zij grote discon-
tinüıteiten die hen extreem permeabel maken in vergelijking met normale
bloedvaten. Een gëınjecteerde contraststof, die in een normale vasculatuur
grotendeels intravasculair blijft, extravaseert uit de poreuze tumorbloedva-
ten en hoopt op in de interstitiële ruimte tussen de cellen. Deze toename in
contraststofconcentratie wordt in DCE-MRI waargenomen als een aankleuring.

Farmacokinetische modellering is een recente (± 20 jaar) en zeer krachtige
techniek om deze aankleuring te kwantificeren. Het vereist de omzetting van
de opgemeten signaalintensiteitscurve naar een contraststofconcentratiecurve,
die op haar beurt wordt gefit aan een farmacokinetisch model. Het resultaat is
een aantal farmacokinetische parameters, die een maat zijn voor de toestand
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van het vaatnetwerk van de tumor en dus voor diens angiogene activiteit.
Dergelijke parameters zou men onmogelijk uit conventionele beeldvorming
kunnen afleiden, gezien daar enkel anatomische informatie in vervat zit.
Men kan zich nu afvragen wat het nut is om de angiogene activiteit van de
tumor te kwantificeren. Vooreerst is aangetoond dat de toestand van het
tumorvaatnetwerk als maat kan gebruikt worden om de agressiviteit van de
tumor en de prognose van de patiënt te evalueren. Traag groeiende goed-
aardige tumoren hebben vaak een meer normaal vaatbed in vergelijking met
snelgroeiende kwaadaardige gezwellen. Ook de capaciteit van de kanker om
uit te zaaien naar andere lichaamsdelen is sterk afhankelijk van de toestand
van het vaatbed. Dit maakt duidelijk dat farmacokinetische modellering
een belangrijke rol kan spelen in het stellen van een kankerdiagnose en het
beoordelen van de prognose voor de patiënt. Farmacokinetische modellering
is ook een niet-invasieve methode om de respons van een tumor op een
behandeling te evalueren en te voorspellen. Zo bijvoorbeeld zijn een aantal
farmacokinetische parameters een maat voor de bloedstroom in de tumor.
Regio’s waar die bloedstroom ontoereikend is worden hypoxisch en vertonen
typisch een hoge resistentie ten aanzien van radiotherapie. Farmacokinetische
modellering kan deze hypoxische regio’s opsporen en daarbij het succes van
een radiotherapiebehandeling voorspellen. Tenslotte wordt deze modellerings-
techniek tegenwoordig standaard gebruikt in studies die nieuwe anti-angiogene
behandelingen testen. Conventionele cytotoxische therapieën hebben als doel
het doden van de tumorcellen. Anti-angiogene behandelingen daarentegen
bëınvloeden de toestand van de vaatnetwerk en zorgen voor een zogenaamde
renormalisatie, waarbij de morfologische kenmerken verdwijnen, die het
tumorvaatbed onderscheiden van een normaal vaatbed. Het is aangetoond
dat deze renormalisatie de efficiëntie van chemo-en radiotherapie verhoogt,
deze laatste bijvoorbeeld door het verdwijnen van de hypoxische regio’s.
Nieuwe anti-angiogene therapieën dienen aldus beoordeeld te worden met een
niet-invasieve beeldvormingstechniek die de toestand van het vaatnetwerk in
kaart brengt, een rol die farmacokinetische modellering kan vervullen.

Ondanks het enorme potentieel en niet-invasieve karakter van farmacokineti-
sche modellering blijft het gebruik van de techniek beperkt tot klinische studies.
Om een doorstroming naar de dagelijkse klinische praktijk te realiseren zijn
het merendeel van de prominente onderzoekers in het domein het erover eens
dat drie belangrijke facetten van farmacokinetische modellering nog aangepakt
dienen te worden. Ten eerste is er geen consensus over gestandardiseerde DCE-
MRI protocols voor het opmeten van de concentratiecurve. Het DCE-MRI
protocol, bestaat uit een MR-pulssequentie, met belangrijke parameters zoals
de repetitietijd en de fliphoek, die elke ∆t seconden herhaald wordt gedurende
een volledige scantijd Tscan. Het hoeft geen betoog dat dit DCE-MRI protocol
een grote invloed heeft op zowel de nauwkeurigheid als de precisie van de
farmacokinetische schattingen. Zo bijvoorbeeld kan verwacht worden dat een
verhoogde temporele resolutie aanleiding geeft tot betere schattingen. In
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DCE-MRI echter kan het verkorten van ∆t niet gerealiseerd worden zonder een
opoffering te doen in de signaal-ruis verhouding (SNR) van de MR-metingen,
of zonder aan de spatiale resolutie te raken. Ook zijn er een aantal MR-
gerelateerde foutenbronnen, die de nauwkeurigheid van de farmacokinetische
parameters aantasten, en afhankelijk zijn van de DCE-MRI instellingen. Ten-
slotte is er geen consensus over de beste methode om de arteriële inputfunctie
(AIF) op te meten. De AIF is de contraststofconcentratie in het bloedplasma
van een voedende arterie van de tumor. De kennis van de AIF is onontbeerlijk
om de farmacokinetisch modellen aan de opgemeten weefselconcentratiecurve
te fitten. Er bestaan een aantal manieren om deze AIF te bepalen, gaande van
het veronderstellen van een populatiegemiddelde AIF, tot het patiënt-specifiek
en gelijktijdig opmeten van de AIF met de weefselconcentraties. Elke manier
heeft een aantal voor-en nadelen en in het bijzonder de patiënt-specifieke
manier introduceert een aantal extra protocolvereisten die voor de andere
methoden niet noodzakelijk zijn. Dit alles maakt duidelijk dat er nood is aan
gestandaardiseerde DCE-MRI protocols voor farmacokinetische modellering
en aan een mathematisch kader dat de invloed van alle protocolparame-
terss op de precisie van de kinetische parameters kan beschrijven, rekening
houdend met de trade-off tussen temporele resolutie, spatiale resolutie en SNR.

Een tweede facet dat de klinische aanvaarding van farmacokinetische mo-
dellering hypothekeert is het niet-voorhanden zijn van gestandardiseerde
post-processing technieken. De post-processing van de DCE-MRI data
bestaat uit de conversie van signaalintensiteit naar contraststofconcentratie,
het fitten van de aldus verkregen curves aan een farmacokinetisch model
en het construeren van betrouwbaarheidsintervallen voor de geschatte pa-
rameters. Voor geen van deze drie onderdelen bestaat overeenstemming in
de literatuur en de betrouwhaarheidsintervalconstructie is zelfs nauwelijks
of niet onderzocht. Nochtans is het nauwkeurig schatten van een betrouw-
baarheidsinterval voor toepassingen, zoals anti-angiogene behandelingen, van
cruciaal belang gezien het de statistische significantie van verschillen in pre- en
post-behandeling opgemeten parameters evalueert. Zonder gestandardiseerde
post-processingstechnieken is het onmogelijk om farmacokinetische modelle-
ringsresultaten uit verschillende onderzoekscentra te vergelijken.

Tenslotte bestaat er geen gouden standaard voor het valideren van de model-
leringstechniek. De vraag of de farmacokinetische parameters daadwerkelijk
de fysiologische grootheden opmeten die ze beweren te reflecteren, blijft tot op
vandaag onbeantwoord. Een aantal studies heeft correlaties aangetoond tussen
de farmacokinetische parameters en ondermeer de histologische dichtheid
aan microbloedvaten, of de expressie van angiogenese-stimulerende factoren,
terwijl anderen geen correlaties konden vinden. Verder blijken de farmaco-
kinetische parameters ook te verschillen wanneer ze opgemeten worden via
DCE-MRI of DCE-CT. Validatie van de modellen blijft dus tot op heden een
ingewikkeld probleem. Elke modellering houdt een aantal veronderstellingen
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in, die in realtiteit niet vervuld kunnen zijn. Wanneer data gefit worden aan
een bepaald model kan in het algemeen gesteld worden dat een hoger-order
model, i.e. een model dat meer parameters bevat, de opgemeten curve
beter zal beschrijven. Echter, het hoger aantal parameter brengt ook een
hogere onzekerheid op de fitparameters met zich mee, tot zelf intercorrelaties
tussen de parameter die voor instabiliteit in de fitprocedures kunnen zorgen.
Dit is niet anders voor farmacokinetische modellering, waarvoor 2- 3- en
4-parameter modellen bestaan. Een befaamde studie heeft aangetoond dat
de parameters in het 4-parameter model het best overeenkomen met de
fysiologische grootheden die ze willen meten, waar voor het 2- en 3-parameter
model duidelijke fouten optreden ten gevolge van te vereenvoudigde veronder-
stellingen. Het 4-parameter model ondervindt echter grote instabiliteit bij het
fitten aan DCE-MRI data, ondermeer ten gevolge van intercorrelaties tussen
de parameters. Ook zijn de onzekerheden op de overeenkomstige parameters
groter. Aanbevelingen voor modelselectie zijn niet beschikbaar in de literatuur.

In dit proefschrift wordt een aantal studies voorgesteld, die als doel hebben
(een deel van) bovenvermelde limitaties te verhelpen. De eerste drie hoofd-
stukken bevatten respectievelijk een overzicht van het kader van het onderzoek,
de principes en trade-off van DCE-MRI en de modellen en toepassingen van
de farmacokinetische modelleringstechniek. In het vierde hoofdstuk worden de
conversiemethodes voor het omzetten van signaalintensiteit naar constraststof-
concentratie voor ’spoiled gradient echo’ (SPGRE) pulssequenties besproken.
SPGRE-pulssequenties worden zeer vaak aangewend in DCE-MRI voor het
opmeten van concentratiecurves omdat ze MR-beelden met goede spatiale re-
solutie en aanvaardbare SNR kunnen opmeten met een temporele resolutie die
geschikt is voor farmacokinetische modellering. Er wordt in dit hoofdstuk een
nieuwe conversiemethode voor SPGRE-pulssequenties voorgesteld, die nauw-
keuriger is dan de huidig gebruikte conversiemethodes en deel kan uitmaken
van een gestandardiseerd verwerkingprotocol. Ook wordt in dit hoofdstuk aan-
getoond, dat omwille van de niet-lineaire relatie tussen signaalintensiteit en
contraststofconcentratie, de variantie van ruis op de concentratiecurves sterk
afhangt van de pulssequentieparameters, maar ook van de contraststofconcen-
tratie zelf. In het vijfde hoofdstuk wordt de relatie tussen concentratieruis
en pulssequentieparameters verder uitgespit. Er wordt een procedure voor-
gesteld voor het bepalen van een optimale SPGRE-fliphoek om een gegeven
concentratie-interval zo precies mogelijk op te meten. Dergelijke optimale flip-
hoek blijkt de precisie van kinetische parameter ten goede te komen, en moet
in acht genomen worden bij het opstellen van gestandardiseerde DCE-MRI
protocols. In hoofdstuk 6 wordt een nieuwe schatter voorgesteld voor farmaco-
kinetische modellering. Gezien de variantie van de concentratieruis afhankelijk
is van de concentratie zelf, zijn de opgemeten concentratiecurves heteroskedas-
tisch. In dergelijke omstandigheden is de traditionele schatter die de residuele
kwadratensom minimaliseert (LSQ-schatter), niet langer optimaal. In plaats
daarvan wordt een zogenaamde maximum likelihood schatter (MLM-schatter)
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gëıntroduceerd, die zowel de precisie als de nauwkeurigheid van de farmaco-
kinetische parameters verbetert. In het bijzonder zijn de betrouwbaarheids-
intervallen, geconstrueerd met de MLM-schatter, veel nauwkeuriger dan die
van de LSQ-schatter. Gezien betrouwbaarheidsintervallen op de farmacokine-
tische parameters van cruciaal belang zijn voor bepaalde toepassingen, zoals
het testen van anti-angiogene behandelingen, kan deze MLM-schatter een be-
langrijk onderdeel vormen van een gestandardiseerd verwerkingsprotocol. In
hoofdstuk 7 wordt een nieuwe stabiele en snelle fitprocedure voorgesteld voor
het 4-parameter model, die in vergelijking met de conventionele fitprocedures
zowel de precisie als de nauwkeurigheid van de farmacokinetische parameters
sterk verhoogt. Gezien de parameters van dit model de grootste fysiologi-
sche relevantie vertonen, maar het tot nu toe weinig onderzocht werd omwille
van de instabiliteiten in de fitprocedure, kan deze nieuwe schattingsmetho-
de een belangrijke stap zijn voor de validatie van farmacokinetische parame-
ters. In hoofdstuk 8, wordt een statistisch kader voorgesteld, gebaseerd op de
zogenaamde Cramer-Rao ondergrenzen, dat de precisie van een fitparameter
voorspelt, gegeven pulssequentieparameters, de temporele resolutie en totale
scanduur. Het wordt aangetoond dat deze methode kan gebruikt worden voor
protocoloptimalisatie: de invloed van de totale scantijd wordt verduidelijkt
en een aantal methodes om de temporele resolutie van de DCE-MRI scans te
verhogen wordt onderzocht. Deze Cramer-Rao ondergrenzen kunnen gebruikt
worden bij het ontwerp van gestandardiseerde protocols. Tenslotte worden in
hoofdstuk 9 de voornaamste conclusies, vernieuwingen en limitaties van dit
proefschrift samengevat.
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Summary

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is
a functional imaging technique, that monitors the signal intensity in a
tissue of interest after the injection of a contrast agent. The technique
is increasingly used in cancer research. In tumors, the measured signal
intensity typically increases after contrast agent injection, a phenomenon
that is denoted signal enhancement. The physiogical basis of this contrast
enhancement is angiogenesis, i.e. the formation of new blood vessels in the
tumor by the branching of the blood vessels in the surrounding tissue. In
small tumors (1-2 mm in diameter) diffusion supplies the tumor in oxygen
and nutrients. A growing tumor however requires an own vascular network
to maintain its increasing oxygen and nutrient demands. The formation
of such a vascular structure is governed by angiogenesis, stimulated by the
production of angiogenesis promoting substances in hypoxic tumor cells. In
normal tissue, angiogenesis is a slow and controlled process, maintained by a
slight imbalance between angiogenesis-promoting and angiogenesis-inhibiting
factors. In tumors however, the extent of this imbalance is so high, that
the vessel growth occurs fast and uncontrolled. As a result, the tumor
vasculature has a number of morphologic features that distinguish it from
normal vasculature. The vascular network is highly chaotic and exhibits a large
degree of heterogeneity in microvessel density and blood flow. In addition, the
blood vessels are permeable and discontinuous, allowing the injected contrast
agent to extravasate into the interstitial space between the cells. As in normal
vasculature the contrast agent remains largely intravascular, this explains the
typically observed contrast enhancement in tumor tissue.

Pharmacokinetic modeling is a recent and powerful technique to quantify
the contrast enhancement. It requires the conversion of the measured signal
intensity curves to contrast agent concentration curves, which on their turn
are fit to a pharmacokinetic model. The result is a number of pharmacokinetic
parameters, that characterize the state of the tumor vasculature and its angio-
genic activity. Such a quantitative characterization of the angiogenic activity
of a tumor is physiologically highly sigficant. Firstly, it is shown that the
state of the tumor blood vessels can serve as a measure for the aggresiveness
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of the tumor and the prognosis of the corresponding patient. Slowly growing
benign tumors often exhibit a more normalized vasculature when compared to
more swiftly growing malignant lesions. In addition, the capacity of a tumor
to metastasize to distant site of the body is strongly dependent on the state
of its vasculature. Pharmacokinetic modeling has therefore an important role
in tumor diagnosis, lesion characterization and patient prognosis. Secondly,
pharmacokinetic modeling is a non-invasive method to monitor and evaluate
tumor response to treatment. Pharmacokinetic parameters can for instance be
a measure for tumor blood flow. Regions with insufficient blood flow become
hypoxic and are typically more resistant to radiotherapy. Pharmacokinetic
models can identify those hypoxic regions, thereby predicting the outcome of
the patient after radiotherapy. Finally, pharmacokinetic modeling is increas-
ingly used for the testing of novel anti-angiogenic treatments. Conventional
cytotoxic therapies principally attack and kill the tumor cells. Anti-angiogenic
treatment target the tumor blood vessels and may result in a renormalisation
of the tumor vasculature, i.e. the disappearance of the morphologic features
that are not apparent in normal vasculature. It is shown that this renor-
malisation enhances the efficiency of chemo- and radiotherapy, the latter for
instance by the removal of hypoxic regions. New anti-angiogenic therapies
require a non-invasive imaging technique, as pharmacokinetic modeling &
DCE-MRI, that can serve as a biomarker for the state of the tumor vasculature.

Despite it huge potential and its non-invasive character, pharmacokinetic
modeling remains restricted to clinical studies. To increase its general clincal
acceptance, the major authors in the field agree that 3 important limitations of
pharmacokinetic modeling have to be assessed. Firstly, no consensus exists in
literature about standardized DCE-MRI protocols. The DCE-MRI protocol,
consists of a MR pulse sequence, with important settings as repetition time and
flip angle, that is repeated every ∆t seconds to monitor the CA concentration
for a total scan time Tscan. The influence of the DCE-MRI protocol on
both the accuracy and the precision of the pharmacokinetic estimates is of
course high. It may for instance be expected that an increased temporal
resolution allows improved quality of the pharmacokinetic estimates. However,
in DCE-MRI the reduction of ∆t is impossible without making sacrifices in the
signal-to-noise ratio (SNR), the spatial resolution or the spatial coverage. In
addition, a number of MR-related error sources occur, that affect the accuracy
of the pharmacokinetic parameters, and whose extent is dependent upon
the DCE-MRI settings. Furthermore, a number of determination strategies
exists for the arterial input function (AIF). The AIF is the CA concentration
in the blood plasma of a feeding artery of the tumor and its knowledge is
indispensable for fitting the tumor concentration curves to a pharmacokinetic
model. Often a population-averaged AIF is used, while other studies measure
the AIF individually, by monitoring the signal intensity in a feeding artery,
together with the signal intensity in the tumor tisse. Every method has a
number of advantages, but no agreement about the best determination strategy
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is attained. In particular the individual monitoring technique, imposes a
number of extra protocol requirements, as increased temporal resolution, when
compared to other AIF strategies. These considerations show the need for
standardized DCE-MRI protocols which can be investigated for their accuracy
and precision and for a mathematical framework that can assess the trade-off
between temporal resolution, spatial resolution, spatial coverage and SNR.

A second limitation that prevents the clinical acceptance of pharmacokinetic
modeling, is the lack of standardized post-processing techniques and the
absence of clear recommendations for developping post-processing software.
The post-processing of DCE-MRI data consists of the conversion of the
signal intensity to contrast agent concentration, the fitting of the resulting
concentration curves to a pharmacokinetic model, and the construction of
confidence intervals for the estimated parameters. In literature the different
parts of the post-processing are done in multiple ways, and the accuracy
of confidence interval construction has not been investigated up to now.
Nevertheless is the robust and accurate estimation of the confidence intervals
on the kinetic parameters of crucial importance for several applications.
When testing the effect of an anti-angiogenic therapy by comparing pre-
and post-treatment kinetic parameters, these confidence intervals determine
the statistical significance of the observed change. Without standardized
post-processing techniques, it is impossible to compare pharmacokinetic
modeling results from different research centra.

The third limitation is the absence of a golden standard for the validation
of pharmacokinetic modeling. It is unclear whether the pharmacokinetic
parameters truly reflect the physiological quantities they aim to measure.
A number of studies has found correlations between the pharmacokinetic
parameters and microvessel density or the expression level of angiogenesis
stimulating factors, while other studies could not establish a significant
correlation. Pharmacokinetic parameters also appear to differ when measured
with DCE-MRI or DCE-CT. Validation of the pharmacokinetic models is
therefore a difficult task. Every model comprises a number of assumptions,
that in reality may not be valid. In general, higher order model, i.e. models
with a higher number of parameters, comprise less assumptions and their
parameters more truly reflect their physiological counterparts. However, the
higher number of parameters also induces higher parameter uncertainties, or
even intercorrelations between the model parameters that cause instabilities
in the fitting procedure. These generalities were shown for pharmacokinetic
modeling as well, for which 2-, 3- and 4-parameter models exist. A often-cited
study proved that the parameters of the 4-parameter model exhibit the best
correlation with the physiological quantities they aim to measure. In the
2- and 3- parameter models, significant errors occur, caused by invalid and
oversimplified model assumptions. The 4-parameter model however suffers
from sever instabilities in the fitting procedures caused by intercorrelations
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between its parameters. In addition the uncertainties on the corresponding
parameters are higher. No guidelines are available in literature for model
selection.

In this work, a number of studies is proposed to assess (a part of) the
limitations mentioned above. The first three chapters contain a description of
the scope of the research, the basic principles and trade-offs in DCE-MRI, and
an overview of the pharmacokinetic models and their applications, respectively.
In the fourth chapter, the methods are reviewed, to convert the DCE-MRI
signal intensity to contrast agent concentrations for spoiled gradient echo
(SPGRE) pulse sequences. SGPRE pulse sequences are very often employed
in DCE-MRI for the monitoring of contrast agent concentration, due to their
ability to combine high spatial resolution with acceptable SNR and a temporal
resolution that is suitable for pharmacokinetic modeling. In this chapter a new
conversion method is proposed, that has higher accuracy than the currently
used conversion methods and can be part of standardized post-processing
protocol. In addition, it is shown in chapter 4, that due to the non-linear
relationship between signal intensity and contrast agent concentration, the
variance of the concentation noise is highly dependent on the pulse sequence
parameters and on the contrast agent concentration itself. In chapter 5,
this relationship between concentration noise and pulse sequence parameters
is more thoroughly investigated. A procedure is proposed to determine an
optimal SPGRE flip angle, for the most precise measurement of contrast agent
concentrations within a premised range. The precision of the pharmacokinetic
parameters benefits from the use of this optimal flip angle, which should be
considered as an important part of a standardized protocol design. In chapter
6, a new estimator is proposed and tested for pharmacokinetic modeling. As
the variance of the concentration noise is dependent upon the contrast agent
concentration itself, the measured concentration data are heteroskedastic. In
this case, the commonly used least square estimator (LSQ) is not optimal
and instead a maximum likelihood estimator is proposed. Both the precision
and the accuracy of the pharmacokinetic estimates is shown to benefit from
the use of the MLM estimator. More importantly however, the MLM-based
constructed confidence intervals appear to be much more accurate than their
LSQ-counterparts. As accurate confidence intervals for the kinetic parameters
are of crucial importance for several applications, as the testing of novel
anti-angiogenic therapies, the MLM estimator should be part of a standardized
post-processing protocol. In chapter 7, a new and stable fitting procedure
for the 4-parameter model is proposed, that increases both the precision and
the accuracy of the pharmacokinetic parameter estimates. The 4-parameter
model has the highest physiological significance, i.e. its parameter show the
highest correlation with the physiological quantities they aim to measure.
However, due to the instabilities in the fitting procedure, it is used in a
minority of the studies. Therefore, the introduction of this new accurate and
fast estimation procedure may be an important step in the validation of the
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pharmacokinetic parameters. In chapter 8, a statistical framework is proposed,
based on the so-called Cramer-Rao lower bounds, that predicts the precision
of the pharmacokinetic estimates and takes into account the influence of the
pulse sequence parameters on the concentration noise, the temporal resolution
and the total scan time. It is shown that this framework may be used for
protocol optimzation: the influence of the total scan time is elucidated and a
number of methods to increase the temporal resolution of the DCE-MRI scans
are investigated, considering the trade-off between temporal resolution and
SNR. This Cramer-Rao lower bound framework may be used for the design
and evaluation of standardized DCE-MRI protocols. Finally, in chapter 9,
the most important conclusions, innovations and limitations of this work are
summarized.
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Chapter 1

Introduction

1.1 Cancer & functional imaging

Cancer is a pathology characterized by an uncontrolled proliferation of cells,
that tend to invade the surrounding tissue and metastasize to other parts
of the human body. A tumor is a general indication for a cell mass or an
abnormal growth in a tissue, but can be benign or malignant. While malignant
or cancerous tumors have the tendency to metastasize, benign or not-cancerous
tumors do not and may be less harmfull. Apart from cardiovascular diseases,
cancer is the second most common cause of death in the Western world.
According to the US national center for health statistics, in 2007 it accounted
for 23.2 % of all US deaths. Fig. 1.1 and fig. 1.2 show the incidence and
mortality rates for different cancer types. In women, breast cancer is the
most common diagnosed cancer type, while prostate cancer has the highest
incidence in men. For both sexes however, lung cancer has the highest
mortality rate. In the last two decades, cancer mortality rates have been
steadily decreasing as shown in fig. 1.3. This decrease may be attributed to
the continuously expanding research in this field: it has provided insight into
the cellullar and epi-genetic background and the corresponding risk factors
of cancer growth. The latter has for instance lead to the development of
screening programs to enable early diagnosis. In addition, significant progress
in cancer treatment has been made throughout the last years. Technological
improvements have enabled more effective radiotherapy and a number of new
techniques such as robot-assisted surgery. A wide range of chemotherapeutic
agents has been developped and introduced by the pharmaceutical companies,
to effectively cure the cancer patient or at least prolonge its life expectation.
Furthermore, the imaging modalities used for the visualization of cancer,
such as computed tomography (CT), positron emission tomography (PET),
or magnetic resonance imaging (MRI), have gained in quality, quantity and
availability. Apart from technological developments that have enabled better

1
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Figure 1 Major cancers: age-standardised incidence by sex, 2006-08
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Figure 1.1: Major cancers in the U.K. : incidence by sex for 2006-2008
(source:www.statistics.gov.uk)

image quality, a number of new techniques has been developped that can be
described as functional imaging. Conventional medical imaging techniques
rely on the acquisition of a limited number of images that contain solely
anatomical information. Functional imaging, on the other hand, is based on
the acquisition of a time course of images after the intra-venous injection of a
contrast agent (CA). Apart from anatomical information, these images contain
additional functional information about the behaviour of the tissue over time.
Dynamic contrast-enhanced MRI (DCE-MRI), which is the main application
field of this work, is the generic name for all techniques that monitor the
T1-weighted MR signal intensity in a tissue of interest over time after the
injection of a CA. Other functional imaging techniques are dynamic suscep-
tibility contrast MRI (DSC-MRI), denoting all the T2-weighted1 techniques,
or dynamic contrast-enhanced CT (DCE-CT), the corresponding tomography
application.

Fig. 1.4 shows typical DCE-MRI signal intensity variations measured in differ-
ent regions of interest (ROI) in a patient with a breast tumor after the injection
of a CA. Within the tumor a strong increase is seen in the signal intensity, that
is denoted as contrast enhancement. This contrast enhancement is not visible
in fat, and appears to a far lesser extent in normal breast tissue. In the next
section the patophysiological basis of this contrast enhancement, angiogenesis,
is described and it is explained which information about the tumor is comprised
within the enhancement curve.

1The difference between T1 and T2-weighted techniques is explained in chapter 2



Chapter 1 3
Figure 2 Major cancers: age-standardised mortality by sex, 2006-08
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Figure 1.2: Major cancers in the U.K.: mortality by sex for 2006-2008
(source:www.statistics.gov.uk)

Figure 1.3: Cancer mortality rate in the U.S. over the period 1975-2006
(source:www.cancer.org)

1.2 Tumor angiogenesis & contrast enhance-
ment

Angiogenesis denotes the sprouting of new capillaries from the existing blood
vessels. It is a natural component of a number of normal physiological
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and quantitative kinetic parameters are derived for 
tumour regions of interest and on a pixel by pixel 
basis (Fig. 10.8). For a detailed discussion on phar-
macokinetic modelling techniques and their limita-
tions reader are directed to the review by Tofts (1997) 
and elsewhere in this book (see Chap. 6). Examples 
of modelling parameters include the volume trans-
fer constant of the contrast agent (Ktrans – formally 
called permeability-surface area product per unit 
volume of tissue), leakage space as a percentage of 
unit volume of tissue (ve) and the rate constant (kep 

– also called K21). These standard parameters are 
related mathematically (kep = Ktrans/v

e
) (Tofts et al. 

1999). The details of what physiological processes 
are depicted by these kinetic parameters are detailed 
elsewhere in this book (see Chap. 6). To summarise, 
the transfer constant (Ktrans) describes the transen-
dothelial transport of low molecular weight contrast 
medium by diffusion. If the delivery of the contrast 
medium to a tissue is insufficient (flow-limited situ-
ations or where vascular permeability is greater than 
inflow) then blood perfusion will be the dominant 

Fig. 10.6a–f. Morphological and kinetic patterns of enhancement of a fibroadenoma. This is the same patient illustrated in 
Figures 10.1-10.3, 10.8 and 10.12 but of a different slice in the same right breast. (a) T2-weighted, (b) T1-weighted pre-contrast 
and (c) post contrast enhanced T1-weighted (100 seconds after 0.1 mmol/kg contrast medium) images of a fibroadenoma. 
(d) Subtraction image with regions of interest indicated in (e). (f) Time signal intensity data from the regions indicated. The 
fibroadenoma is homogenously enhancing, with clear edges. Invasive ductal cancer shows marked heterogeneous enhance-
ment with irregular margins as illustrated in Figures 10.7 and 10.9.

a b

c

e

d

f

Figure 1.4: Left: anatomical breast MR image in a patient with a breast tumor
(white region) with indication of the regions of interest. Right: signal
intensity variations in the regions of interest shown in the figure on the
left after the injection of a contrast agent. Contrast enhancement is seen
in the tumor but (almost) not in normal tissue or fat. Figure adopted
from [1].

processes, as wound healing or organ regeneration, but it forms a crucial step
in the progression and metastasis of cancer cells [2, 3]. In the most early
stages of a tumor, its growth and survival is based on diffusion of oxygen
and nutrients from the vessels in the surrounding tissue. The diameter of
these so-called avascular tumors, is limited by the maximum diffusion distance
of oxygen and can reach up to 1-2 mm [4]. Tumor growth beyond these
boundaries can only occur by the development of a vascular network within
the tumor, to maintain its nutrients and oxygen supply. When the avascular
tumor cells become hypoxic, i.e. the partial oxygen pressure is too low, they
secrete angiogenesis promoting factors of which the most important is VEGF,
vascular endothelial growth factor. These substances stimulate the endothelial
cells of the neighbouring blood vessels to form endothelial sprouts that can
grow towards the tumor cells [3, 4]. This process is shown in fig. 1.5. It has
been shown that angiogensis is a key process in the progression of an avascular
tumor to an invasive cancer [2]. In addition, the vascular access is indispens-
able for malignant tumor cells to metastasize to other sites in the body [2, 5].
In normal tissues, angiogenesis is regulated by a balance between angiogenic
inhibiting and angiogenic stimulating factors. In tumors however, an imbalance
between these factors exists and the resulting fast development of the vascular
network causes a number of specific morphologic properties, distinguishing the
network from normal vasculature. Tumor vasculature is highly chaotic and
heterogeneous, i.e. areas of high and low vascular density succeed one another.
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Normal blood vessel

Tumor blood vessel

Figure 1.5: Left: in vivo fluorescence microscopy images of angiogenesis and tumor
growth in hamsters with a dorsal skinfold window chamber. Images on
day 0 (A), 3 (B), 6 (C) and 9 (D) after tumor implantation. Adopted
from [8] Right: permeability discrepancy between normal and tumor
vasculature.

It exhibits arteriovenous shunting and blindly ending vessels [2, 3]. These
features can be noticed in fig. 1.5 as well. In addition, the blood flow in these
vessels is highly unstable and blood vessels may collapse acutely. Lymphatic
vessels are absent or disfunctional [6]. However, the most important feature in
the framework of DCE-MRI is the hyperpermeability of the tumor vasculature
when compared to a normal vascular network [2–4, 7]. This is illustrated in
fig. 1.5 as well. In normal tissue, an intravenously injected CA remains largely
intravascular. On the contrary, the leaky tumor vessels allow extravasation of
the CA that initially accumulates in the space between the tumor cells and
after a while washes out again. These CA kinetics are comprised in the time
course of DCE-MRI images. An enhancement curve, measured in a region of
interest within the tumor, as depicted in fig. 1.4, is therefore determined by
the local microvessel density, the cell density in the ROI, the local blood flow
in the tumor capillaries, and the local permeability and surface area of the
vessel wall. In summary, the signal intensity curves measured in a DCE-MRI
or DCE-CT investigation are reflections of the angiogenic activity of the tumor.

What is the clinical significance of gaining insight in the state of the tumors’
vascular network? Firstly many studies have shown that patient prognosis
is related to the state of the tumor angiogenesis. The level of increased
VEGF-expression or microvessel density measurements have been associated
with worse prognosis or metastastic ability of the cancer [2, 7]. The degree
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of abnormality observed in the tumor vascular network is, among others,
dependent on the growth rate of the tumor. Slowly growing benign tumor
types may therefore show a relatively normal vasculature, while the vascular
network of fastly growing malignant tumors tends to be highly disordered [4].
Secondly, due to arteriovenous shunting, low vessel density and unstable blood
flow, hypoxic2 regions originate within the tumor. It has long been acknowl-
edged that hypoxia renders cells more resistant to a number of cytotoxic3

therapies and in particular to radiotherapy [9], but may also induce genetic
changes that increase the metastatic potential of the cells [6]. Furthermore,
the metastatic potential of a malignant tumor is dependent on the state of
it vascular network [6]. Finally, the high permeability of the tumor vessels,
the absence or disfunctionality of a lymphatic system and the proliferating
tumor cells cause an elevated interstitial fluid pressure (IFP), i.e. a higher
hydrostatic pressure outside the blood vessels than in normal tissue. This
increased IFP raises a severe obstruction for the delivery of chemotherapeutics
to tumor cells. In area’s with high IFP, the convective transport of the
chemotherapeutic molecules from the blood vessels to the interstitial space
is blocked and they cannot adequately reach the tumor cells, reducing the
efficacy of the treatment. All these features (VEGF-expression, microvessel
density, partial oxygen pressure, IFP, ...) can be assessed by mainly invasive
measurement methods. Their derivation from the information available in the
non-invasive functional imaging modalities, in particular by DCE-MRI, has
therefore a high clinical relevance.

Apart from the assessment of the above cited features describing the state
of the tumor vasculature, the enhancement curves in DCE-MRI can be used
for evaluating the response of a tumor to treatment as well. In particular for
so-called anti-angiogenic treatments that target the tumor vasculature instead
of the tumor cells, DCE-MRI has been acknowledged as an important imaging
tool [2, 10–12]. As angiogenesis is indispensable for the growth and metastasis
of a tumor, a wide range of anti-angiogenic therapies has been developped
in the last years, that prevent the formation of new blood vessels or destroy
the existing vasculature in the tumor [6, 13]. The corresponding strategy is
to deprive the tumor cells from oxygen and nutrients and thereby instigating
the indirect killing of tumor cells. When administered as a single agent, such
anti-angiogenic agents have not shown significant tumor response or improved
long-term survival [6, 14, 15]. However, when administered in combination
with cytotoxic therapies, an increase in survival has been demonstrated [6].
The success of this combined treatment is attributed to a normalisation of
the tumor vascular network: anti-angiogenic therapies relie on reducing the
imbalance between angiogenic inhibiting and angiogenic stimulating factors
thereby causing vasculature normalization. This normalization means that the

2regions with insufficient oxygen supply
3Chemo- or radiotherapy
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morphologic features, distinghuising the tumor vessels from normal vasculature
largely disappear. The corresponding effects, as hypoxia, increased IFP or
blood flow heterogeneity are highly diminished, and the resistance to radio-or
chemotherapy is reduced. This combined treatment is highly promising,
but requires an objective and non-invasive method, such as DCE-MRI,
to characterize the effect of the anti-angiogenic treatment on the tumor
microvasculature.

1.3 Pharmacokinetic modeling

In the previous sections, it was explained which information is comprised in an
enhancement curve measured with DCE-MRI. The question still remains, how
this information is quantitatively assessed and which parameters can be derived
from these curves that characterize the angiogenic activity of the tumor. Gener-
ally, there are two main strategies to process the enhancement curves: heuristic
and semi-quantitative measures on the one hand, and pharmacokinetic model-
ing on the other hand. The heuristic and semi-quantitative approaches are not
investigated in this work, but a short summary of the most common methods
is given in chapter 2. Pharmacokinetic modeling requires the conversion of the
signal intensity curve to a CA concentration curve, that on its turn is fitted to
a pharmacokinetic model describing the kinetics of the CA in the tumor tissue.
This fitting results in a number of estimated pharmacokinetic parameters that
characterize the state of the tumor microvasculature. A broad overview of the
currently used pharmacokinetic models is given in chapter 3. The most familiar
is the compartmental model of Tofts & Kermode, that desribes the measured
concentration curve Ct(t) by means of two kinetic parameters [16]:

Ct(t) = Ktrans

∫ t

0

Cp(t′)e−
Ktrans

νe
(t−t′)dt′ (1.1)

Ktrans (min−1) is the transendothelial transfer constant, νe is the interstitial
space fraction. In theory, Ktrans is a measure for the plasma flow through the
vessel and the permeability and surface area of the vessel wall [17]. In practice,
the value of Ktrans is also affected by the microvessel density [18]. Cp(t) is
the variation of the CA concentration in the blood plasma of a feeding artery
of the tumor, the so-called arterial input function (AIF). In pharmacokinetic
modeling, it is assumed that the AIF is known, as it is indispensable to estimate
the pharmacokinetic parameter from the measured CA tissue concentration
curve. Several other models exists, with a higher number of parameters: in
the 3-parameter model the plasma volume fraction is estimated as well, which
physiologically may be expected to correlate with the microvessel density. The
4-parameter model allows separate estimation of permeability and blood flow.
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Figure 1.6: Chart flow of a DCE-MRI investigation combined with pharmacokinetic
modeling.

1.4 DCE-MRI & pharmacokinetic modeling
chart flow

The chart flow of a DCE-MRI investigation combined with pharmacokinetic
modeling is shown in fig. 1.6. It can be subdivided into 3 major parts: the
DCE-MRI protocol, the determination of the AIF, the post-processing of the
DCE-MRI enhancement curves.

1.4.1 DCE-MRI protocol

The DCE-MRI protocol comprises all MRI measurements performed both
before and after the injection of a CA. The signal intensity in a DCE-MRI
pulse sequence is mainly dependent on the T1-relaxation time4 in the tissue
of interest. This relaxation time, whose physical meaning is explained in
chapter 2, depends in a quantifiable manner on the CA concentration.
Monitoring the MR signal intensity over time therefore allows calculation of
the CA concentration curve. Absolute quantification of the CA concentration
however requires a number of quantities, as the relaxation time T10 in the
absence of CA and the pre-contrast signal S0, that have to be determined
before the CA is injected. A typical DCE-MRI investigation starts with
a number of pre-contrast scans, from which S0 and T10 can be estimated.

4As mentioned in the introduction, DCE-MRI pulse sequences are mainly T1-weighted
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After the injection of a CA, a dynamic series of MR-images is started: every
∆t seconds an MR image is acquired, for a total time Tscan. ∆t is the
sampling time, the inverse of the temporal resolution and is in practice the
time necessary to acquire one MR-image with the employed pulse sequence.
It seems obvious that an increased temporal resolution is beneficial for the
quality of the estimated parameters. However, in DCE-MRI, reducing ∆t is
impossible without sacrifices: a trade-off exists between temporal resolution,
spatial resolution, spatial coverage and signal-to-noise ratio. This trade-off
is elucidated in chapter 2, and makes DCE-MRI protocol design a difficult task.

1.4.2 Arterial input function

As mentioned in the previous section, the knowledge of the AIF is indispens-
able for the estimation of the pharmacokinetic parameters. A wide range of
methods exists to determine the AIF, going from co-measurement of the CA
concentration in a feeding artery of the tissue of interest during the dynamic
DCE-MRI series (patient-specific), to the use of a population averaged AIF
(non-patient specific). An overview of the AIF determination methods is
given in chapter 3, together with their respective advantages and drawbacks.
Typically, the CA concentration in the blood varies much more swiftly than
the concentrations in tumor tissue. Therefore, if the AIF is to be measured
together with the tissue concentration curves, its accurate determination will
require a higher temporal resolution, than when a population averaged AIF is
used.

1.4.3 Post-processing

The post-processing of DCE-MRI images begins with the CA concentration
calculation from the measured signal intensities in the dynamic series and the
quantities determined in the pre-contrast measurements. The relationship be-
tween the CA concentration and the MR signal intensity is reviewed in chapter
2. In contradiction to for instance DCE-CT, the measured signal intensity is
not linearly related to the CA concentration and specific conversion methods
are necessary. These conversion methods are discussed in chapter 4. In the
second step of the post-processing protocol, this concentration curve is fitted
to a pharmacokinetic model, given the AIF. This results in a number of phar-
macokinetic parameter estimates and their respective confidence intervals, that
can be used for a wide range of applications. A number of these applications
is discussed in chapter 3.
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1.5 Limitations

Despite its high physiological relevance and its huge clinical potential, DCE-
MRI and pharmacokinetic modeling have not been introduced in daily clinical
practice. In chapter 3, a wide range of specific error sources and their influ-
ence on the precision and the accuracy of the pharmacokinetic estimates are
described. However the three main issues that limit the clinical acceptance of
pharmacokinetic modeling & DCE-MRI have been acknowlegded by many of
the leading authors in the field [2, 10,19–22]:

1. Lack of standardized measurement protocols: both the precision and
the accuracy of the estimated pharmacokinetic parameters are highly
influenced by the design of the DCE-MRI protocol and the choice of the
AIF determination method. The influence of the temporal resolution
of the DCE-MRI measurement for instance, has been the subject of
investigation in many studies. These resulted in a number of general
recommendations regarding the sampling strategy. Unfortunately, no
consensus is found in literature regarding this issue and the reported
maximal sampling times vary between 1.5s and 15s [22–28]. The reason
for this high variation is threefold. Firstly, the required temporal
resolution is model-dependent: a model that estimates a higher number
of parameters from the measured concentration curve requires high data
quality [24]. Secondly, as explained above, a trade-off exists in DCE-MRI
between signal-to-noise ratio, spatial coverage, spatial resolution and
temporal resolution. Therefore, the temporal resolution is not only
model dependent, but depends on the necessary spatial coverage and
resolution for the pathology as well. Finally, the required temporal
resolution depends on the AIF determination strategy as well. When the
AIF is co-measured with the tissue concentrations in a feeding artery, the
fastly varying concentration curve has to be sampled with high temporal
resolution. On the other hand, when a population averaged AIF is
used, the more slowly varying tissue concentration curves do not require
similar small sampling times [27, 29]. Also, total scan time is a protocol
parameter whose influence remains uninvestigated and for which no
clear recommendations exist [22]. Finally, the pulse sequence type and
its design in DCE-MRI, is of crucial importance for pharmacokinetic
modeling. Most pulse sequence parameters are determined by the
trade-off mentioned above, but a degree of freedom exists in the choice
of the flip angle5. A number of studies has investigated the influence of
the flip angle on the accuracy and the precision of pharmacokinetic esti-
mates, but no agreement regarding an optimal flip angle exists [22,30–32].

2. Lack of robust post-processing methods and the unavailability of post-

5in chapter 2, the flip angle concept is elucidated
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processing software: a large discrepancy exists in the post-processing
of the DCE-MRI signal intensity curves, employed in different phar-
macokinetic modeling studies and no general recommendations are
available to develop robust post-processing software. The signal intensity
conversion to CA concentration for instance, is performed in a variety of
ways [30,33,34]. General approaches for the fitting of DCE-MRI concen-
tration data to a pharmacokinetic model have been developped [35], and
the accuracy of the pharmacokinetic estimates in the presence of a num-
ber of MR-related error sources has been assessed in case studies [30,36].
This accuracy seems to be highly dependent on the DCE-MRI protocol,
implying that without standardized measurement protocols, intercom-
parison of pharmacokinetic modeling studies from different center is
hazardous. In addition, the precision of the pharmacokinetic estimates
has hardly been investigated. Statistical significance of pharmacokinetic
parameter differences pre- and post anti-angiogenic therapies is highly
dependent on the existence of a robust framework to construct accurate
confidence intervals for the pharmacokinetic estimates. Up to now, no
such framework is available. These considerations all contribute to the
statement that intercomparison of results from different scanning sites
is difficult and pose a severe drawback on the multi-centre application
of pharmacokinetic modeling. Several authors have therefore postulated
that a general statistical framework should be developped to evaluate the
precision and measurement variability of pharmacokinetic parameters
between and within centers [2, 21,37].

3. Lack of a gold standard for validation: it is very difficult to show that
pharmacokinetic parameters truly reflect the angiogenic activity of
the tumors. Several authors have tried to compare invasive histologic
measurement methods for angiogenic activity, such as microvascular
density or angiogenic factor expression, but found only broad correla-
tions [10,32,38]. This may be attributed to the difficulty in co-localizing
the histologic section with the MR sections [10] and to the fact that
pharmacokinetic parameters as Ktrans represent a mixed effect of blood
flow and permeability. Other researchers have compared pharmacoki-
netic estimates from DCE-MRI with similar parameters from other
imaging modalities such as ultrasound [39], CT [40] or PET [41]. It
was for instance demonstrated that Ktrans obtained from DCE-CT
or DCE-MRI are comparable. No correlation could however be found
between the interstitial space or plasma volume fraction [40]. These
findings demonstrate that no golden standard exists to validate the
pharmacokinetic models. In a famous paper, Buckley investigated the
physiological relevance of 2-, 3-, and 4 parameter models [18]. He
found that the parameters from the higher order models more truly
reflect the physiological quantities they aim to measure. However, if
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more parameters have to be fit from a concentration curve, increased
data quality is required for acceptable accuracy and precision. The
formulation of guidelines facilitating model selection for a fixed protocol
design, or vice versa, concerning the required data quality for a given
pharmacokinetic model, would therefore be highly relevant. In addition,
the 4-parameter model, whose parameters shows the highest degree of
correlation with their true physiological counterparts, experiences severe
fitting stability problems, preventing its clinical acceptance.

1.6 Accuracy & precision

When evaluating the quality of an estimated parameter θ̂, a discrepancy
has to be made between its accuracy and its precision. Just as an ordinary
measured quantity, an estimated parameter has a probability distribution
as shown in fig 1.7A and B. The difference between the average of this
distribution and the true value θ of the parameter is called the bias and is a
measure for the accuracy of the parameter. In other words, if the experiment
would be repeated a considerable number of times, the accuracy describes
the difference between the true value of the parameter and the average of
its estimated values over the experiments. The width of the distribution
on the other hand, is a measure for the uncertainty or the precision on the
estimated parameter. The precision describes the probability that when the
experiment is repeated under similar conditions, the estimated parameter
remains unchanged. Precision is closely related to the reproducibility or
repeatability of the pharmacokinetic modeling technique. If the precision of
the estimate is very low, as in fig. 1.7B , the experiment is irreproducible
and therefore useless, even if the bias is small. On the other hand, if
both the bias and the precision are high as in fig. 1.7A, reproducible but
inaccurate estimates may be extracted. This shows that before assessing
the accuracy of an estimated parameter acceptable precision has to be ensured.

Bias in an estimated parameter is caused by systematic errors. In DCE-MRI
such errors include insufficient temporal resolution (Nyquist), error in the AIF
determination or a number of MR-related artifacts that cause inaccuracies
in the concentration calculation (see chapter 2 & 3). Uncertainty on the
pharmacokinetic estimates is caused by the limited signal to noise ratio (SNR)
in the DCE-MRI measurement. The noise on the MR signal intensities is
converted to noise on the concentration curves. As a result, parameters
estimated from these curves have limited precision. The extent to which the
SNR of the DCE-MRI measurement is converted to uncertainty on the kinetic
estimates depends on the temporal resolution, the total scan time, but also
on the settings of the MRI pulse sequence. For a number of applications of
pharmacokinetic modeling the precision of the pharmacokinetic estimates is far
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more important than their accuracy. For instance, consider an anti-angiogenic
therapy that truly has an effect on the morphology of the tumor vasculature
and has to be evaluated by a paired DCE-MRI investigation. Suppose the
true value of a pharmacokinetic parameter θ before therapy is θ1, while after
therapy it increases to θ2. As shown in fig. 1.7C, a DCE-MRI protocol
with a high precision evaluates the effect correctly, even in the presence of a
large bias, provided that this bias is comparable in both measurements. On
the contrary, a low precision, may lead to the erroneous conclusion that the
therapy decreases the kinetic parameter, even in the absence of measurement
bias, as illustrated in fig. 1.7D. This simple example shows that statistical
significance testing of an observed change in a kinetic parameter, requires the
knowledge of the width of the distribution, i.e. a framework is necessary that
describes the precision of the pharmacokinetic estimates.

The precision of the pharmacokinetic estimate imposes a lower bound on
the reproducibility. Additional variations in the estimated parameter may
occur by for instance improper patient repositioning or if the extent of the
systematic errors in both investigations is not comparable. Therefore, the
accuracy of the parameter has to be assessed as well.

1.7 Aim & Overview

In this work, the three limitations as described in section 1.5 are adressed. The
emphasis is on improvements and characterization of the precision of the phar-
macokinetic estimates, that is of crucial importance for several applications of
pharmacokinetic modeling, as illustrated in the previous section. Concerning
the DCE-MRI protocol, we have proposed an optimization strategy for
the flip angle in spoiled gradient echo pulse (SPGRE) sequences, the most
commonly used pulse sequence family in DCE-MRI. This flip angle selection
effectively enhances the precision of the pharmacokinetic estimates. Secondly,
a framework has been developped to assess the influence of the protocol
design on the precision of the estimated parameters. Although many studies
already investigated the influence of for instance the temporal resolution, our
framework accounts for the trade-offs between spatial resolution, temporal
resolution and SNR, characteristic for DCE-MRI, and allows protocol opti-
mization. Concerning the post-processing protocol, this work investigates the
influence of the estimator for pharmacokinetic modeling of DCE-MRI data and
proposes a robust and accurate method for confidence interval construction.
This may be used as a part of the statistical framework to describe the
precision and measurement variability of the pharmacokinetic parameters. In
addition, a new accurate conversion method is developped for calculating the
CA concentration from the SPGRE signal intensity. Finally a new fast and
stable fitting procedure is introduced for the 4-parameter model, that leaves
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Figure 1.7: A: probability distribution of the difference between an estimated pa-
rameter θ̂ and its true value θ. The width of the distribution is a measure
for the uncertainty. The difference between the mean of the distribu-
tion, µ(θ − θ̂), is the bias. B: similar as A, but for the case of a low
bias and high uncertainty. C. probability distributions of the estimates
θ̂1 and θ̂2 for a pharmacokinetic parameter whose true value has been
increased by an anti-angiogenic therapy from θ1 to θ2. In the case of a
low uncertainty but high bias, the effect of an anti-angiogenic therapy is
correctly assessed by the pharmacokinetic parameter change. D: in the
case of a low bias but high uncertainty, the observed pharmacokinetic
parameter change may not reflect the true effect of the therapy.
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behind the instability problems and has a profound effect on the accuracy
and the precision of its parameters. The latter study may also increase the
clinical acceptance of the physiologically relevant 4-parameter model and
enable better validation of the pharmacokinetic modeling techniques.

In chapter 2, on overview is given of the principles of MRI and the trade-offs
in DCE-MRI, as cited above, are discussed. Chapter 3 describes the current
status of the pharmacokinetic modeling techniques, reviews the different
models and summarizes a number of important clinical applications. Chapter
4 discusses the conversion methods, among which a newly proposed one, and
their effect on the accuracy and the precision of DCE-MRI measured CA
concentration. The flip angle optimization strategy is derived and explained in
chapter 5. Chapter 6 compares the quality of estimators for pharmacokinetic
modeling and evaluates the accuracy of confidence interval construction for
pharmacokinetic estimates. In chapter 7, the fast and stable fitting procedure
for the AATH model is explained. The framework for protocol optimization is
discussed in chapter 8. Finally, chapter 9 reviews the different results of the
previous chapter and discusses their potential in addressing the limitations of
DCE-MRI and pharmacokinetic modeling.
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Chapter 2

Dynamic contrast-enhanced
magnetic resonance
imaging: Basic principles,
pulse sequences, contrast
agents & artefacts

2.1 Introduction

As explained in the introductory chapter, DCE-MRI monitors the signal
intensity in a tissue of interest is over time, after the injection of a CA. Its
goal is to obtain functional information about the tissue or the pathology,
that can aid the clinician for diagnostical or therapeutical decisions. It is one
of the numerous applications of MR-imaging. MR imaging itself relies on
the behaviour of the protons in the tissue water of the human body, when
subjected to a large static magnetic field. In comparison with other medical
imaging modalities, MRI achieves improved soft tissue contrast and it has
the advantage that the patient is not exposed to ionizing radiation. Being
intrinsically impossible to describe without quantummechanics, MRI is a
product of the second part of the 20th century, with the first clinical scanner
introduced around 1980. Many physical, technological and signal processing
challenges have been met in clinical scanners: e.g. the high magnetic field
strength (1.5T-3T1) is obtained by superconducting magnets, cooled to below
4K by liquid helium; a wide range of MRI coils and pulse sequences have
been introduced to achieve optimal imaging of all parts of the human body;

1For comparison, the earth magnetic field strength is in the order of 30-60 µT
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spatial localisation in MRI requires magnetic field gradients and fast fourier
transform algorithms for image reconstruction; etc. By the introduction of
contrast agents, a number of chemical and toxicological considerations have
to be considered as well. Henceforth, MRI is probably one of the most
multidisciplinary imaging modalities in medicine, and a complete overview of
this continuously expanding technique is far beyond the scope of this work.
However, the aim of this chapter is threefold. Firstly it is tried to provide the
reader with both a qualitative and quantitative understanding of several MR
concepts, such as flip angle, pulse sequence, signal-to-noise ratio, repetition
time, ... All these terms are indispensable for a thorough understanding
of the next chapters. Secondly, extensive attention is paid to the spoiled
gradient echo pulse (SPGRE) sequence. This pulse sequence is used in the
majority of DCE-MRI studies and the relationship between signal intensity
and CA concentration has important consequences for pharmacokinetic
modeling. Therefore, this relationship is derived analytically and artifacts are
explained. Finally, the trade-offs in DCE-MRI are illustrated. For a regular
MR investigation, the choice of imaging parameters comprises a trade-off
between field of view, spatial resolution and signal-to-noise ratio (SNR). For
a DCE-MRI measurement, to be combined with pharmacokinetic modeling,
acceptable temporal resolution has to be taken into account as well. As in the
next chapters, a number of these trade-off’s are investigated and discussed, it
is important to understand what sacrifices are necessary to achieve acceptable
temporal resolution in a DCE-MRI study.

The chapter start with an overview of the basic MR principles, both quantum-
mechanical and classical (section 2.2). Afterwards the spatial encoding in MRI
is shortly discussed and the concepts of k-space and k-space sampling and SNR
are introduced to derive the trade-offs mentioned above (section 2.3). In section
2.4, the SPGRE pulse sequence is explained, while section 2.5 discusses the
properties of MR contrast agents and their effect on the MR signal intensity.
Section 2.6 reviews two techniques to measure native relaxation times. Finally
a short overview is given of the artefacts that occur in DCE-MRI in section 2.7
and some qualitative and heuristic measures to obtain functional information
from DCE-MRI signal curves are mentioned in section 2.8. It is stressed again
that this chapter is only a simplified and brief overview of MR-imaging. For
a more rigorous and profound description of MRI, the reader is referred to
standard works as [42] and [43], which served as basic literature for this chapter.
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Figure 2.1: Schematic overview of Zeeman energy levels and of the processes of
excitation and relaxation. Protons in the spin-up state are excitated
by the time varying B1-field, with the larmor frequence ω0 and jump
to the spin-down state. When the B1-field is switched off, relaxation
occurs: spin-down protons flip by sending out photons with the larmor
frequency.

2.2 Basic principles of MRI

2.2.1 Zeeman-effect

Magnetic resonance imaging (MRI) is an imaging technique that exploits the
intrinsic magnetic properties of the hydrogen nuclei, abundant in the water
of the human body, to obtain anatomical information for a wide range of ap-
plications. A proton is a so-called fermion, a particle with an intrinsic spin
moment I with magnitude 1

2~ 2. With this intrinsic nuclear spin, an intrinsic
magnetic moment µ is coupled by the gyromagnetic ratio γ, which amounts
42.58 MHz/T for 1H:

µ = γI (2.1)

When a external magnetic field B0 is applied, the proton acts as a magnetic
dipole, with potential energy given by:

E = −µ ·B0 (2.2)

According to the quantummechanical exclusion rules, 2 possible energy states
can occur for a fermion: parallel to the external field (spin-up) or anti-parallel
to B0 (spin-down). As a result two distinctive energy levels arise, with an
energy gap that can be derived from eq. 2.2:

∆E = ~γB0 (2.3)

with B0 the magnitude of the external field. This energy level division is called
the Zeeman-effect (fig. 2.1). In thermodynamic equilibrium, the protons in the
body water are more likely to adopt the spin-up state, as it is lower in energy

2~ is the reduced Planck constant
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than the spin-down state. The ratio of the population in the Zeeman energy
levels is then given by the Boltzmann statistic:

N ↑
N ↓

= e
∆E
kT (2.4)

in which k is the Boltzmann constant. MR-imaging relies on the perturbation
of this equilibrium by applying an oscillating external field B1, perpendicular
to B0. The frequency of this B1-field is called the larmor frequency ω0, and
the energy of its photons equals the energy gap between the Zeeman levels:

∆E = ~ω0 (2.5)
ω0 = γB0 (2.6)

For the duration ofB1, protons in the spin-up state gather the necessary energy
and jump to the spin-down state. In this way population inversion is obtained.
When the B1-field is switched off, the system returns to its ground state by
sending out photons itself. These electromagnetic signals are detected by the
scanner hardware and form the base of the MR images. These processes of
excitation and relaxation are shown in fig. 2.1.

2.2.2 Classical description

In practice, the spatial resolution of an MR image is in the order of 0.1-1 mm.
Therefore, the number of hydrogen nuclei in a voxel of 10−3−1 mm3 is of that
order, to allow the description of MR imaging in terms of the macroscopic mag-
netization vector M, the resultant of the individual dipoles. In thermodynamic
equilibrium, M is parallel to the external magnetic field, as the spin-up state is
more populated than the spin down state3 (eq. 2.4). The equation describing
the motion of the magnetization vector M in the presence of external magnetic
fields B0 and B1 is given by:

1
γ

dM

dt
= −B ×M (2.7)

= −(B1 +B0)×M (2.8)

in which ’×’ denotes the vector cross product. From this equation it can easily
be seen that M describes a superposition of two circular motions4. The first
part of this superposition is a precession around B0 with the larmor frequency.
To facilitate the interpretation, the second part of the motion is described in
a reference frame that rotates with the larmor frequency. In such a rotating
frame, the second motion, caused by the B1-field is a circular motion in the

3It can be shown that in thermodynamic equilibrium the magnitude of M equals Nγ
2~2B0
4kT

,
N being the proton density [43]

4The general equation of a particle describing a circular motion around a rotation axis Ω,
with a angular frequency | Ω | is given by dr

dt
= Ω× r
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Figure 2.2: Motion of the magnetization vector M when a external B1-field is ap-
plied. The reference frame rotates around B0 with the larmor frequency.
In such a rotating reference frame, M describes a circular motion with
angular frequency γB1 from its equilibrium position M0 to a position
after a time T, in which an angle α with B0 is achieved. α is the
so-called flip angle.

plane perpendicular to B1, with a frequency ω1 = γB1. Fig. 2.2 shows this
rotational motion in the rotating reference frame. The angle between B0 and
M after applying the B1-field for a time T is given by:

α = γB1T (2.9)

α is called the flip angle, a basic concept in MRI. When the B1-field is switched
off, the magnetization is rotated over a flip angle α with respect to B0. To
describe how the magnetization vector returns to its equilibrium state, the
Bloch5 equations are employed. These equations describe the relaxation of the
longitudinal magnetization Mz (2.11) and the transverse magnetization vector
Mxy (2.10).

dMxy

dt
= −γB0 ×Mxy −

Mxy

T2
(2.10)

5In 1952, Felix Bloch and Edward Purcell received the nobel prize for physics for their
discoveries regarding nuclear magnetic resonance
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dMz

dt
=

M0 −Mz

T1
(2.11)

T1 and T2 are the longitudinal and transverse relaxation times respectively and
will be discussed in the next section. Eq. 2.11 can be solved on sight. Regarding
Mxy, taking the vector cross product of both sides of eq. 2.10, shows that the
transverse magnetization vector also describes a circular motion around B0

with the larmor frequency. Taking the dot product of both sides of eq. 2.10
with Mxy yields:

dM2
xy

dt
= −2

M2
xy

T2
(2.12)

The analytical solutions of eq. 2.11 and eq. 2.12 form the basis of pulse
sequence signal intensity derivations (see section 2.4), and are given by:

Mxy(t) = M1xye
− t
T2 (2.13)

Mz(t) = M0 + (M1z −M0)e−
t
T1 (2.14)

M0 is the equilibrium magnetization, M1z and M1xy are the longitudinal and
tranverse magnetizations just after the excitation pulse respectively.

2.2.3 Relaxation times

Relaxation is the phenomenom that causes the magnetization vector to return
to its equilibrium state. The Bloch equations presume that relaxation is a first
order process, with time constants T1 and T2 for longitudinal and transverse
magnetization respectively. The two distinctive time constants indicate that
these relaxation phenomena are caused by different physical processes. In
short two main dipole-dipole interactions underly magnetization relaxation6.
Relaxation of Mz requires the flipping of dipoles and is therefore a process
that attends with energy exchange. The local motion of the tissue water
molecules causes a varying magnetic field with a wide range of frequencies.
Just as it is the case for the B1-field, when this frequency equals the larmor
frequency, a resonance process occurs that can flip a spin-down proton to the
spin-up state. The waste energy is absorbed by the tissue and results in a
restored longitudinal magnetization. This process is called the spin-lattice
interaction and affects mainly T1- relaxation times. Mxy-relaxation on the
other hand is caused by the dephasing of dipoles. This is shown in fig.
2.3. In the absence of a B1-field, the individual dipoles precess around
the static magnetic field. As their mutual phase is arbitrary, the net Mxy

is zero. The applied B1-field makes the individual dipoles rotate in phase
and a net transverse magnetization arises. When the B1-field is switched

6In theory 5 interactions of magnetic dipoles determine the relaxation phenomenons. See
[43]
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Figure 2.3: Graphical representation of ’dephasing’. Left: in the absence of a B1-
field, the individual dipoles precess around B0 and no net transverse
magnetization is apparent. Middle: a time varying B1-field brings the
precession of the dipoles in phase and induces a net Mxy. Right: after
switching off B1, local variations in larmor frequency cause the dipoles
to dephase and results in a loss of transverse magnetization.

off, Mxy would remain unchanged if the dipoles continu to rotate in phase.
However, variations in their angular frequency induces dephasing, with a
loss of transverse magnetization. These variations in the larmor frequency
are caused by so-called spin-spin interactions: the hydrogen atoms in tissue
water experience a small magnetic field variation caused by the magnetic
field of the other hydrogen atom. These spin-spin interactions mainly affect
T2. Relaxation times are therefore highly dependent on the mobility of the
water molecules in tissue and differ according to the tissue composition.
Table 2.1 contains the relaxation times found in several tissues in a number
of studies. Relaxation times also depend on B0-field strength and temperature.

These T1- and T2-relaxation times lay the foundation of the contrast observed
in MRI images. By chosing an intelligent sequence of B1-pulses, the MR
signal intensity can be made mainly T1- or T2-dependent. Such sequences
are called T1- and T2-weighted respectively. These pulse sequences are
described in section 2.4. In DCE-MRI, the presence of the contrast agents
induces a quantifiable shortening of both relaxation times which underlie the
quantitative concentration measurement with MRI (see section 2.5).

A third relaxation time has to be discussed. When one would measure the
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Table 2.1: Typical T1- and T2-relaxation times in several tissues or pathologies at
1.5T. Values from [18, 43–45]. T ∗2 -values in breast and prostate tumors
were not measured in these studies.

T1 [ms] T2 [ms]

blood plasma 1580 417
blood 1250 227
skeletal muscle 870 50
brain white matter 790 90
brain gray matter 920 100
breast tumor 675 -
prostate tumor 916 -

magnetization variation after a 90◦-pulse (i.e. a B1-pulse that causes a flip
angle of 90◦) in a given tissue, eq. 2.13 predicts an exponential decay with
time constant T2 (M1xy = M0 for a 90◦-pulse). However the measured time
constant is shorter than T2 and is denoted T ∗2 , the effective transverse relaxation
time. This faster relaxation is caused by inhomogeneities in the B0-field that
are not induced by the local field of neigbouring spins, but by an inhomogenous
magnetic susceptibility distribution. When a patient is brought into the magnet
bore of a MRI scanner, the B0-field will be redistributed according to the local
susceptibility. Microscopic variations in susceptibility, will cause microscopic
variations in the magnetic field, that contribute to the dephasing of dipoles and
the Mxy-relaxation. The effective relaxation time T ∗2 is given by:

1
T ∗2

=
1
T2

+
1
T ′2

(2.15)

in which T ′2 is the relaxation time related to magnetic field inhomogeneities.

2.3 Trade-offs in MRI and DCE-MRI

2.3.1 Definitions

A typical DCE-MRI investigation consists of the capturing of a 2D MR image,
every ∆t seconds. The MR image contains of Nx×Ny voxels (the matrix size)
with dimensions ∆x×∆y×∆z. The total field of view in the x- and y-direction
is FOVx and FOVy respectively. In fig. 2.4, a simplified MR image (matrix
size = 8× 8) is shown (in practice Nx and Ny are typically 128-256-512).
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Figure 2.4: Left: example of an Nx × Ny MR-imaging matrix (8×8), containing
voxels with dimensions ∆x and ∆y in x- and y-direction respectively.
The field of views in x- and y-direction are FOVx = Nx∆x and FOVy =
Ny∆y respectively. Right: k-space corresponding to the MR-image on
the left. The distances between subsequent k-space points are denoted
in the figure. For the reconstruction of the magnetizations in all voxels
of the imaging matrix on the left, the signal intensities in every point of
k-space have to be acquired. The dotted line is a phase-encoding line.

2.3.2 Spatial encoding and k-space formalism

Spatial encoding in MRI is obtained by using magnetic field gradients. 3 dif-
ferent gradients are used to obtain spatially encoded MR signal intensities:

• Slice selection: by applying a gradient along the B0-field the larmor-
frequency varies in the z-direction. When this is combined with a selective
RF pulse, i.e. a pulse with a restricted band width 7, only the slice with
larmor frequencies in that bandwidth is excitated. The width of this slice,
∆z, is called the slice thickness.

• Phase encoding: after the excitation and before the signal is received, a
gradient is applied in the y-direction. This causes the spins to precess
with a distinctive frequency according to their position in the y-direction.
When this gradient is switched off, the phase of the spins will contain the
necessary spatial information.

• Frequency encoding: during signal reception, a gradient is applied in the
x-direction. Therefore the frequency of the received signal will contain
spatial information about the x-position of the spins.

7in practice sinc pulses can be used to achieve selective RF excitation.
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The mathematical description of spatial encoding needs the introduction of k-
space, the fourier conjugate of the spatial domain. According to standard MR
theory the final signal measured in the MRI hardware is complex, i.e. it has a
real and an imaginary part, and is proportional to:

S(t) ∝
∫
MT (x, y)exp(−iφ(x, y, t))dxdydz (2.16)

in which the volume integral is taken over the complete excitation slice.
MT (x, y) is proportional to the transverse magnetization at the time of the
read-out. It also contains a factor determined by the MRI receiver circuit gain.
This MT is the final goal of the MR-image, as it contains the information re-
garding the proton density and T1 and T2-relaxation times. φ(x, y, t) is the
phase8 that a spin at position [x,y] has accumulated at a time t, due to the
application of the gradients. This phase is given by:

φ(x, y, t) = γ

∫ t

0

(xGx(t′) + yGy(t′)) dt′ (2.17)

= 2πr · k(t) (2.18)

k(t) =
γ

2π

∫ t

0

G(t′)dt′ (2.19)

r is the spatial vector [x,y], while k(t) is a vector in k-space. Eq. 2.16 can now
be rewritten as:

S(t) = S(kx(t), ky(t)) =
∫
MT (x, y)exp(−2πir · k(t))dxdydz (2.20)

In other words, the measured signal in the MR hardware is the 2-D fourier
transform of the magnetization MT (x, y) with respect to the spatial coordi-
nates x and y. Therefore, to obtain the final MT (x, y), the inverse fourier
transform of the signal has to be performed, based on the measurement of
S(kx, ky) in k-space. An MR acquisition therefore consists of a variation of
Gx and Gy gradients to obtain a sufficient number of points in k-space and a
fast fourier transform (FFT) of this set of S(kx, ky) to calculate the final MT .
The path described by the vector k over time is called the k-space trajectory.
This path determines the acquisition strategy, the types of artefacts that can
occur and the choice of reconstruction algorithm [42]. Fig. 2.4 shows the k-
space corresponding to the MR-image defined above. First of all, the number
of points that has to be acquired in the k-space is identical to the number of
voxels. The distance between two subsequent points in k-space is 1/FOVx in
kx-direction and 1/FOVy in ky-direction. The extent of the k-space is the in-
verse of the spatial resolution: 1/∆x in kx-direction and 1/∆y in ky-direction.

8This phase is defined relative to the phase the spin would have accumulated if precessing
at the larmor frequency γB0
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There are numerous strategies for the sampling of k-space. This discussion will
be restricted to the most straightforward one, cartesian k-space sampling. The
dotted line in fig. 2.4 is a so-called phase-encoding line, i.e. a line in k-space
that corresponds to a single value of the phase-encoding gradient Gy. In a
cartesian k-space sampling strategy, these phase encoding lines are acquired
one by one: After the first excitation pulse, a value for the phase encoding
gradient is applied, corresponding to the top phase encoding line in fig. 2.4.
A frequency encoding gradient Gx is applied for read-out in the kx-direction.
After the second excitation pulse, a different Gy-value is applied, corresponding
to the second phase encoding line, and signal is again read-out in kx-direction.
This is applied untill all Ny phase encoding lines are acquired. The final tem-
poral resolution of a DCE-MRI investigation using cartesian k-space sampling
is therefore:

∆t = TRNyNEX (2.21)

TR is the repetition time, the time between two excitation pulses. NEX is
the number of times that the full k-space is sampled, the so-called number of
averages. For every point in k-space, signal is collected during a time Ts, the
inverse of the receiver bandwidth BW . The total time needed for the collection
of 1 phase encoding line is therefore given by Nx/BW .

2.3.3 Signal-to-noise ratio

The signal-to-noise ratio (SNR) in MR imaging is dependent on the pulse se-
quence used. However, a general scaling relationship can be obtained:

SNR = B0∆x∆y∆z
√
Tacq,total (2.22)

The SNR is proportional to the static magnetic field strenght. Tacq,total is the
total amount of time during which k-space data is collected. As collection time
for the sampling of 1 k-space line is Nx/BW , the SNR can be rewritten as:

SNR = B0

∆x∆y∆z
√
NxNyNEX√
BW

(2.23)

2.3.4 Trade-offs between temporal and spatial resolution,
field of view and SNR

Given the relations above (eq. 2.21 & eq. 2.23) and the number of points
that have to be acquired in k-space (Nx = FOVx/∆x, Ny = FOVy/∆y), a
number of trade-offs in DCE-MRI have to be discussed. In an ordinary MR
investigation (where temporal resolution is of little interest), FOV is mostly
fixed and dictated by the tissue of interest. Therefore a trade-off has to be
made between spatial resolution and SNR. Images with increased spatial
resolution will have lower SNR. In other words, the anatomical information
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that is gained by increasing the spatial resolution may be distorted by
increasing noise levels. However, this can be compensated by taking a number
of averages (NEX > 1), thereby increasing SNR without changing the spatial
resolution, at the cost of prolonged acquisition time for the final image. In
DCE-MRI, temporal resolution is of crucial importance if pharmacokinetic
modeling is to be applied on the measured concentration curves. Again FOV
tends to be imposed by the physiology. Increasing the spatial resolution
(Nx, Ny ↑) reduces both SNR and temporal resolution. This poses for instance
a significant problem in DCE-MRI of breast tumours. Breast DCE-MRI
requires a large FOV (∼ 20cm × 20 cm) with high spatial resolution (∼
1mm × 1mm × 3mm) for the discrimination of tumor tissue from normal
tissue [7]. Acceptable SNR in this kind of images can only be achieved with
limited temporal resolution (∼ 90-120s). For other pathologies, the FOV and
necessary spatial resolution do not prohibit the MR-images to be taken with
sufficient temporal resolution. The trade-off between temporal resolution and
spatial resolution depends upon the pathology, and the identification of the
most important factor of both, should be investigated by case studies.

Several strategies exist to increase the temporal resolution. Firstly, the use of
3T scanners enables higher SNR at fixed temporal resolution or identical SNR
at higher temporal resolution. However, at higher field strenghts, a number of
errors has to be taken into account (see section 2.7) that reduces the accuracy of
DCE-MRI concentration measurement. For breast imaging at 3T, it has been
shown that these errors (see section 2.7) impose severe accuracy considerations
to pharmacokinetic modeling [36]. This susceptibility to MR-related errors
applies to other k-space sampling strategies as well. Echo-planar imaging for
instance, which only requires 1 excitation pulse for complete k-space coverage,
is more prone to a variety of artifacts [42]. A third strategy is to decrease
the repetition time as small as possible. The minimal value of TR is however
determined by time needed to play all necessary pulses and gradients for the
read-out of 1 phase encoding line. Reduction of TR may therefore be technically
unfeasible. Moreover, it will be shown in chapter 8, that pharmacokinetic
modeling does not benefit from thoughtless reduction of the repetition time.
Finally, a freedom exists in the choice of the NEX-parameter. When the k-space
is sampled twice and the average image is constructed, the SNR increases with
a factor

√
2 at the cost of a halved temporal resolution. A number of acquisition

strategies have been developped, so called partial fourier methods, for which
NEX is smaller than 1. In partial fourier acquisition, data are not collected
throughout the entire k-space, but e.g. only the upper part (i.e. above kx-
axis) of the k-space is collected 9. This acquisition strategy enhances temporal
resolution at the cost of reduced SNR and can be described by a NEX-value
smaller than 1, depending on the fraction of the full k-space that is acquired.

9Reconstruction of MT remains possible, as the the fourier transform of a real object is
Hermitian, i.e. its real part is symmetric and its imaginary part is anti-symmetry around
the center of k-space
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This is a very interesting trade-off for pharmacokinetic modeling: is it better
to have more noisy high temporal resolution data, or do more precise data with
lower temporal resolution yield better model fits?

2.4 Pulse sequences

In this section it is explained how an intelligent sequence of B1-pulses can result
in a final fourier reconstructed signal (MT from the previous paragraph) that
is weighted according to the relaxation times of the tissue of interest.

2.4.1 Spin-echo sequence and the principle of echo cre-
ation

In this paragraph a qualitative description is given of the spin echo sequence to
enlight the principle of echo-creation. The spin-echo sequence was developped
to annihilate the effect of the spatial inhomogeneities that cause the signal to
decrease with a T ∗2 -time constant instead of the T2-constant. The sequence,
shown in fig. 2.5 and explained in fig. 2.6, starts with a 90◦-pulse which brings
the magnetization in the xy-plane (fig. 2.6a). The signal decreases with a time
constant T ∗2 as both spin-spin interactions and spatial inhomogeneities in B0

cause the dephasing of the individual spins (fig. 2.6b). After a time TE/2, a
180◦-pulse is applied, which flips all of the dipoles. The spatial inhomogeneities,
however, still cause dephasing in the same way as before the inversion pulse
(fig. 2.6c), and now rephase the individual spins (fig. 2.6d). As a result a time
TE after the 90◦-pulse, a maximum in the signal is observed, which is denoted
an echo (fig. 2.5). TE is called the echo-time. The amplitude of this echo signal
is reduced only by spin-spin effects, and therefore only dependent on the true
T2-value (fig. 2.5).

2.4.2 Spoiled gradient echo sequence

The spoiled gradient echo pulse sequence (SPGRE) is used in the majority
of DCE-MRI studies, as it combines relatively high spatial and temporal
resolution with acceptable SNR. Fig. 2.7 shows a schematical overview of
the rf-pulses and the gradients applied during an SPGRE sequence. Every
TR seconds, an α-pulse is applied which flips the longitudinal magnetization.
The high acquisition speed is partially due to the SPGRE’s ability to operate
at low flip angles (eq. 2.9). Secondly, SPGRE-pulses use a variation in
the sign of the spatial encoding gradient (Gx) to create echo as described
above, which is much faster than the 180◦-pulse in the spin-echo sequence.
Applying a gradient causes neighbouring dipoles to dephase due to the
spatial variation of their larmor frequencies. When the sign of this gradient
is flipped, the opposite spatial variation in larmor frequency compensates
the dephasing and a similar echo pulse is created. However, the amplitude
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Figure 2.5: RF pulses and signal decay in the spin-echo sequence. A time TE after
the 90◦-pulse an echo is observed in the signal. The amplitude of this
echo is only influenced by T2-effects.
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Figure 2.6: Graphical explanation of the principle of echo creation. a: after a RF
pulse a net transverse magnetization exists. b: the transverse magne-
tization decays due to the dephasing of the dipoles, by both spin-spin
interactions and magnetic field inhomogeneities. c: after a 180◦-pulse,
all dipoles are flipped. The magnetic field inhomogeneities now cause
rephasing of the spins. d: an echo-pulse is created.

of this pulse is subject to T ∗2 effects instead of T2-effects, as no correction
for the magnetic field inhomogeneities is applied. The term ’spoiled’ de-
notes that before every FA-pulse, the remaining transverse magnetization
is destroyed. This can be accomplished in several ways (see section 2.7),
but in this section the use of a spoiler gradient in slice selective direction
is assumed. This gradient enforces the local magnetic field inhomogeneities
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Figure 2.7: RF-pulses and gradients in the spoiled gradient echo pulse sequence.
Echo signal is created by the flipping the sign of the read-out gradi-
ent. A spoiler gradient is used to destruct the remaining transverse
magnetization just before each α-pulse.
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and thereby decreases T ∗2 (eq. 2.15), to ensure that at the end of every repe-
tition period a complete relaxation of the transverse magnetization is obtained.

To determine an analytical expression for the signal intensity measured during
the echo pulse, the notations Mpre

n and Mpost
n are introduced, the longitudi-

nal magnetizations just before and just after the nth FA-pulse respectively.
According to eq. 2.14:

Mpost
n = Mpre

n cos(α) (2.24)
Mpre
n+1 = Mpost

n + (M0 −Mpost
n )(1− e−TR/T1) (2.25)

After a number of excitations, a periodic answer is established, i.e. Mpre
n =

Mpre
n+1. Combining this equation with eq. 2.24 and eq. 2.25 it can be easily be

shown that:
Mpre
n (1− cos(α)e−TR/T1) = M0(1− e−TR/T1) (2.26)

The transverse magnetization before every α-pulse is assumed to be zero.
Therefore its magnitude just after the α-pulse is given by Mpre

n sin(α). Taking
into account the T ∗2 -relaxation of the transverse relaxation at the time of read-
out (i.e. during the echo-signal), the final signal intensity can be obtained by
using eq. 2.27 :

S(T1, T
∗
2 ) = kM0sin(α)

1− e−TR/T1

1− cos(α)e−TR/T1
e−TE/T

∗
2 (2.27)

kM0 is a proportionality factor depending on equilibrium magnetization and
receiver gain (in the rest of this work, the influence of the receiver gain is
comprised within M0 and the proportionality factor kM0 is denoted as M0).

2.4.3 Inversion-recovery spoiled gradient echo sequence

The inversion-recovery spoiled gradient echo sequence (IR-SPGRE) is part of
an in-house (Ghent University hospital) protocol for DCE-MRI on the 1.5 T
clinical scanner (Siemens Symphony). It is therefore used throughout this
work. The pulse sequence is almost identical to the SPGRE-sequence, with
the exception of an 180◦-pulse, which is played a time TI (the inversion time)
before the α-pulse. The pulse sequence signal intensity is given by [46]:

S(T1, T
∗
2 ) = kM0sin(α)

1− 2e−TI/T1 + e−TR/T1

1 + cos(α)e−TR/T1
e−TE/T

∗
2 (2.28)

2.5 Contrast agents for T1-weighted DCE-MRI

Contrast agents for T1-weighted DCE-MRI are non-toxic and biocompatible
substances that cause a reduction in local T1- and T2-relaxation times. These
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Figure 2.8: Left: structure formula of Gd-DTPA. Right: normalized SPGRE signal
intensity (S/M0) versus Gd-DTPA concentration (TR/TE = 35/5ms,
α = 70◦, T10/T20 = 916/200ms)

CA’s are chelates of paramagnetic ions such as Gd3+ or Mn2+, whose unbound
electrons induce a magnetic moment up to 1000 times larger than the intrinsic
magnetic moment of the proton. The oldest approved CA for in vivo application
is Gd-DTPA (gadiolinium diethylenetriamine penta-acetic acid), trade name
Magnevist (Schering, Berlin, Germany), shown in fig 2.8. The Gd-ion is tightly
bound to the DTPA-arms, protecting the body against the toxicity of free Gd.
A number of CA’s frequently used in clinical DCE-MRI and pharmacokinetic
modeling studies, are mentioned in table 2.2. For physiological concentrations
of these CA’s, it is assumed that the relaxation rates change linearly with the
CA concentration [CA] [47]:

1
T1

=
1
T10

+ r1[CA] (2.29)

1
T2

=
1
T20

+ r2[CA] (2.30)

T10 and T20 are the relaxation times of the tissue in the absence of a CA,
the so-called native relaxation times. Their measurement is discussed in the
next section. The proportionality coefficients r1 and r2 are the longitudinal
and transverse relaxivity coefficients respectively. Their values depend on the
paramagnetic ion, the protective coating (the type of contrast agent), the
temperature and the magnetic field strength. These relationships have been
confirmed in vitro [30, 44] and for T1 in vivo [48]. In table 2.2, the relaxivity
coefficients are mentioned for a number of clinically approved CA’s at 1.5T
and 37◦C in water and in plasma respectively. It is clear that r1 and r2-values
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Table 2.2: Short name, trade name and relaxivity coefficients for a number of con-
trast agents approved for clinical use at 1.5T and 37◦ in blood and
in plasma. Values for r1 and r2 are in [mM−1s−1] and were adopted
from [44]

in water in plasma
Short name Trade name r1 r2 r1 r2

Gd-DTPA Magnevist 3.3 3.9 4.1 4.9
Gd-DOTA Dotarem 2.9 3.3 3.6 4.3

Gd-DO3A-butrol Gadovist 3.3 3.9 5.2 6.1
Gd-DTPA-BMA Omniscan 3.3 3.6 4.3 5.2

depend upon the physicochemical nature of the tissue or solvent. This poses
a severe problem for in vivo quantification. If the physiological conditions in
vivo do not resemble the conditions for which the relaxivity coefficients were
measured10, protein binding may affect the values significantly and errors in
concentration quantification can occur.

The physical mechanism causing T1 and T2 shortening are short-range
phenomena (order of nm scale). In contradiction to nuclear medicine or CT
tracer methodologies, DCE-MRI does not measure the signal change arising
from the CA itself, but rather the effect of the CA presence on the local
proton relaxation times. As a results, the relationship between signal intensity
and CA concentration is non-linear. This is shown in fig. 2.8B, plotting
the variation of the SPGRE pulse sequence intensity with the Gd-DTPA
concentration. Typical tissue concentrations of the CA’s from table 2.2 are in
the order of 1-2 mM, while typical blood concentration reach up to 10 mM.
The extent of this non-linearity depends on the concentration range to be
measured and on the pulse sequence settings (see chapter 4). The inclusion
of this non-linearity in the pre- and post-processing of DCE-MRI experiments
for pharmacokinetic modeling is one of the innovations introduced throughout
this work.

2.6 Measurement of native relaxation times

A DCE-MRI investigation monitors the T1-relaxation time, to determine
the concentration of the CA in the tissue of interest. However, absolute

10This is typically done in an in vitro dilution series experiment. For every vial in the
dilution series, the T1 and T2 are measured and the slope of the relaxation times versus
concentration curve is estimated for the corresponding relaxivity coefficient.
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quantification of the CA concentration from these T1-relaxation time requires
the knowledge of the native longitudinal relaxation time (eq. 2.29). The 2- or
3-dimensional pixelwise mapping of these T10-values is called T1-relaxometry.
Although from eq. 2.30 it may seem necessary to know T20 as well, in chapter
4 it will be shown that its knowledge is abundant when signal intensity is
converted to concentration values based on relative signal enhancement. A
wide range of methods for relaxometry has been described [43, 49]. A very
precise and accurate method is based on acquiring a number of inversion
recovery based pulse sequence images with different inversion times. However,
these methods are very time consuming, in the order of 5-30 minutes, which
is unfeasible in clinical practice. The most frequently used method in clinical
studies is the multiple flip angle approach. For this method, multiple SPGRE
images are acquired with different flip angles. In the two-point method, the T1-
value can be determined analytically while the multiple flip angle case requires
non linear regression to determine T1. These methods have the advantage
that the imaging matrix for which the T10-values are determined pixelwize,
is automatically identical to the imaging matrix of the dynamic series.
Secondly the necessary acquisition time is acceptable (in the order of minutes).
Although the absolute precision of the T10-values is lower, they have superior
precision efficiency (precision/time). The method is susceptible to errors,
s.a. flip angle inhomogeneity (see below), but in conjunction with flip angle
mapping, their accuracy is comparable to other relaxometry techniques [49,50].

In the two-point method, signal intensities from a SPGRE pulse sequence with
repetition time TR and echo time TE are acquired at 2 different flip angles α1

and α2. Their ratio R is used for calculation of the T10-value [51]:

R =
S(α1)
S(α2)

(2.31)

T1 = TR

[
log

(
Rsin(α1)cos(α2)− cos(α1)sin(α2)

Rsin(α1)− sin(α2)

)]
(2.32)

Eq. 2.32 can easily be checked based on eq. 2.27. The precision of the resulting
T1 is highly dependent on the chosen flip angles. Schabel & Morell have derived
analytical expression for the flip angles delivering optimal T10-precision [49].

The multiple flip angle method [50] requires 3 or more SPGRE signal intensities
S(αi) at different flip angle αi. It relies on the following transformation of the
SPGRE signal intensity equation:

Si
sin(αi)

= E1
Si

tan(αi)
+M0(1− E1) (2.33)

E1 is given by e−TR/T1 . By plotting Si/sin(αi) as a function of Si/tan(αi) and
estimating the slope m = E1 of the resulting straight line, T1 can be obtained
as:
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T1 = − TR
ln(m)

(2.34)

2.7 Artefacts

In this section a number of MR artefacts is described and their consequences
for SPGRE pulse sequences are illustrated.

2.7.1 B1-field inhomogeneity

The B1-field is created by the RF transmit coils of the MRI hardware. As a
result of technical imperfection of these transmitter coils [52,53] and due to the
dielectric properties of the human body, inhomogeneities occur in the B1-field.
The resulting spatially dependent B1-field, B1(r), induces spatially dependent
flip angle values (eq. 2.9):

α(r) = γB1(r)T (2.35)

When the nominal flip angle, i.e. the flip angle requested by the MRI control
panel, is used to calculate tissue concentration or native relaxation times, the
resulting values are subject to spatially dependent inaccuracies. The extent of
the B1-inhomogeneities is assumed to be small at 1.5T, but increases signifi-
cantly at higher field strengths (≥ 3T) [36,54] and in particular for a large field
of view. Breast DCE-MRI is highly sensitive, as it frequently operates at 3T
for reasons described above and requires a large FOV. In a DCE-MRI breast
imaging study with a 2D- gradient echo pulse sequence, Kuhl et al. found large
variation in B1-field across the FOV. While the nominal flip angle was set to
20°, the true flip angle varied between spatially between 12.5 and 22° [55]. Re-
cently Azlan et al. found that median B1-field in a 3D GRE sequence, in the
right breast of 25 volunteers was reduced to 40% of its expected value, lead-
ing to error of 55% in the true flip angle [54]. Other studies found variation
in the order of 20-63% in cardial and head images [53]. B1-field inhomogene-
ity is of particular importance in T10-measurement as these values are highly
sensitive to errors in the flip angles of the two- or multiple-point techniques.
Several authors have proposed methods for B1-calibration and for flip angle
inhomogeneity correction [50, 51, 53, 56–58]. Parker et al. achieved to reduce
mean errors in SPGRE T1-measurement to 1.4% by deriving the spatial flip
angle distribution from a phantom experiment [56]. To account for this im-
portant error source, several DCE-MRI studies employ B1-calibration prior to
DCE-MRI pre- and post contrast scans.

2.7.2 Slice profile inaccuracies

The slice profile denotes the distribution of the flip angle across the direction of
the B0-field (z-direction). While B1-inhomogeneities cause flip angle variation



Chapter 2 37

in a plane perpendicular to B0, the flip angle variation across the slice selective
direction is determined by the shape of the excitation pulse11. The ideal slice
profile consists of a uniform flip angle distribution within the desired slice,
while outside the slice the transverse magnetization is zero (α=0). This profile
however, requires an infinitely long excitation pulse and is unfeasible in practice.
For small flip angle (≤ 30◦), it can be approximated by using sinc-pulses 12.
For larger flip angle, the slice profile can significantly deviate from the ideal
case and the flip angle may vary considerably through the slice [42,43,56]. As a
result, the accuracy of the SPGRE signal intensity equation is reduced. Parker
et al. used a correction method for T1-measurements, based on numerical
calculation of the SPGRE pulse sequence intensity [56].

2.7.3 Incomplete spoiling

In the derivation of the SPGRE-pulse sequence intensity it was assumed that
before each α-pulse the remaining transverse magnetization is zero. This Mxy-
destruction after each echo-acquisition is named spoiling. The simplest way to
accomplish spoiling is to select TR, at least four or five times larger than T ∗2 ,
so that the remaining transverse magnetization is negligible at the start of a
new α-pulse (eq. 2.13). From a temporal resolutions aspect, this is obviously
unfeasible. Other spoiling techniques include the use of a spoiler gradient before
the α-pulse (fig. 2.7) or RF spoiling [42,59]. Nevertheless, no spoiling technique
is perfect and the remaining transverse magnetization effectively reduces the
accuracy of the SPGRE signal equation. Errors have been demonstrated in
SPGRE concentration determination and dual flip angle T10-measurement [59,
60]. Several studies have investigated optimized spoiling techniques [59, 61].
Recently Yarnykh et al. proposed an optimized RF-spoiling strategy at the cost
of a high repetition time (TR > 20ms) and reduced temporal resolution [61].

2.7.4 Inflow effects

Inflow effects can be observed when measuring the signal intensity in flowing
blood. Consider a SPGRE-pulse sequence on a slice, intersected by an artery of
a vein containing flowing blood. After the first α-pulse, the spins in the blood
of the selected slice are excited. By the time that the next α-pulse is played
however, the blood flow has caused a fraction of these excited spins to leave the
slice, while a number of unexcited spins has entered the slice. The longitudinal
magnetization of these unexcited spins has not been reduced by a previous
α-pulse and is therefore larger than the longitudinal magnetization from the
remaining excited spins. As a result, the total longitudinal magnetization just
before the second α-pulse is higher than predicted by eq. 2.25. The transverse

11When an excitation pulse is played together with a concurrent slice-selective gradient, the
slice profile for small flip angle is given by the inverse fourier transform of the B1-amplitude
time profile

12The inverse fourier transform of a sinc pulse is a bloc function
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malised signal intensities (NU) where lesions beyond 
the threshold of 300 were classi� ed as malignant, 
250–300 as borderline and below 250 NU as non-
malignant. Kaiser  et al. (1989) normalised the signal 
enhancement using the intensity of the lesion before 
contrast injection and de� ned malignant lesions as 
those showing a signal enhancement of at least 100% 
during the � rst minute. Other workers ( Boetes  et 
al. 1994; Gilles  et al. 1994) have identi� ed the pres-
ence of very early enhancement in the tumour after 
the arrival of the arterial bolus as an indicator of 
malignancy.

These studies illustrate the potential problems 
in the use of signal enhancement curves to study 
malignant vasculature. Firstly, signal intensity 
changes are non-speci� c and will vary according to 
a wide range of scanner parameters. Because of the 
non-linear relationship between contrast concen-
tration and signal intensity changes and the wide 
variation in baseline T1 values and signal inten-
sity seen in the tissues being studied, attempts to 
calibrate or produce standard images which could 
be used in multiple sites have not been successful. 
Subjective enhancement curve analysis must there-
fore include some form of curve normalisation to 
account for these variations which are principally 
seen as di�erences in the amplitude of the enhance-
ment curve. Secondly, the enhancement curves will 
contain important information not only in terms of 
amplitude but also in terms of time of arrival and 
curve slope. The choice of normalisation technique 
and of the most representative curve shaped param-
eter is dif� cult and has led to the development of 
many semi-quantitative or descriptive systems. 
Di�erent methods have been applied in di�erent 
applications and in di�erent tissues and many of 
these will be described in more detail in the clinical 
applications chapters (see speci� cally Chaps. 9–14). 
Despite these shortcomings subjective or semi-
quantitative curve shape analysis techniques can be 

extremely valuable, particularly in clinical applica-
tions for the grading or classi� cation of tumours. 
This re� ects the fact that di�erences in tumour vas-
culature between benign and malignant tumours 
are large and maybe demonstrated by relatively 
crude analysis techniques. 

Despite their clear clinical utility the shortcom-
ings of these subjective and semi-quantitative tech-
niques have led many workers to develop more 
robust quantitative approaches to analysis. There are 
several reasons why more quantitative approaches 
may be bene� cial. Firstly, the ability to produce 
measurements which re� ected the physiological 
anatomical structure of the tumour microvascula-
ture and which are truly independent of scanner 
acquisition and tumour type is highly attractive 
when compared to the use of a range of tissue or 
scanner speci� c semi-quantitative methods. Sec-
ondly, the development of precise and reproducible 
quantitative measures is highly desirable for use in 
longitudinal or multi-centre studies. This is of par-
ticular importance in clinical trials of new thera-
peutic agents where the ability to test the hypothesis 
that an agent a�ects tumour microvasculature will 
depend entirely on the accuracy and reproducibility 
of the measure used. Thirdly, it must be appreciated 
that signal enhancement curves are a crude indica-
tor of the contrast distribution mechanisms that are 
occurring within the voxel. Even a small imaging 
voxel is large by biological standards and may con-
tain varied proportions of blood vessels, cells and 
extracellular extravascular space. A signal enhance-
ment curve may therefore represent contrast which 
is principally in blood vessels, contrast which has 
principally leaked into the extracellular extravas-
cular space or any combination of these. Contrast 
enhancement curves cannot therefore di�erentiate 
between voxels which contain few vessels but have 
rapid leakage of contrast medium into the EES and 
voxels in which there is little leakage but a large vas-

Fig. 1.8. The diagrams show the classi� cation system for visual evaluation of the enhancement curves. I , no enhancement; II , 
slow sustained enhancement; III , rapid initial and sustained late enhancement; IV , rapid initial and stable late enhancement; V , 
rapid initial and decreasing late enhancement. [Adapted from Daniel et al. (1998)]

Figure 2.9: Classification system for visual evaluation of enhancement curves,
adopted from [63]. I: No enhancement. II: slow sustained enhance-
ment. III: rapid initial enhancement and sustained late enhancement.
IV: rapid initial and stable late enhancement. V: rapid initial and de-
creasing late enhancement. The higher numbered curves are assumed
to represent more aggresive tumor types.

magnetization after the second α-pulse is higher as well, and an increase in
the signal can be observed. This is the so-called flow related enhancement.
While this effect is exploited in MR-angiography13, it is highly undesirable
in DCE-MRI, causing an overestimation of the CA concentration in flowing
blood (the arterial input function). The extent of this effect is dependent on
the velocity of the blood perpendicular to the imaging slice, and the repetition
time and flip angle of the SPGRE-sequence. Peeters et al. a correction method
based on an analytical model for the SPGRE signal intensity equation under
inflow [62].

2.8 Qualitative analysis

In the next chapter pharmacokinetic modeling of DCE-MRI measured con-
centration curves is described. However, a number of qualitative or semi-
quantitative methods exists to obtain functional information about the tissue
of interest, by analysing the signal intensity versus times curves. In this section
a short overview is given of these very popular methods and their advantages
and shortcomings are discussed.

2.8.1 Visual inspection of enhancement curves

Visual inspection of the signal intensity or enhancement curve by a radiologist
is the most subjective method for analysing a DCE-MRI examination. Several
classification systems have been proposed based on the sharpness of the slope
and the evidence of contrast washout after the initial upslope. Daniel et al.
distinguished 5 different types of enhancement curves (fig. 2.9) and achieved

13so-called time-of-flight angiography
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very good diagnostic performance for discriminating malignant from benign
breast lesions [63]. Kuhl et al. found excellent sensitivity and specificity values
(91% and 83%) with a 4 type-classification system [55].

2.8.2 semi-quantitative analysis

A wide range of semi-quantitative parameters has been used to describe
the DCE-MRI signal intensity curves. A number of them is mentioned in
table 2.3 and explained in fig. 2.10. These heuristic measures have several
important advantages, that may explain why up to today they are widely
used in DCE-MRI studies. First of all, no signal intensity conversion to CA
concentation is required, avoiding the need to know CA or tissue characteristics
(r1, r2, T10). In addition, the heuristic parameters are easy to calculate, and
embedded in most post-processing software packages. No model fitting has
to be performed and AIF measurement is abundant. Finally, they seem to
have wide clinical acceptance and good clinical significance, as was shown by
numerous studies [1, 47,64–66].

These semi-quantitative measures, however, also have a number of important
disadvantages. First of all, these heuristic parameters are highly dependent
on scanner and pulse sequence parameters, as well as on the native T1-values
of the tissue of interest. Therefore it may be impossible to reproduce the
results of a study in another clinical setting. For longitudinal and multi-centre
studies, more reproducible and scanner-independent measures are necessary.
Especially in clinical trials of new therapeutic agents, it should be ensured that
the parameter used for hypothesis testing truly reflects properties of tumor
microvasculature and is as independent as possible of scanner and acquisition
strategy. This is related to the second disadvantage of semi-quantitative
analysis, the inability to distinguish between different physiological changes. A
difference in enhancement may be due to a change in permeability, blood vol-
ume, interstitial volume or blood flow, but these effects cannot be separated or
from an individual enhancement parameter. Finally, the heuristic parameters
are determined by the arterial input function as well. A difference in contrast
delivery to the tumor, caused by varied injection protocol, anatomical or
physiological abnormalities such as poor cardiovascular function, will induce
changes in the enhancement curves, not attributed to true physiological
changes.

2.9 Conclusion

DCE-MRI is a technique to measure the CA concentration in a tissue of
interest over time, by monitoring its effects on the T1-relaxation time of the
tissue. SPGRE-pulse sequences are commonly used in DCE-MRI studies
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Figure 2.10: Illustration of a number of semi-quantitative parameters used to obtain
functional/diagnostical information from DCE-MRI signal intensity
curves. Symbols are explained in table 2.3

and comprise a non-linear relationship between CA concentration and MR
signal intensity. The temporal resolution of the DCE-MRI measurement is an
important protocol parameter when the concentration curve is to be fit to a
pharmacokinetic model. Increasing temporal resolution is feasible, at the cost
of a reduced spatial resolution, less spatial coverage, a reduced SNR, increased
error-sensitivity (fast k-space sampling strategies), or by technological im-
provements (decreased TR). The effect of these trade-offs on the precision and
accuracy of pharmacokinetic estimates have to be investigated. In particular
for breast DCE-MRI, these trade-offs oblige the use of high-field strenght for
acceptable SNR at acceptable temporal resolution. In addition, a number of
MR-related errors occur, whose extent is dependent on the protocol design:
B1-field inhomogeneities for instance, impose a severe drawback to breast
DCE-MRI at high field strength. Incomplete spoiling may occur at small
repetition times, while at high flip angle in 2D-sequences slice profile consid-
erations have to be taken into account. Inflow effects pose a technological
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Table 2.3: Semi-quantitative parameters for DCE-MRI curve analysis. Several
quantities are described in figure 2.10

Parameter Description/comment

tpeak time between CA administration and maximal
signal intensity

t0 onset time or bolus arrival time
time between CA administration and bolus arrival

t90 time to reach 90% of maximal signal intensity
Maximal absolute enhancement Smax − S0

Maximal relative enhancement (Smax − S0)/S0

Enhancement change defined over a fixed time period
both relative or absolute

Gradient of the upslope figure 2.10 shows the mean gradient of the upslope
initial gradient is also used. Both relative or absolute.

Washout gradient both relative or absolute
MITR maximum intensity time ratio

=(Smax − S0)/tpeak
nMITR normalized MITR

=(Smax − S0)/(S0tpeak)
AUCt area under the (relative of absolute) enhancement

of signal intensity curve. Defined for a time point t

difficulty for the individual AIF-determination strategy. DCE-MRI protocol
design for pharmacokinetic modeling is therefore a complicated task.
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Chapter 3

Current status of
pharmacokinetic modeling
of DCE-MRI data

3.1 Introduction

In this chapter an overview is given of the pharmacokinetic models that are
used throughout the rest of this work. A discrepancy is made between 2- 3-
and 4-parameter models. Instead of deriving the model equations separately
for every model, we start from a number of general assumptions, that all
models have in common. Based on these generalities the 4-parameter tissue
homogeneity (TH) model is proposed. This TH-model comprises the most
correct description of the processes, describing CA exchange. It is however
not suitable for pharmacokinetic modeling as no time-domain solution is
available. By making a number of additional assumptions we subsequently
derive the model equations for the 4-parameter adiabatic approximation
of the tissue homogeneity (AATH) model, the 3-parameter extended Tofts
& Kermode (ETK) model and the 2-parameter Tofts & Kermode (TK)
model, which have all been investigated in a wide range of clinical studies.
Afterwards, an overview is given of the clinical applications of pharmacokinetic
modeling, both for tumors as for non-tumor pathologies. As explained in the
previous chapter, the arterial input function (AIF) is indispensable for the
fitting of pharmacokinetic models to DCE-MRI data. The strategies for AIF
determination are summarized and their main advantages and drawbacks are
discussed. Finally, the limitations of pharmacokinetic modeling are illustrated
by mentioning the results of a number of studies in the field. The three main
limitations, as reviewed in chapter 1, return: the absence of standardized
measurement protocols, the absence of post-processing techniques and the

43
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absence of guidelines for model selection. The importance of model selection
is illustrated by means of a straightforward example.

3.2 Pharmacokinetic models

3.2.1 Historical overview

Pharmacokinetic modeling of DCE-MRI data was initiated around 1990’s,
mainly by the work of Tofts & Kermode [67], Brix [68] and Larsson [69].
Initially, the purpose of their compartmental models was the investigation of
the blood-brain barrier in the brain of patients with multiple sclerosis or brain
tumors. Later on, the field expanded and applications of pharmacokinetic
modeling in several tumor types were demonstrated. Pilot studies were succe-
sively performed in breast tumors [70, 71], cervical and prostate cancers [38],
up untill very recently in hepatic metastases [72]. The pharmacokinetic models
themselves, were adopted from other area’s of physiological modeling and
therefore developped much earlier. In 1951, Kety was the first researcher to
employ 2 well-mixed compartments for the description of inert gas exchange
between plasma and tissue in the lungs [73]. Its model was used in later
studies for the measurement of cerebral blood flow as well. Kety poses
however, that the venous blood in a tissue is in diffusion equilibrium with
the tissue itself, implicitly assuming an infinite permeability of the vessel wall
with respect to the tracer of interest. The kinetics of such ’freely diffusable’
tracer are flow-limited and vessel wall permeability is not taken into account
in the model equations. Ohno, Pettigrew and Rapoport, described a similar
compartmental model for permeability-limited cases, for the measurement of
cerebrovascular permeability to nonelectrolytes [74]. For DCE-MRI studies
however, the many MR contrast agents approved for clinical or experimental
use, have very different molecular size, osmolarity or hydrophylicity , etc.
which greatly affect their permeability [75]. In addition, the wide range of
pathologies with considerable inter- and intra-individual differences in plasma
flow or vessel porosity, indicate that this classification in flow- or permeability
limited cases is insufficient. Therefore, both approaches were combined for
DCE-MRI by the extraction fraction concept, introduced by Renkin [76]
and Crone [77]. The extraction fraction is the relative difference in plasma
concentration at the arterial and venous side of the tissue respectively, and
combines the permeability and plasma flow in a single parameter describing
the exchange of the tracer between tissue and plasma. In combination with
the studies of Kety and Ohno, Pettigrew and Rapoport, this concept forms
the base of the 2- and 3-parameter compartmental pharmacokinetic models
currently used in DCE-MRI studies.

The first semi-compartmental model for capillary exchange was proposed by
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Johnson & Wilson in 1968 [78]. In this work the authors aim to explain the
transport of nonelectrolytes in the perfused heart. This so called tissue homo-
geneity model, has been used in many fields of quantitative medicine. However,
the model has no closed-form time-domain solution and is therefore inefficient
to use for fitting pharmacokinetic parameters from DCE-MRI data. In 1998,
St. Lawrence & Lee developped an adiabatic approximation of the tissue ho-
mogeneity model, based on the presumption that the tracer concentration in
the tissue changes slowly relative to the concentration in the capillaries [79,80].
They derived a closed-form time domain solution, which can be used for DCE-
MRI purposes. In recent years, increasing interest is shown in this model as
in contradiction to the standard compartmental models it enables separate
estimation of both permeability and plasma flow.

3.2.2 Model generalities
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Figure 3.1: Tumor physiology and its compartmental depiction. Tracer is ex-
changed between the blood plasma and the extracellullar extravascular
space.

The different models, describing the tracer kinetics, have a number of under-
lying presumptions in common:
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• Compartmental representation of tumor physiology: all models assume
that the tumor physiology can be depicted by 3 compartments (fig. 3.1):
an extracellullar extravascular space (EES) compartment representing
the interstitial space between the cells, a blood plasma compartment
and an intracellullar compartment. CA arrives by the blood flow and is
exchanged between the plasma and the EES, as the hydrophilic character
of the clinically used Gd-chelates prevent the agent from penetrating
cellullar membranes [75]. The intracellullar compartment contains
therefore both the tumor cells and the blood cells.

• Well-mixed condition : each model assumes that at least one of the com-
partments is well-mixed, i.e. that the concentration can be considered
uniform throughout the compartment. In a well-mixed compartment
no spatial variation in CA concentration has to be accounted for. In
the lumped-parameter models, all compartments are assumed to be well-
mixed. In the distributed parameter models only the EES compartment
is considered well-mixed.

• Linear intercompartment flux : the flux between the EES and the plasma
compartment is proportional to the difference between the respective
compartment concentrations.

• Standardization of quantities and parameters: in a famous paper
from 1999, jointly published by the majority of the leading authors
in the field [17], a set of standardized pharmacokinetic parameters
and working quantities was established for pharmacokinetic modeling
of T1-weighted DCE-MRI data. The paper only considers the 2- and
3-parameter models, as the tissue homogeneity model and its adiabatic
approximation were not yet in use at the time of publication. The
standardized kinetic parameters are adopted in table 3.1, extended
with the kinetic parameters from adiabatic approximation of the tissue
homogeneity model. In table 3.2, the working quantities are mentioned,
used throughout the derivation of the model equations, as well as several
important mutual relationships. Generally a tissue density of 1 g/ml is
assumed and the true estimated pharmacokinetic parameters are those
from table 3.1 multiplicated with the tissue density.

• Time invariance: the parameters describing the CA kinetics are constant
during the period of the data-acquisition.

• Arterial input function is known: the AIF is the CA concentration in
the arterial plasma. Any kinetic model assumes that this concentration
versus time curve is known.
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Table 3.1: Standard kinetic parameters

Parameter Description Unit

Fp plasma flow per unit mass of tissue ml g−1 min−1

PS permeability-surface area product ml g−1 min−1

Ktrans endothelial transfer constant min−1

νe EES volume fraction -
νp blood plasma volume fraction -

Table 3.2: Standard working quantities

Symbol Description Unit Relationships

ρ tissue density g ml−1 asummed to be 1
τ mean transit time min τ = νp/Fp

E extraction fraction - E = 1− e−
PS
Fp

Ktrans = ρEFp
kep rate constant between EES min−1 kep = Ktrans/νe

and plasma
P permeability of the capillary wall cm min−1

S capillary surface area per unit cm2 g
mass of tissue

Vt total tissue volume ml
Vb total blood volume ml
Vp total plasma volume ml νp = Vp/Vt
Ve total EES volume ml νe = Ve/Vt
Hct haematocrit - Hct= 1− Vp/Vb
νi intracellullar space volume fraction - νe + νp + νi = 1
Ca tracer concentration in arterial blood mM
Cv tracer concentration in venous blood mM
Cb tracer concentration in blood mM
Cp tracer concentraction in blood plasma mM Cp = Cb/(1−Hct)
Ce tracer concentration in EES mM
Ct tracer concentration in tissue mM Ct = νeCe + νpCp

3.2.3 Tissue homogeneity model

The tissue homogeneity model is a distributed parameter model, that describes
the extravasation of CA from the capillaries into the interstitial space by means
of 4 physiological parameters (table 3.3): Fp, PS, νp and νe. The TH-model
assumes a 2-compartmental representation of the tumor physiology as in fig.
3.1. The EES-compartment is considered to be well-mixed and the EES-
concentration Ce(t) is consequently only time-dependent. The plasma concen-
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Table 3.3: Overview of standard pharmacokinetic models and the estimated kinetic
parameters

Model Parameters

Tissue homogeneity model Fp, PS, νe, νp
Adiabatic approximation of TH model Fp,PS, νe, νp
Tofts & Kermode model Ktrans, νe
Extended Tofts & Kermode model Ktrans, νe, νp

tration Cp(x, t) however, is assumed to be both spatially and time-dependent.
The equations governing the exchange of CA in TH model can be easily derived
from mass conservation in both compartments:

νp
∂Cp(x, t)

∂t
= −LFp

∂Cp(x, t)
∂x

− PS [Cp(x, t)− Ce(t)] (3.1)

νe
∂Ce(t)
∂t

=
PS

L

∫ L

0

[Cp(x, t)− Ce(t)] dx (3.2)

Cp(0, t) = Ca(t)/νp = AIF (t) (3.3)
Ce(0) = 0 (3.4)

The right hand of eq. 3.1 contains both a convection term caused by the
plasma flow and linear diffusion term due to the permeability (in accordance
with the linear intercompartimental flux presumption). Diffusion within the
capillary (so-called curve dispersion) is neglected. The right hand of eq. 3.2
consists of a diffusion term only, as no spatial concentration gradient is taken
into account for the EES compartment. L is the length of the capillary. This
system of coupled partial differential equations has no closed-form solution in
the time-domain. In the laplace domain, however, a closed-form solution can
be obtained by laplace transforming the system of equations with respect to
time. The result is an ordinary differential equation in the spatial parameter
x, which can be solved to yield the following expression:

Ct(s,θ) = H(s,θ)AIF (s) (3.5)

H(s,θ) =
(e−α+βs − 1)(α+ βs)(ανe + νp(sχβ + α))

α2(e−(α+βs) − 1)− (α+ βs)sβ(χ(α+ βs) + α)
(3.6)

s is the parameter associated with the laplace transform, α = PS/Fp, β =
νp/Fp and χ = νe/νp. The simulation of the TH-model concentrations through-
out this work, is done based on a method described in [24].



Chapter 3 49

3.2.4 Adiabatic approximation of the tissue homogeneity
model

The adiabatic approximation of the tissue homogeneity (AATH) model was
derived by St. Lawrence & Lee in 1999 [79, 80] to describe water exchange
in the brain. It yields a closed-form time domain solution to the equations
governing CA exchange based on the presumption that tracer concentration
in the EES changes slowly relative to the plasma compartment. St-Lawrence
& Lee justified this so-called adiabatic approximation since in the brain the
ratio of water distribution volume in the extravascular and intravascular space
is approximately 20 to 1. In tumors the ratio νe/νp is typically smaller, but it
remains high enough for the approximation to be valid. The derivation of the
closed-form solution for the impulse answer of the AATH model can be found
in [79]. The impulse answer H(t) is given by:

H(t) =


0 t < 0
Fp 0 < t ≤ τ
EFpexp(−EFpνe (t− τ)) t > τ

(3.7)

τ is the mean transit time of the tracer in the tissue, E is the extraction fraction.
Both are related to the physiological parameters that can be estimated from
the AATH model:

τ =
νp
Fp

(3.8)

E = 1− exp(−PS
Fp

) (3.9)

The product EFp is often reffered to as Ktrans for conformity with the lumped-
parameter models. The tissue concentration Ct(t) can be obtained by taking
the convolution of the impulse answer with the AIF:

Ct(t) = H(t)⊗ Cp(0, t) (3.10)

For the simplicity of notation, the x-dependence of the AIF is not explicitly
mentioned in the following equations:

Ct(t) =

{
Fp
∫ t

0
Cp(t− t′)dt′ t < τ

Fp
∫ τ

0
Cp(t− t′)dt′ +Ktrans

∫ t
τ
Cp(t− t′)exp [−kep(t′ − τ)] dt′ t ≥ τ

(3.11)
Due to the high number of parameters, the AATH-model fitting is unstable
and highly time-consuming [18,24,81]. This is explained in detail in chapter 7.
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3.2.5 Lumped parameter models

In this section the compartmental model of Tofts & Kermode (TK) and its
extended version (ETK) are discussed. These are lumped parameter models
based on a compartmental representation of the tumor physiology and assum-
ing both the plasma and the EES compartment to be well-mixed. The model
equations can be derived by explicitly solving the differential equations govern-
ing the 2-compartmental CA exchange. However, it is also feasible to simplify
the model equations of a higher order model in accordance to the additional
presumptions underlying the TK model. Considering the plasma compartment
to be well mixed is equivalent to assuming that the mean transit time of the
tracer in the tissue is zero:

Ct(t) = lim
τ→0

[
νp
τ

∫ τ

0

Cp(t− t′)dt′ +Ktrans

∫ t

τ

Cp(t− t′)exp
[
−kep(t′ − τ)

]
dt′
]

= νpCp(t) +Ktrans

∫ t

0

Cp(t− t′)exp[−K
trans

νe
t′]dt′ (3.12)

= νpCp(t) +Ktrans

∫ t

0

Cp(t
′)exp[−K

trans

νe
(t− t′)]dt′ (3.13)

Eq. 3.13 is the standard model equation of the ETK model [17]. The TK
model initially neglected the contribution of the intravascular tracer (νp = 0),
leading to the 2-parameter model equation:

Ct(t) = Ktrans

∫ t

0

Cp(t′)exp[−
Ktrans

νe
(t− t′)]dt′ (3.14)

Finally, from the definition of the extraction fraction in eq. 3.9, the above cited
permeability and flow-limited cases can be explained. In the flow-limited case,
Fp << PS, while in the permeability-limited case, PS << Fp. Ktrans reduces
to:

Ktrans =

{
Fp Fp << PS

PS PS << Fp
(3.15)

In the flow-limited case Ktrans reflects plasma flow, while in the permeability
limited case it identifies with the permeability-surface area product. For
intermediate situations Ktrans mirrors both Fp and PS. Therefore it is clear
that the lumped parameter model can only assess one of both parameters, or
measure their joint effect through Ktrans.

3.3 Applications & clinical experience

The potential of pharmacokinetic modeling arises from its ability to non-
invasively characterize microvascular physiology in a wide range of pathologies.
The pharmacokinetic parameters as described above provide the clinician with
additional functional information which can serve as an important tool for
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diagnosis, treatment choice or prognosis. In this section an overview will be
given of the applications of pharmacokinetic modeling of DCE-MRI data by
summarizing a number of important clinical studies in the field. Although
the focus is mainly on applications in tumor research, a number of non-tumor
applications is mentioned as well. The applications for tumor research are
subdivided in tumor detection and characterization, treatment follow-up and
the testing of novel anti-angiogenic therapies.

3.3.1 Non-tumor applications

Although the main part of this section concerns tumor research, pharmacoki-
netic modeling has proven its benefits in other diseases in which angiogenesis
plays an important role and microvascular changes are induced. As already
stated in the historical overview, the first studies concerning pharmacokinetic
modeling were performed in patients with multiple sclerosis (MS) [67,69]. MS
is an inflammatory disease in which, due to a disrupture of the blood-brain
barrier (BBB), white blood cells enter the extracellullar brain fluid and attack
the myelin1 that protects the neurons of the nervous system. The BBB is
the separation between the circulating blood and the extracellullar fluid in
the brain. It consists of tight junctions around the capillaries that do not
occur in normal circulation and protects the brain of e.g. bacterial infections.
As in tumor microvasculature, a disfunctional BBB allows CA extravasation,
which does not occur in normal tissue [16]. DCE-MRI and pharmacokinetic
modeling have proven to be valuable tools for quantitation of the state of the
BBB [16, 67, 82]. No vascular contribution has to be taken into account in the
TK model, as the plasma fraction in the brain is mostly negligible [82]. In
comparison with brain tumors the permeability of the disfunctional BBB is
much smaller and the kinetics of CA-uptake in MS enhancing lesions are much
slower. The enhancement curve is therefore permeability limited and Ktrans is
a measure for BBB permeability [16,82]. However, the associated disadvantage
is that long scanning times are required (20 min up to 2 h [16, 67, 82]), which
can be unfeasible in clinical practice. For other pathologies, affecting the
integrity of the BBB, such as cerebral ischemia2 [83, 84] or brain tubercu-
losis3 [85,86], a role for pharmacokinetic modeling has been established as well.

In inflammatory diseases in other parts of the body, as rheumatoid arthritis4 or

1myelin provides the insulation surrounding the communication fibers along which nerve
cells communicate by sending eletrical signals. In absence of myelin, transmission speed of
nerve impulses is reduced, causing the typical MS symptoms

2Ischemia denotes a reduced and inadequate blood supply to a tissue and may cause a
stroke

3Brain tuberculosis is an infectuous disease caused by myobacterium tuberculosis. Mostly
tuberculosis affects the lungs, but it can attack the brain as well.

4rheumatoid arthritis is a systemic inflammatory disease, that principally affects the joints.
It causes inflammation of the synovial membrane, which is the soft tissue delining the joint
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atherosclerosis5, pharmacokinetic modeling has shown to be of great value for
diagnosis and treatment follow-up. Inflammation is an important step in the
body’s vascular defence mechanism against for example bacterial infections.
The inflammatory response consists of vasodilation and increased vessel wall
permeability, causing enhanced local blood flow and the ability for leukocytes
to migrate to the infection. As a result, pharmacokinetic parameters can
be used as a marker for inflammatory activity [87]. Vasodilation causes the
contribution of the plasma compartment to be non-negligible and therefore
most authors use the ETK model. In rheumatoid arthritis, several authors
showed a correlation between the pharmacokinetic parameters and widespread
clinical outcome measures such as synovial volume [88, 89], in particular
for Ktrans. Other studies found a significant reduction in Ktrans after
succesfull therapy [90, 91]. Ktrans was also proven to be a good measure
to differentiate between patients with osteoarthritis and rheumatoid arthri-
tis [92]. In atherosclerosis, pharmacokinetic modeling was shown to be a good
non-invasive method for assessing high-risk plaque formation [93]. Ktrans was
identified as a marker for neo-vascularization [93–95], which is believed as an
indication for plaque vulnerability. Both νp [96] and Ktrans [94] were shown to
correlate with the invasive histological markers of plaque angiogenesis, such as
microvessel density. A recent study found that pharmacokinetic modeling can
be used for the detection of inflamed bowel segments in patients with Crohn’s
disease [97]

3.3.2 Cancer detection & tumor characterization

As for several tumor types, the stage of the disease is an important factor for
therapy options and survival rate, early detection and treatment of malignant
tumors are the best way to beat cancer and offer considerable improvement
in outcome. In addition, delayed diagnosis of metastasic spread or recurrence
after therapy limits the treatment opportunities that can be offered to
a patient [4]. Several studies have suggested a role for pharmacokinetic
modeling and DCE-MRI in early tumor detection. The term ’early’ should
be understood relative to the imaging strategy that is conventionally used
for the diagnosis of a given tumor type. It may for instance denote that for
a cohort of patients the sensitivity6 or the specificity7 of pharmacokinetic
modeling & DCE-MRI may be higher than that of the conventional imaging
technique, or that the non-invasiveness of the pharmacokinetic modeling
technique predominates a potential lower sensitivity and/or specificity.

cavities.
5atherosclerosis is a progressive systemic disease that is characterized by the formation

of plaque in the arterial vessel walls. These plaques can, when ruptured, cause myocardial
infarction or stroke. In the vessel wall a chronic inflammatory response arises.

6sensitivity = number of true positives
number of true positives + number of false negatives

7specificity = number of true negatives
number of true negatives + number of false positives



Chapter 3 53

Prostate cancer is the most common malignancy in men and has the second
highest mortality rate. When clinical examination arouses the suspicion of
prostate cancer, the diagnosis is usually confirmed by transrectal ultrasound
(TRUS) guided biopsy [98]. This technique is characterized by a low sensitivity
(39-52%) [99], meaning that a considerable proportion of the patients has
to undergo this invasive procedure twice, before their cancer is detected. A
non-invasive imaging technique relies on T2-weighted MRI, and shows the
lesion as a region of reduced signal intensity. This low T2-signal intensity is
however not unique for prostate cancer, but it can occur for other abnormal-
ities such as prostatitis or fibrosis8, causing a low specificity [98]. Ocak et
al. have compared T2-weighted imaging with DCE-MRI and pharmacokinetic
modeling for the detection of prostate cancer. Pharmacokinetic modeling
showed reduced sensitivity, but a far better specificity, based on Ktrans or
kep [100]. Similar results were obtained by Kiessling et al. [101]. Other studies
suggest that a combination of non-invasive imaging techniques may improve
prostate cancer detection and thereby reducing the need for biopsy [98]. Van
Dorsten and coworkers use a combination of pharmacokinetic modeling &
DCE-MRI with MR spectroscopic imaging [102], while Langer et al. show
improved cancer detection by combining T2-weighted MR, DCE-MRI &
pharmacokinetic modeling and diffusion weighted MR imaging [103]. Re-
cently, a role for pharmacokinetic modeling (in combination with T2-weighted
MR, diffusion-weighted MRI or magnetic resonance spectroscopy) was es-
tablished in guiding prostate biopsy in patient with a previously negative
biopsy [98, 104, 105]. This means that samples from suspicious regions,
identified by pharmacokinetic modeling, are added to the randomized biopsy
samples, and it has shown to increase the accuracy of the second biopsy [104].
It has been suggested that in the future parametric maps may be fused with
real-time TRUS images for targetted biopsy [106]. However, there is no
concensus about the optimal imaging strategy [98, 104] and often heuristic
methods are used to generate the pharmacokinetic maps [105]. Finally,
pharmacokinetic modeling and DCE-MRI have shown their applicability
in prostate cancer localisation and in detection of recurrence. Accurate
localisation is necessary for adequate prostatectomy planning or radiotherapy
treatment [98]. Jackson et al. found higher sensitivity and similar speci-
ficity for DCE-MRI and TK-pharmacokinetic mapping in comparison with
T2-weighted imaging for prostate cancer localisation. They suggested the use
of DCE-MRI and pharmacokinetic modeling for guiding the radiotherapy
beam and thereby improving the outcome of radiotherapy [107]. Other studies
confirm that the combination of conventional MR-imaging with PK-mapping
is more accurate for prostate cancer delineation than conventional T2-weighted
imaging alone [100,108]. Finally a role has been suggested for pharmacokinetic
modeling in the detection [109] and the treatment guidance [110] of prostate

8fibrosis is the formation of excess connective tissue
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cancer recurrence after radiotherapy. All these studies mainly employ the TK-
or ETK-models, although strong evidence exists that the mean transit time of
the tracer in prostate cancer cannot be neglected and values up to 90s have
been found [111]. Despite the unstability and mathematical considerations,
a number of researchers has tested the AATH model for prostate cancer
applications [111–114]. In a pilot study, Buckley et al. found increased plasma
flow and EES-space fraction within prostate tumor tissue, when compared to
its peripheral zones. Permeability and plasma volume fraction estimates were
similar in both regions of interest [112].

Pharmacokinetic modeling has been investigated for lesion characterization
in brain tumors as well [64]. Several studies have investigated the potential
of the pharmacokinetic parameters to distinguish between different brain
tumor types, such as glioma, meningioma, acoustic neuroma9 or metastases.
Andersen & Jensen found that Ktrans was significantly higher in meningioma
than that in glioma or metastates [115]. Zhu et al. found the highest
values of νe in acoustic neuroma, intermediate values in meningioma and the
smallest values in glioma. These findings agree with results from microscopy
studies [116]. Recently, two new applications for pharmacokinetic modeling
in brain lesion characterisation were established: Haris et al. found Ktrans

and νe to be useful for disriminating between infective brain lesions and
glioma’s [117]. Bisdas et al. investigated the feasibility of pharmacokinetic
modeling for distinguishing recurrent high-grade gliomas from radiation injury,
which is important for the accurate delineation of tumor recurrence and
poses a significant problem in neuro-oncology. They found significant higher
values of Ktrans in recurrent glioma’s in comparison to radiation induced
necrosis sites. They developped a diagnostic method based on a cut-off
value for Ktrans, which showed 100% sensitivity and 83 % specificity for
detecting recurrent glioma’s. A similar method based on the heuristic param-
eter AUC (area under the curve) had 71 % sensitivity and 71% specificity [118].

The role of pharmacokinetic modeling for the detection and diagnosis of
breast cancer, the most common malignancy in women, is somewhat unclear.
When clinical examination reveals a suspicious lesion, mammography is the
standard imaging modality used for breast cancer diagnosis. The sensitivity
of mammography, however, is reported to be low (down to 45% [7]), especially
in patients with dense breast tissue. In addition, radiation exposure during
mammography examination has to be considered, in particular for high risk
women. Therefore, DCE-MRI has been established as a powerfull non-invasive
alternative to mammography in breast cancer diagnosis [1], with reported
sensitivity values up to 93% [119]. In 2007, the American Association for
Cancer Research even recommended annual screening with breast MR imaging

9The nomenclature is dependent on the type of cells that start to proliferate. Glioma is a
tumor that arises from the glial cells, while meningiomas start in the cells of the meninges.
Acoustic neuroma is a tumor of the Schwann cells.
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for high-risk women [120]. However, only a minor part of the numerous studies
published on the subject perform pharmacokinetic modeling of the DCE-MRI
concentration curves. Instead, visual inspection of signal intensity curves or
semi-quantitative parameters, as described in chapter 2 are employed. The
underlying reason has been discussed in the previous chapter and comes down
to the trade-off between spatial resolution, temporal resolution and SNR,
when the field of view of the MR-image has to achieve complete coverage of
the breast. In addition, a high spatial resolution (1mm in plane, 3mm slice
thickness) is required to detect small lesions and for the assessment of lesion
morphology [7, 121]. Therefore, most clinically available protocols for breast
MR imaging have temporal resolution in the range of 90-120s, which is too
low for pharmacokinetic modeling10. Furman-Haran et al., did use a 2 min
temporal resolution sequence with high spatial resolution for distinguishing
between benign fibrocystic changes and malignant lesions [122]. They found
high specificity (96%) and sensitivity (93%) for breast cancer detection based
on Ktrans, and concluded that pharmacokinetic modeling can significantly
improve breast cancer diagnosis. However, the low temporal resolution is a
serious drawback for their results. Schabel et al. reduced the spatial resolution
to enable pharmacokinetic modeling. With a 9.7-19.7s temporal resolution
sequence, they obtained excellent sensitivity and specificity when compared
to mammography, based on a classification method of Ktrans and kep [123].
Another study found similar results based on kep alone [45]. Mussarakis et al.
reduced the number of slices by pre-selecting a number of suspicious locations
and found, with a temporal resolution of 12s, that TK model parameters can
improve specificity of conventional MR breast examination [124]. Radjenovic
and coworkers investigated the correlation between quantitative DCE-MRI
parameters and histological tumor grade11. The TK model parameters Ktrans

and kep exhibited the highest degree of correlation with the tumor grade,
in comparison with heuristic quantities. A significant difference in these
parameters was found between grade 2 and grade 3 tumor, but not between
grade 1 and grade 2 tumors. The latter may again be attributed to the low
temporal resolution of their DCE-MRI measurement (32.5s) [125].

3.3.3 Treatment response and patient prognosis

In clinical oncology, an increased interest arises for biomarkers that can
predict response of a patient to tumor treatment and the corresponding
patient outcome. Such biomarkers have the advantage that the therapy can
be targetted to those patients that are most likely to benefit, while for the
others the associated toxicity of cytotoxic therapies can be avoided. To show

10the required temporal resolution is between 1.5-15s, depending on model and protocol.
See chapter 1

11The grading of a breast cancer is based on microscopically comparing the breast cancer
cells to cells of normal breast tissue. Grade 1 has the best progrosis, grade 3 the worst.
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how pharmacokinetic modeling can evaluate tumor treatment, fig. 3.2 shows
an example of treatment monitoring in two women with a grade 3 breast
cancer, adopted from [1]. Both women received 6 cycles of chemotherapy.
Before the treatment and after two cycles, pharmacokinetic parameter maps
were produced from DCE-MRI investigations. For the first patient, in fig.
3.2 A & B, a strong change in the Ktrans-map can be visually inspected:
the transfer constant reduces significanlty across the complete lesion size.
After 6 cycles of chemotherapy, this patient had a complete clinical12 and
radiological13 response to the treatment. For the second patient, in fig. 3.2
C & D, no considerable changes in the transfer constant are seen within
the lesion. After the complete chemotherapy treatment, this patient had no
clinical or radiological response, and the cancer was still evaluated as grade
3. This example shows the potential of pharmacokinetic model to predict
tumor response in an early stage of the chemotherapy treatment. Thereby
the treatment can be adapted to increase life expectation and the hazardous
effects for the patient of non-effective chemotherapy can be avoided. Tumor
therapy may also be evaluated by MRI-derived tumor size change, but the
time scale on which tumor size changes is much longer than the time scale on
which microvascular changes occur.

A wide range of studies have investigated the potential of pharmacokinetic
modeling in chemotherapy treatment evaluation. In breast cancer, Ah-See et
al. investigated whether pharmacokinetic modeling of DCE-MRI data pre-
and post neoadjuvant chemotherapy treatment could predict final clinical
and pathological response. They found that changes in Ktrans and kep
correlated with both clinical and pathological response. Change in Ktrans

was the best predictor for pathological non-response, correctly identifying
94% of the non-responders and 73% of the responders. The specificity and
sensitivity are significantly higher than for change in MRI-derived tumor
size change [126]. Vincensini found that the monitoring of kep may be used
for discriminate, at the early stage of the treatment, between lesions that
respond well or poorly to therapy [45]. Other examples in breast cancer can
be found in [119]. Also for other tumor types, the pharmacokinetic models are
able to monitor or predict tumor response to chemotherapy [10,12,21,127–129].

Pharmacokinetic modeling can monitor and predict the radiotherapy treatment
response as well [98,130]. Ceelen et al. found a significant reduction in Ktrans

after fractionated radiotherapy in a colorectal tumor model in rats as well
as correlation with tumor reoxygenation [131]. Zahra and coworkers showed
the predictive value of pharmacokinetic parameters of the ETK model for
radiation response in cervical cancer [130]. Also in other tumor types, radio-
therapy response may be assessed by pharmacokinetic modeling [2,10,21,132].

12clinical response denotes the disappearance of clinical symptoms
13radiological response denotes the reduction or disappearance of the lesion on radiological

images after treatment
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Figure 3.2: Example of tumor treatment follow-up with pharmacokinetic modeling.
A & C: pre-treatment Ktrans-map (TK-model) of two patients with
grade 3 breast cancer. B & D: Ktrans-map in those patients after two
cylces of chemotherapy. For the first patient (A & B) a clear change is
seen in the Ktrans across the lesion. This patient showed a complete
clinical and radiological response after 6 cycles of chemotherapy. For the
second patient (C & D) no significant change can be inspected. After
6 cycles, the cancer was still evaluated as grade 3. The color scale is
expressed in min−1.

The success of pharmacokinetic modeling in this field may be attributed to
its ability to detect hypoxia, which is a known factor in the resistance to
radiation treatment [9, 132]. Gulliksrud et al. showed that Ktrans could
distinguish between hypoxic and non-hypoxic tumor regions [133]. Ellingsen
et al. confirmed the potential of Ktrans for assessing the extent of hypoxia
in carcinoma of the cervix. They found a strong inverse relationship between
Ktrans and the fraction of radiobiologically hypoxic cells [134].
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3.3.4 Testing of novel anti-angiogenic cancer treatments

As explained in chapter 1, pharmacokinetic modeling of DCE-MRI data can
be used as a biomarker for assessing the effect of anti-angiogenic drugs on the
tumor vasculature [2]. The difference in the TK- or ETK-parameters between
pre- and post- anti-angiogenic therapy pharmacokinetic modeling assessments
is frequently used in phase I and phase II drug development trials, to non-
invasely quantify the efficacy of the treatment [14,129,135–138].

3.4 Arterial input function

Theoretically, the AIF is the plasma CA concentration in the plasma compart-
ment (TK & ETK model) or on the arterial side of the plasma compartment
(AATH model). Its knowledge is indispensable for the estimation of the
kinetic parameters. In this section an overview is given of the different
techniques to measure or determine the AIF. They are subdivided into four
categories: a population-averaged or standard AIF, an individually measured
AIF, the reference region method and AIF based on joint estimation with
pharmacokinetic parameters.

3.4.1 Population averaged AIF

A wide range of studies uses a population averaged or standard AIF in the tu-
mor tissue, presuming that the interindividual differences in the AIF are small.
Parker et al. proposed a population averaged AIF, by performing DCE-MRI
measurements of the AIF in a group of 23 cancer patients after bolus injection
of Gd-DTPA-BMA (Dose = 0.1 mmol kg−1). In this way they obtained 67
different AIF’s, whose average was fit to a functional form with 10 free param-
eters. This best-fit functional was proposed as population averaged AIF and
used in a wide range of studies [32,139]. As in the following chapters, this AIF
is frequently used, we explicitly mention the expression:

Cb(t) =
2∑

n=1

An

σn
√

2π
exp(− (t− Tn)2

2σ2
n

) +
α exp(−βt)

1 + exp(−s(t− τ))
(3.16)

A1 = 0.809 mmol min σ2 = 0.132 min
A2 = 0.330 mmol min α = 1.050 mmol

T1 = 0.170 min β = 0.1682 min−1

T2 = 0.365 min s = 38.078 min−1

σ1 = 0.0563 min τ = 0.483 min (3.17)
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Remark that this is the blood concentration, as MRI can only assess the concen-
tration in a voxel that contains both blood plasma and blood cells. For practical
use in pharmacokinetic modeling, it should be scaled to the plasma concentra-
tion by means of the hematocrit value (see table 3.2). Another AIF, that is
currently employed in clinical studies, is the Weinmann curve [16, 66, 140]. It
was determined by spectroscopic analysis of blood samples taken from healthy
volunteers after bolus injection of Gd-DTPA, and fitting them to a sum of two
degrading exponentials. As these blood samples cannot be taken with high
temporal resolution, it fails to describe the AIF peak:

Cp(t) = D

2∑
n=1

ai exp(−mit) (3.18)

a1 = 3.99 kg l−1 m1 = 0.144 min−1

a2 = 4.78 kg l−1 m2 = 0.0111 min−1 (3.19)
(3.20)

D is the administered Gd-DTPA dose in mmol kg−1. Both AIF’s are shown
in fig. 3.3. It is clear that the Parker AIF is more realistic, as it includes a
first- and second pass peak in the plasma concentration after bolus injection of
a CA. In comparison with the other AIF determination methods, assuming a
population averaged AIF has the advantage of simplicity, as it does not require
additional MR measurements in other regions of interest (see next paragraph).
It was shown that the use of a population averaged AIF for the cohort
of patients from which it was determined, increases the repeatability and
reproducibility of the pharmacokinetic estimates in that population [139,141].
However, when used for another cohort of patients, no such reproducibility
increase could be found [141]. In addition, interindividual differences in the
AIF induce bias in the pharmacokinetic estimates. For the ETK-model for
instance, Cheng found that an error in the AIF peak amplitude causes an
inversely proportional error in Ktrans and νp, while νe is relatively unaffected.
Assuming a biexponential AIF, as the Weinmann curve, resulst in a consistent
20% underestimation of Ktrans and a severe underestimation of νp [27].
Identical results were found by Kershaw & Cheng for the AATH model [24].

3.4.2 Individually measured AIF

By monitoring the signal intensity in a large feeding artery of the tissue of
interest, the AIF can be individually measured in every patient. It can be
expected that an individual measured AIF closely resembles the true AIF.
However, for co-measurement of tissue and blood concentrations a number
of technical considerations has to be taken into account. As explained in the
previous chapter, inflow effects occur that induce overestimation of the true
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Figure 3.3: Parker AIF (Hematocrit = 0.4) and Weinmann AIF (Dose = 0.1
mmol kg−1)

AIF concentration and may cause errors up to 40% in Ktrans [60]. These inflow
effects are dependent on the repetition time of the sequence, the employed flip
angle and on the orientation of the blood flow with respect to the imaging
slice [22,60,62]. This implies that when the AIF is individually measured, the
effect of the choice of the pulse sequence parameters on the AIF measurement
accuracy has to be considered. Recently, Cron and coworkers have proposed
a method for measuring the AIF derived from phase MR images, which
are relatively unaffected by inflow effects. They could however not shown
increased Ktrans-reproducibility with a phase-derived AIF compared to a
magnitude-derived AIF [142]. In addition, the concentration range that has
to be measured in tumor tissue (0-2mM of a small Gd-chelate as Gd-DTPA)
is much smaller than the typical blood concentrations (0-10 mM). In chapter
4 & 5, it is shown that improper pulse sequence design may lead to very
high concentration noise on the AIF peak concentration. This is for instance
observed in the study of Parker et al, and may explain why the repeatability
of the pharmacokinetic estimates is higher with a population averaged AIF, as
cited in the previous section [139]. It emphasizes again that the pulse sequence
design has to be adapted to the AIF determination strategy. In the case of an
individual measured AIF, the required temporal resolution of the DCE-MRI
measurement is highly dependent on the AIF, rather than on the measured
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tissue concentration14. Meng et al. showed that when DCE-MRI data are
acquired with limited temporal resolution, individually measured AIF is not
significantly better than population averaged AIF in predicting the biopsy
results in prostate cancer [143].

3.4.3 Reference region method

The technical difficulties for co-measurement of the AIF and the inaccuracies
when using a standard AIF, have led to the development of the reference region
(RR) method [144]. Instead of monitoring the signal intensity in an artery,
the signal variation in a reference tissue, mostly a muscle, is measured. As in
the tumor tissue, the concentration curve is calculated in the reference tissue.
By assuming that the pharmacokinetic parameters in the reference tissue are
known from literature, the AIF in the reference tissue can be calculated from
its tissue concentration curve [145]. However, interindividual variability in the
pharmacokinetic parameters of the reference tissue causes the method to have
low reproducibility [146,147]. Therefore a double reference region method [148]
and a multiple reference region method [149] have been developped, that
do not require a presumption about the pharmacokinetic parameters in the
reference tissue. AIF’s determined from the multiple reference region method
have been shown to given better pharmacokinetic model fits and equally good
reproducibility, when compared modeling with the Parker population averaged
AIF [141]. No blood concentration measurement have to be performed when
using a RR-method, which has important implications for protocol design:
the required temporal resolution is only dependent on the tissue behaviour
and the DCE-MRI pulse sequence settings may be designed for monitoring
concentrations between 0-2mM. These methods have only recently been
established and require additional research to the precision and accuracy of
the resulting pharmacokinetic estimates.

3.4.4 Joint estimation of AIF and PK parameters

The principle idea of joint estimation of the AIF and pharmacokinetic param-
eters is to develop an acceptable functional form for the AIF, with a number
of free parameters, that is joinly fit to the tissue concentration curve with
the pharmacokinetic parameters. However, as can be seen from the Parker
AIF parametrization in eq. 3.16, a realistic functional form contains a high
number of extra parameters. For the TK model 12 parameters would have to
be fit from the tissue concentration curve in each voxel, which is practically
infeasible. Very recently, a number of authors therefore developped method
for blind estimation of the AIF based on clustering of the tissue concentration

14in the next section it is explained how the temporal resolution depends on the tissue
concentration curves
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curves [150–152]. In the method of Fluckiger et al. for instance, the average
curve in a cluster of tissue concentration curves is fitted to an initial estimate
of the AIF, i.e. an initial estimate for the parameters in the functional
form. With the resulting kinetic parameter estimates held fixed, the best
possible parameters of the functional form are then estimated and compared
to the initital estimate. This procedure is repeated untill it converges [150].
Just as for population averaged AIF determination, these methods have the
advantage that no protocol requirement have to be met for AIF measurement.
In addition, decreased biases and uncertainties in pharmacokinetic estimates
were shown when compared to a population averaged AIF strategy [152].
Similar to the multiple tissue RR-method, these AIF determination strategies
are recently developped and require additional investigation.

3.5 Limitations and challenges

3.5.1 Accuracy

As explained above, the errors in the AIF are a first source of bias in the
pharmacokinetic parameters [24, 27, 143]. The MR-related errors, such as
B1-inhomogeneity, incomplete spoiling, flip angle deviation from its nominal
value, errors in T10, etc. cause errors in the calculated concentration curve,
that on their turn induce bias in the pharmacokinetic parameters. Schabel
& Parker have investigated the accuracy of concentration measurement in
SPGRE-pulse sequences in the presence of these errors [30], while Di Giovanni
et al. investigated the influence of these errors on the TK model parameters
accuracy. In the presence of realistic B1-field inhomogeneity at 3T in a breast
coil, they found errors up to 66% in Ktrans and 74% in νe. T10-errors caused
by incomplete spoiling or B1-field inhomogeneity in the multiple flip angle
method (see chapter 2), induce Ktrans- and νe-bias up to 531% and 233%
respectively. This shows the importance of reducing the MR-related errors by
the correction methods mentioned in chapter 2.

The temporal resolution of the DCE-MRI measurement has an important
influence on the accuracy of the pharmacokinetic estimates. Lopata et al.
showed that the TK and ETK-model are low-pass filters, with a cut-off
frequency of kep = Ktrans/νe [23]. To avoid nyquist induced bias, the
sampling frequency should be twice the highest kep in the tissue of interest.
In the above cited study, Di Giovanni and coworkers found a systematically
increasing bias from 0% to 48% in Ktrans, when the temporal resolution of
the DCE-MRI protocol is reduced from 10s to 70s. νe is not significanlty
influenced. Similar results were found by Henderson et al. [29]. However,
when the AIF is measured individually, a correct identification of the AIF
peak will be the decisive factor for the temporal resolution [27,29] as explained
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in the previous section. For the AATH model, Kershaw & Cheng advice
1.5s as minimal temporal resolution to keep bias in all AATH-parameter
beneath 5%. If bias in the mean transit time may exceed 10%, a temporal
resolution of 6s may be used [24]. This effect is mainly attributed to the
instable and inaccurate fitting procedure that are currently available for
the AATH model [26]. In chapter 7, we introduce a new stable and fast
fitting procedure, that may weaken the necessary temporal resolution demands.

3.5.2 Precision & reproducibility

Galbraith et al. investigated the reproducibility of pharmacokinetic modeling
by performing paired examinations in a group of 21 patients with different
tumor types. They concluded that for a single patient, Ktrans-changes of
-45% or +83% could be considered as statistically significant [66]. Padhani et
al. found similar results in a group of 19 patients with prostate cancer [140].
These studies suggest a low reproducibility for kinetic modeling. As explained
in chapter 1, a number of studies have investigated the influence of the
temporal resolution [23, 26], leading to a range of practical recommendations
(1.5s-15s). Obviously the concentration noise level was shown to correlate with
the uncertainty on the pharmacokinetic estimates [23]. Recently Schabel &
Parker showed that this concentration noise level not only depends on the SNR
of the DCE-MRI measurement but also on the pulse sequence settings [30]. In
chapter 2, the trade-offs in DCE-MRI were discussed. It was shown that, when
spatial resolution and spatial coverage are fixed, reducing temporal resolution
unevitably reduces the SNR or requires a change in repetition time. This link
between temporal resolution and concentration noise has not been investigated
to our knowledge, and will be discussed in chapter 8. The flip angle, however,
can be changed without compromising SNR or temporal resolution. For
SPGRE pulse sequences, Schabel & Parker showed the existence of a flip angle
minimizing the concentration noise for a single concentration, but they did not
assess the influence on the pharmacokinetic parameter precision [30]. All these
examples show again the lack of standardized and thoroughly investigated
DCE-MRI protocols and the absence of a framework to evaluate the influence
of the trade-off within DCE-MRI. In addition, no statistical framework exists
to construct accurate confidence intervals for the pharmacokinetic parameters.
Galbraith et al. proposed experimentally-derived reproducibility statistics
to evaluate statistical significance of kinetic parameter changes, but these
are only useful if standardized protocols are introduced and evaluated [66].
Kershaw et al. used bootstrap error analysis to assess the precision of the
pharmacokinetic estimates [113]. Orton investigated confidence intervals
constructed from least-square analysis, and found these to be inaccurate and
overconfident [35]. Therefore, a standardized post-processing technique is
necessary as well [19,21,37], in particular for evaluating pre- and post- therapy
kinetic parameter changes.
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3.5.3 Validation and model selection

Due to the lack of a golden standard for pharmacokinetic parameter mea-
surement, it remains difficult to assess the true physiological significance
of the estimated parameters. As explained in chapter 1, a number of
authors have found correlations between the pharmacokinetic estimates
and invasive histological markers for angiogenesis, as microvessel density
or VEGF-expression [10, 21, 32, 38], while others could not establish a sig-
nificant association [10, 21, 32, 153]. Another validation strategy consists of
the comparing pharmacokinetic estimates obtained from different imaging
modalities, to assess the degree to which the reported parameter values are
dependent on the physiology and not on the imaging technique. Naish et
al. compared pharmacokinetic parameters from modeling DCE-MRI- and
DCE-CT data with the ETK model. They found that Ktrans is a robust
parameter with excellent agreement between DCE-MRI and DCE-CT analysis.
νp is significantly higher for DCE-CT, while only low values of νe showed
reasonable agreement [154]. Results from a similar study by Kierkels et al.
confirm these findings [40]. The discrepancies may be due to different protocol
design or imaging artefacts in the DCE-CT and DCE-MRI, which emphasizes
again the need for standardized measurement protocols and post-processing
techniques, in order to enable fair comparison between imaging modalities.

The discrepancies may also be attributed to the failure of the compartmental
models to describe the kinetics of the CA adequately. Buckley investigated
the agreement between the pharmacokinetic parameter of the TK-, the ETK-
and the AATH model on the one hand and input parameter of a realistic
distributed patway model for tracer kinetics on the other hand [18]. He found
that the TK-model and ETK-model systematically overestimate Ktrans, while
the ETK model underestimates νp. The AATH-parameters show the highest
degree of agreement with the input parameter, but νp remains underestimated.
This study confirms the general thesis that higher-order models describe the
true physiological processes better. The cost, however, is that a higher data
quality is required for the AATH model [24]. In addition the estimation of
a high number of parameters renders the AATH-model fitting unstable and
the uncertainties on the AATH parameters are increased [21,22,24,26]. It is a
general rule in curve fitting, that a higher number of parameters in the model
reduces the minimal sum-of squares (better model fit), but may enhance the
uncertainties on the estimated parameters. Recently, Naish et al. compared
the ETK model and the AATH model for lung tumor DCE-MRI, with Akaike’s
information criterion. They found that in most cases the AATH model is the
best description [155]. Nevertheless, no guidelines are available in literature
for model selection.



Chapter 3 65

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Time [min]

C
A

 c
on

ce
nt

ra
tio

n 
[m

M
]

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Time [min]

C
A

 c
on

ce
nt

ra
tio

n 
[m

M
]

 

 

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Time [min]

C
A

 c
on

ce
nt

ra
tio

n 
[m

M
]

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Time [min]

C
A

 c
on

ce
nt

ra
tio

n 
[m

M
]

TK
ETK
AATH
TH

TK
ETK
AATH
TH

TK
ETK
AATH
TH

TK
ETK
AATH
TH

Permeability−limited

Baseline negligible ν
p

Flow−limited

Figure 3.4: A: model curves for the TH-model, AATH-model, ETK-model and TK-
model for a parameter set representative of a breast tumor ((Fp =
0.57min−1, PS = 0.33min−1, νp = 0.06, νe = 0.45, Parker AIF). B-D
similar curves with only one pharmacokinetic parameter changed (B:
νp=0.01, C: PS = 0.05 min−1, D: Fp = 0.05 min−1.
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With a very straightforward example, the importance of model selection can
be made clear. In fig. 3.4A, the tissue concentration curves (Parker AIF) have
been simulated with the tissue homogeneity model (black), the AATH model
(green), the ETK model (red) and the TK model (blue), for a set of phar-
macokinetic parameters representative of a breast tumor (Fp = 0.57min−1,
PS = 0.33 min−1, νp = 0.06, νe = 0.45 [18]. It may be assumed that the TH-
model is the best description of the true physiology. For this baseline breast
tumor case, the AATH model is a very good approximation of the TH-model
and will yield accurate pharmacokinetic estimates. The TK- and ETK-model
however significantly differ from the TH-model curve and it may be noticed
that overestimation of Ktrans and underestimation of νp will occur, as pre-
dicted by [18]. In fig. B, νp was reduced to 0.01, while all other parameters
were kept constant to simulate a tissue in which the plasma fraction is negli-
gible. Now all curve approximately coincide. In such cases, use of the AATH-
or ETK-model unnecessarily reduces the precision of Ktrans and νe

15, with-
out improving their physiological accuracy. The TK-model is recommended
to use when plasma fraction is negligible. In fig. C a permeability-limited
case is shown (PS= 0.05 min−1, other parameters remain constant). When
PS << Fp, TK-model parameters are highly inaccurate and underestimation
of Ktrans occurs. The ETK or AATH model have to be used instead. Fig. 3.4
D plots the corresponding flow-limited case (Fp = 0.05 min−1, other parame-
ters remain constant). ETK-parameters are strongly biased, and the validity of
the AATH-model is reduced. Although it may seem that the AATH-model re-
mains the best description, the flow-limited case is equivalent to an extraction
fraction close to one (eq. 3.9). In such case of low flow and high perme-
ability, the AATH model fitting was shown to be unstable, and resulted in
PS-overestimation up to 152% [18, 24]. The TK-model should be used instead
for acceptable pharmacokinetic parameter reproducibility and stability of the
fitting procedure. Remark that in both the permeability and flow-limited case
Ktrans = 0.05 min−1.

3.6 Conclusion

The 2-, 3- and 4-parameter models, that are currently used in DCE-MRI litera-
ture, can all be derived from the TH-model, by making subsequent assumptions
about the tumor physiology. The TK-model and the ETK-model have shown
their applicability both in tumor research or for other pathologies that affect
the microvascular network of the host tissue. The AATH model is lesser used
because of the mathematical complications in the fitting procedure. Gener-
ally, a higher order model requires increased data quality. Nevertheless no
consensus exists in literature about the necessary protocol design for the dif-

15For now, we can only assume this based on the general rule in fitting, that an increased
number of model parameters gives better model fits but worse parameter precision. However
in chapter 8 this statement is proven and quantified
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ferent pharmacokinetic models. Optimal protocol design is dependent upon
the AIF determination strategy as well. In addition, no standardized post-
processing techniques are avalaible, to characterize for instance the precision
of the pharmacokinetic estimation. This prevents the intercomparison of re-
sults from different scanning sites and raises questions about the statistical
significance of pre- and post- treatment kinetic parameter changes. Finally,
no clear recommendations exists for model selection. Parameters from higher
order models have been shown to be better reflections of their true physio-
logical counterparts, but typically exhibit higher parameter uncertainties. By
means of a simple example, this trade-off between physiological significance
and parameter reproducibility is enlighted:

• small νp: TK model

• Permeability-limited: AATH or ETK-model

• Flow-limited: TK-model

• intermediate case: preferentially AATH model, also ETK-model
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Chapter 4

Accuracy and Precision of
Contrast Agent
Concentration

4.1 Introduction

In this chapter the conversion of MR-signal intensity to contrast agent (CA)
concentration is enlightened and the accuracy and the precision of the resulting
concentration values are discussed. As explained in chapter 2, the majority
of the quantitative DCE-MRI studies employs spoiled gradient echo pulse
sequences (SPGRE) for the monitoring of CA concentration, for their ability to
combine good spatial and temporal resulution with acceptable signal-to-noise
ratio (SNR) [42]. Therefore this chapter is devoted to the conversion methods
for SPGRE-pulse sequences only. Throughout this chapter, 4 SPGRE pulse
sequence designs from literature, with a wide range in SPGRE-parameters
and using 3 different CA’s, are used as examples to illustrate the main results.
Details from these study design are mentioned in table 4.1.

The rationale of this chapter is found in the interaction mechanisms between
the tissue and the CA. Firstly, in contrast to nuclear medicine or CT tracer
methodologies, contrast enhanced MRI does not measure the signal directly
from the tracer itself, but rather the effect of the CA on the local relaxation
times. Secondly, the presence of the CA causes a change in both the longi-
tudinal and transverse relaxation times, which affect the signal intensity in a
different and non-linear manner. Therefore the signal intensity is not linearly
related to the amount of tracer in the tissue and non-linear conversion methods
are necessary. For SPGRE-pulse sequences several conversion methods exist
in literature, which are all based on the relative signal enhancement, a concept

69
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explained in section 4.2. The most early studies dealing with pharmacokinetic
modeling of DCE-MRI data, assumed a linear relationship between the signal
enhancement and the CA concentration [16, 47, 88]. Obviously, this method
was shown to cause severe errors in the pharmacokinetic parameters [33].
Currently, many authors employ a non-linear method for signal conversion,
based on the assumption that the change of the transverse relaxation rates
should not be taken into account for physiological CA concentrations. This
assumption is based on the the fact that for pharmacokinetic modeling, pulse
sequences are designed to be T1-weighted (TE << T ∗2 ) [18, 19, 90, 107]. This
implies that the T1-induced signal intensity change, caused by the presence
of the CA, predominates the similar T ∗2 -induced signal intensity change. The
advantage of this approach is that an analytical solution exists, linking a
measured signal intensity to a single concentration. Although the assumption
of negligible T ∗2 -relaxation proves to be valid for the typical CA concentrations
found in tumour tissue, it is shown to break down at the high arterial
concentration that have to be measured for the monitoring of the arterial
input function (AIF). The most accurate method involves a numerical solution
of the SPGRE equations, accounting for both T1- and T ∗2 -relaxation caused
by the CA. However, due to its mathematical complexity it is hardly used in
clinical practice [49]. In this chapter, a fourth and new conversion method is
proposed, relying on a first order approximation of the T ∗2 -relaxation. This
method yields an analytical relationship between signal enhancement and CA
concentration as well and is therefore easy to perform in any clinical setting.
However, when comparing the accuracy of the different conversion methods
both in vivo and by simulations, this first-order method is found to reduce
CA concentration error severely, in particular for arterial concentrations.
These conversion methods are explained in section 4.3 and their accuracy is
compared in section 4.4.

Another important consequence of the non-linear relationship between sig-
nal intensity and CA concentration, concerns the concentration precision.
For DCE-MRI studies, MR signal intensity is assumed to be gaussian
distributed [156]. The noise variance of this distribution is constant and
therefore independent of the CA concentration [157]. However, when this
signal intensity is converted to a CA concentration by a non-linear conversion
method, the concentration precision varies with CA concentration itself. As a
result, the uncertainty on specific CA concentration is unacceptably high, even
at high signal-to-noise ratio in the dynamic MR imaging. The understanding
of the concentration distribution and in particular the knowledge of the
concentration uncertainty is of crucial importance for a well-considered design
of the DCE-MRI experiment (see chapter 5). In addition this distribution
has to be taken into account when fitting the concentration data to the
pharmacokinetic models and it highly affects the confidence intervals of the
pharmacokinetic parameters (see chapter 6). Therefore in section 4.5, the
concentration distribution is derived and validated in vitro.
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Table 4.1: SPGRE pulse sequence parameters and contrast agents for the DCE-MRI
studies of Parker et al. (PS1) [139], Hodgson et al. (PS2) [90], Jackson
et al. (PS3) [107] and Padhani et al. (PS4) [19].

Studie name TR [ms] TE [ms] FA [°] Contrast agent Cmax [mM]

PS1 4 0.82 20 Gd-DTPA-BMA 22.4
PS2 4.5 2 30 Gd-DOTA 19.9
PS3 7 1.1 35 Gd-DTPA-BMA 24.5
PS4 35 5 70 Gd-DTPA 11.5

4.2 Relative signal enhancement and maximal
measurable concentration

The relationship between CA concentration C and MR signal intensity, S, for
SPGRE-pulse sequences is given by eq. 4.1 and eq. 4.2. R1 and R∗2 are the
longitudinal and transverse relaxation rates respectively, the inverse of the T1

and T ∗2 relaxation times. r1 and r2 are the relaxivity coefficients, α is the flip
angle, TR and TE are the pulse sequence repetition and echo times respectively.
M0 is scaling factor comprising both equilibrium magnetization and system
gain. R10 and R∗20 are the native relaxation rates of the tissue of interest. R10

is assumed to be known from a series of pre-contrast scans (see chapter 2).
S(R1, R

∗
2) = M0sin(α) 1−E1

1−cos(α)E1
E∗2

E1 = exp(−TRR1)
E∗2 = exp(−TER∗2)

(4.1)

{
R1 = R10 + r1C

R∗2 = R∗20 + r2C
(4.2)

All conversion methods employ the relationship between the CA concentration
and the relative signal enhancement Ξ:

Ξ =
S − S0

S0
(4.3)

=
(E1(C)− 1)(E10cos(FA)− 1)
(E10 − 1)(E1(C)cos(FA)− 1)

E′2(C)− 1 (4.4)

E′2(C) =
E2

E20
= exp(−TEr2C) (4.5)
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Figure 4.1: Relative signal enhancement versus Gd-DTPA-concentration (r1 = 4.1
s−1mM−1, r2 = 4.6 s−1mM−1) for 4 SPGRE pulse sequences (table
4.1) in blood (T10= 1250 ms). Left a broad concentration range is de-
picted on a logarithmic scale, right the signal enhancement in a physio-
logically relevant range is enlarged. For PS4 the maximal enhancement
and the maximal measurable concentration are illustrated.

By using Ξ, eq. 4.5 shows that the knowledge of M0 or R∗20 is irrelevant for
the calculation of the CA concentration. Both parameters are gathered in the
pre-contrast signal intensity S0, making their separate estimation unnecessary.

Fig. 4.1 shows the variation of Ξ with the CA concentration for the four pulse
sequences from table 4.1. Ξ is confined within -1, at the high concentration
limit, and Ξmax at Cmax (designated for PS4). For Ξ-values between 0 and
Ξmax, eq. 4.4 has two possible solutions, one above Cmax and one below Cmax.
This suggests that whenever the concentration can rise above Cmax, CA
concentration can no longer be determined unambiguously. Therefore Cmax is
designated the maximal measurable concentration and it puts an upperbound
on the allowed concentration range in a quantitative DCE-MRI study. Cmax
can be interpreted in terms of signal weighting as well: for concentrations
beneath Cmax, the MR-signal is T1-weighted. In this concentration range,
the T1-induced signal intensity increase prevails the T ∗2 -induced decrease and
the signal intensity rises with increasing concentration. For concentrations
above Cmax, the T1-induced signal increase becomes predominated by the
T ∗2 -induced signal distortion and the signal intensity decreases with increasing
concentration. The MR-signal is T ∗2 -weighted.

The knowledge of the maximal measurable concentration in quantitative DCE-
MRI studies is highly significant. Not only is it required for the selection
of one of the two possible solutions of the numerical method, it is of crucial
importance for the evaluation of the accuracy (section 4.4) and the precision
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(section 4.5) of the measured concentrations as well. In addition, in chapter
5, its knowledge is shown to be indispensable for flip angle optimization in
DCE-MRI studies. The concept of a maximal measurable concentration for
SPGRE-pulse sequences was initially proposed by Schabel & Parker [30]. For
clinical practice however, their analysis is somewhat complicated1 and an easy-
to-perform determination method should be available. The exact values of
Cmax and Ξmax depend on the pulse sequence settings, as can be seen from fig.
4.1, but also on the CA relaxivity coefficients and, at least theoretically, on the
tissues native relaxation rate R10. As Cmax corresponds with the maximum of
the Ξ-curve, it can be derived by equating the signal derivative with respect to
the concentration to zero. This signal derivative can be calculated as:

dS

dC
=

∂S

∂R1

∂R1

∂C
+

∂S

∂R∗2

∂R∗2
∂C

= M0TRr1E
∗
2

[
E1sin(FA)(1− cos(FA))

(1− cos(FA)E1)2
− γ sin(FA)(1− E1)

(1− cos(FA)E1)

]
(4.6)

γ =
r∗2TE
r1TR

(4.7)

From eq. 5.11 it is clear that Cmax corresponds with E1mm, the minimal value
of E1 that can be measured unambiguously:

E1mm = exp(−TRR1mm) (4.8)
R1mm = R10 + r1Cmax (4.9)

E1mm depends solely on the flip angle and the parameter γ:

E1mm =
γ(1 + cos(α)) + (1− cos(α))−

√
(1 + γ2)(1− cos(α))2 + 2γsin(α)2

2γcos(α)
(4.10)

This enables a contour plot presentation of TRR1mm = −ln(E1mm), from
which for every SPGRE-pulse sequence design and with the knowledge of the
CA characteristics, the maximal measurable R1 can be read off (fig. 4.2).
Cmax can be calculated from eq. 4.9, given the native R1 of the tissue of
interest. For every pulse sequence under consideration, table 4.1 contains
the Cmax-values for their respective CA’s in tumour tissue. Figure 4.3
shows the influence of the native longitudinal relaxation rate on the maximal
measurable concentration. It is clear that in view of the large R1mm-values in
comparison with the physiological R10-values, this native relaxation rate will
not significantly affect the maximal measurable concentration. The influence
of the repetition time on Cmax is difficult to asses from eq. 4.9 or fig. 4.2.

1Schabel & Parker assume a general relationship between CA concentration and relaxation
rates, instead of a linear relationship as in eq. 4.2.
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Figure 4.2: Contour plot of R1mmTR as a function of the flip angle FA and the
dimensionless variable γ = r2TE

r1TR
. R1mm is the maximum measurable

longitudinal relaxivity rate and can be used for determining the maxi-
mum measurable contrast agent concentration Cmax.

From fig. 4.3b, plotting Cmax versus TR for the three pulse sequence in table
4.1, it can be seen that increasing TR decreases the maximal measurable
concentration. Furthermore, both smaller TE and larger flip angles enlarge
the maximal measurable concentration range.

4.3 Contrast agent determination methods for
SPGRE-pulse sequences

In this section an overview is given of the conversion methods currently em-
ployed in DCE-MRI literature to calculate the CA concentration from the
SPGRE signal intensity. The problem statement is as follows: given the pre-
contrast signal intensity S0 and the pre-contrast relaxation rates R10 pixelwise,
and with the knowledge of the CA characteristics r1 and r2 and the pulse se-
quence settings TR, TE and α, how can the CA concentration be determined
from the measured relative signal enhancement, by using eq. 4.4.
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Figure 4.3: A. Variation of the maximal measurable Gd-DTPA concentration (r1

= 4.1 s−1mM−1, r2 = 4.6 s−1mM−1) versus the native longitudinal
relaxation time for three SPGRE pulse sequences (table 4.1). B. Varia-
tion of the maximal measurable Gd-DTPA concentration versus SPGRE
repetition time for the three pulse sequences.

4.3.1 Numerical method

The most accurate method for the conversion of signal intensity to CA con-
centration is the numerical conversion method. The method relies on finding
a numerical solution Cnum of eq. 4.4. As explained in the previous section,
two analytical solutions exist for this equation, one above and one below Cmax.
Therefore, the initial value for the numerical solver should be well-considered
and it should be checked whether Cnum does not exceed Cmax. To our knowl-
edge, however, this method is solely used in a recent DCE-MRI study [49].

4.3.2 Method neglecting T ∗2 -relaxation

In clinical practice, it is preferred to have a one-on-one relationship between
the relative signal enhancement and the CA concentration. Such a closed-form
solution of eq. 4.4 can be obtained by assuming that the T ∗2 -relaxation of the
SPGRE signal intensity, caused by the presence of the CA, can be neglected.
In this case E2 ≈ E20 and eq. 4.4 can be solved analytically to yield an
approximated solution Capp for the CA concentration:

Capp =
1

r1TR
log

[
E10

1 + cos(α)(Ξ(E10 − 1)− 1)
Ξ(E10 − 1) + E10(1− cos(α))

]
(4.11)

This method was proposed by Zhu et al. [64] and it is used in a majority of the
quantitative DCE-MRI studies [18,19,90,107,158].
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4.3.3 First order correction for T ∗2 -relaxation

This section describes the work presented in [34]. Although the T ∗2 -neglecting
conversion method is easy in use and widespread accepted in the DCE-MRI
community, it breaks down at the high arterial concentrations that have to
be measured for the monitoring of the AIF ( [34], section 4.4). At these con-
centration values, the assumption that E∗2 ≈ E∗20 is no longer valid, and Capp
severely underestimates the true CA concentration. Therefore in this section, a
new closed-from approximated solution of eq. 4.4 is derived, that accounts for
a first order approximation of T ∗2 -relaxation. To do so, a variable Φ is defined,
that can be calculated from the measured signal enhancement:

Φ =
(1 + Ξ)(E10 − 1)
E10cos(FA)− 1

(4.12)

(4.13)

Eq. 4.4 can now be rewritten:

Φ =
E1 − 1

E1cos(FA)− 1
E′2 (4.14)

Solving this equation for E1 and taking the natural logarithm yields:

TRr1C = log(E10) + log

[
cos(FA)Φ− E′2

Φ− E′2

]
(4.15)

To account for T ∗2 -relaxation, the right hand term in eq. 4.15 is approximated
by a first order taylor expansion around TEr2C = 0, which agrees with the
assumption that E∗2 ≈ E∗20. This yields the final first order solution for the CA
concentration Cfo:

Cfo =
κ1

r1TR − r2TEκ2
(4.16)

κ1 = log

[
E10

cos(FA)Φ− 1
Φ− 1

]
(4.17)

κ2 =
1

cos(FA)Φ− 1
− 1

Φ− 1
(4.18)

When TE = 0 or r2 = 0, Cfo is identical to Capp. In comparison with the
T ∗2 -neglecting method, our method thus requires the calculation of one extra
parameter κ2 and the knowledge of TE and r2 for determining the CA concen-
tration [34].

4.3.4 Method assuming signal linearity

Several early studies, concerning pharmacokinetic modeling of SPGRE-
measured concentration data use a linear relationship between relative signal
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enhancement and the CA concentration. The validity of the method is con-
strained to concentrations for which TRr1C << 1 and TEr2C << 1 in tissues
where TR << T10. Under these circumstances the exponentials in eq. 4.4
can be linearly approximated to yield the linear approximation for the CA
concentration:

Clin =
1

T10r1
Ξ (4.19)

The validity of this conversion method can be seen on the right panel of
fig. 4.1. For small concentrations (< 1mM) the relative signal enhancement
appears to be independent of the pulse sequence settings and proportional
to the CA concentration. For higher concentrations, however, the accuracy
of this methods drops swiftly and Clin is seen to underestimate the true
concentration values severely. This is confirmed by the study of Heilmann
et al., who found errors up to 60% in the pharmacokinetic parameters when
using a linear conversion method [33]. Therefore, this method will not be
further investigated in the rest of this chapter.

4.4 Contrast agent accuracy

In this section the accuracy of the approximated conversion methods, Capp
and Cfo, are investigated theoretically by means of simulations. Remark
that we have only investigated the inaccuracies caused by the conversion
methods. For inaccuracies in the CA concentration caused by the MR-
related errors as mentioned in section 2.7, we refer to [30]. A small in vivo
study measuring the AIF in mice, was performed and the results of these
approximated methods are compared with the results of the numerical method.

4.4.1 Simulations

A simulation program was written in Matlab (Mathworks, Ma) to compare
the performance of the Capp- and Cfo-expressions2, in both blood and
tumor tissue, for the 4 DCE-MRI studies from table 4.1. In blood, the
simulations were performed for a typical arterial concentration range, 0-10
mM of the concerned Gd-chelates. In tumor tissue, a concentration range
up to 2 mM is sufficient [19, 90, 107, 139]. For blood a T10-value of 1250ms
is assumed [44], while for tumor tissue T10 is set to 675 ms [45]. For both
conversion equations, the knowledge of T ∗20 or M0 is abundant. Appropriate
r1- and r2-values in both tissues are selected from literature ( [44], or table
2.2). For every concentration within the concerned ranges, the SPGRE
signal intensity is computed. Contrast agent concentration is recalculated

2In simulations, Cnum would automatically equal the simulation input value
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from the relative signal enhancement with eq. 4.11 or with eq. 4.16 respectively.

Fig. 4.4 shows the procentual underestimation of the CA concentration
by the Capp- (dotted lines) and Cfo expressions (full lines) for the 4 pulse
sequences under consideration. The peak concentrations in blood are severely
underestimated by Capp. For an actual concentration of 10mM, the true
concentration is underestimated ranging from 17.5% for PS1 up to 43% for
PS4, showing that of the neglection of T ∗2 -relaxation is no longer valid at these
high concentrations. Cfo reduces the concentration error over the complete
range. For concentration beneath 5mM, Cfo differs less than 1% of the true
concentration for PS1-PS3, while for PS4 the error is reduced with a factor
ten. For 10mM, error is decreased up to 6-fold for PS1, while for PS4 our
method renders inaccurate as well at high concentrations. In tumor tissue,
the error reduction by using the Cfo-expression is comparable, but the errors
associated with Capp are much smaller. Cfo can be considered as identical
to the numerical method for concentration calculation in tumor tissue, while
neglecting T ∗2 -relaxation causes concentration errors ranging from 1% for PS1
to 6% for PS4.

From fig. 4.4 it is clear that the concentration range, in which a conversion
method preserves an acceptable accuracy, depends strongly on the pulse se-
quence parameters. Therefore, in fig. 4.5 the errors associated with Capp (dot-
ted lines) and Cfo (full lines) are plotted against the concentration relative to
the maximal measurable concentration Cmax (T10=1250 ms). Values of Cmax
are mentioned in table 4.1. The two sets of lines for the 4 pulse sequences under
investigation nearly coincide. This observation indicates that for the evaluation
of the accuracy of the conversion methods, a procentual concentration value
relative to Cmax rather than an absolute concentration boundary has to be
used. Our method remains 5% accurate for concentrations up to 45%-50% of
Cmax. Afterwards the accuracy drops swiftly and Cmax is underestimated up
to 35%. As Cmax for PS4 equals 11.5mM, this explains why our method fails
above 6mM in blood (fig. 4.4). For the T ∗2 -neglection method, errors of 5%
already occur at 14-17.5% of Cmax. To investigate the influence of the choice
of T10 on these boundary values for accurate concentration conversion, we have
simulated similar curves as in fig. 4.5 for T10 = 200 ms and T10 = 675 ms.
As no significant shift in the curves could be seen, these results are not shown
in the figures. Nevertheless they indicate that the relative boundary values
obtained above are independent of T10.

4.4.2 in vivo AIF measurement

The approximated conversion methods Capp and Cfo were compared with
the numerical conversion method in vivo, by measuring the arterial input
function in 2 nude mice (athymic nu/nu, Harlan, The Netherlands). Before
MR examination, both animals were sedated with an intraperitoneal injection
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Figure 4.4: Procentual error in contrast agent concentration when calculated with
a T ∗2 -relaxation neglecting method (eq. 4.11, dotted lines) or with a
method comprising a first order correction for T ∗2 -effects (eq. 4.16, full
lines) for 4 different pulse sequences. Pulse sequences details can be
found in table 4.1. A. for typical CA concentrations in arterial blood.
B. for typical CA concentrations in tumor tissue.
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measurable concentration, for the T ∗2 -relaxation neglecting method (eq.
4.11, dotted lines) and the conversion method comprising a first order
correction for T ∗2 -relaxation (eq. 4.16, full lines). Pulse sequence details
and Cmax-values are mentioned in table 4.1.
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of ketamine/xylazine. Dynamic MR imaging was performed on a Siemens
Symphony 1.5T scanner. 3D SPGRE images (TR/TE = 6.78/2.78 ms) were
acquired with a 384 x 384 x 60 matrix of 0.3 x 0.3 x 2 mm voxels in 9
minutes/dataset. A total of 4 pre-contrast scans was obtained with nominal
flip angles of 8°, 12°, 20° and 30° for T10 mapping. The dynamic series
consisted of 9 scans with a flip angle of 12° at 5, 20, 35, 50, 65, 80, 95, 110 and
120 minutes after the injection of a Gd-DOTA bolus (0.1 mmol/kg, Dotarem,
Guerbet, France). Postprocessing is done in Matlab (Mathworks, Natick, Ma).
The AIF is extracted manually in the aorta ascendens. Signal intensities from
the dynamic series are converted to Gd-DOTA concentrations with eq. 4.4,
eq. 4.11 and eq. 4.16 respectively. S0 is obtained from the pre-contrast scan
with FA=12°. T10 is calculated from the pre-contrast scans [50].

Fig. 4.6 shows the AIF calculated with three conversion methods, for the
signal intensity measured in the aorta descendens of two mice. The maximal
measurable Gd-DOTA concentration in blood for the associated MR-settings
is for both mice 6.6 mM. The measured peak concentrations of 1.7 and 1.9
mM, are underestimated by 12% and 14% respectively with Capp and by 0.5%
and 0.9% respectively with Cfo. This is in very good agreement with the
results of the simulations: the respective peak concentration are 26% and 29%
of Cmax. These values are within the range, predicted from our simulation, in
which the Cfo-expression remains 5% accurate, but outside the similar range
for the Capp-expression. Concentrations beneath 0.5 mM are measured equally
accurate with the three conversion methods.

4.4.3 Consequences for pharmacokinetic modeling

In this section we have investigated the errors in CA concentration measure-
ment with SPGRE pulse sequences caused by the neglection of T ∗2 -relaxation,
and we have proposed an easy-to-perform method comprising a first order
correction for T ∗2 -effects. Our simulations show that the concentration range
for which a given conversion method is accurate, is strongly dependent on the
pulse sequence parameters employed in the study. However, when expressing
this range as relative to the maximal measurable concentration, this variation
largely dissappears, and coarse relative boundaries can be determined, that
are valid for any study design. The T ∗2 -neglecting method, based on the
assumption that E∗2 ≈ E∗20, produces 5% accurate concentration values,
for CA concentration up to only 14-17.5% of Cmax. While for most pulse
sequences, this range covers the physiological concentrations found in tumor
tissue, it does not comprise the typical blood concentrations encountered
when measuring the arterial input function. Nevertheless many DCE-MRI
studies use the T ∗2 -neglecting method to convert the signal intensity variation
into concentration curves as it yields an analytical solution linking a relative
signal enhancement to a single CA concentration [18, 19, 64, 90, 107, 158]. The
newly proposed method, comprising a first order correction for T ∗2 -relaxation,
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Figure 4.6: Gd-DOTA arterial input functions, calculated from the SPGRE signal
intensity in the aorta descendens of two mice, with 3 different conversion
methods (TR/TE = 6.78/2.78, FA = 12°). The conversion methods are
described in the text.



Chapter 4 83

combines the simplicity of the T ∗2 -neglecting method, with the accuracy of
the exact method for CA concentrations up to 45-50% of Cmax. In tumor
tissue, our method can be regarded as identical to the numerical conversion
method, while for 3 pulse sequences under consideration [90, 107, 139], blood
concentrations up to 10mM can be calculated with 5% accuracy. For the
pulse sequence of Padhani et al. [19], the 5% accuracy limit is at 5.6 mM as a
consequence of the lower Cmax-value. Schabel & Parker recently showed that
concentration values above 50% of Cmax are subject to high uncertainties,
i.e. they cannot be precisely determined, even at high signal-to-noise ratios.
As a heuristic optimization method for pulse sequence parameters, they
advice that the largest concentration to be measured is at most 50% of Cmax,
for acceptable concentration uncertainty. In this approach, our first order
method can be of great value for improving the accuracy of the concentration
calculation, with the same simplicity of the widespread accepted Capp-method.
The only cost of applying the Cfo-expression is that it requires the knowledge
of the echo time TE and the tranverse relaxation coefficient r2 in the tissue of
interest. This r2-value can, however, be found in literature [44] or determined
from an in vitro experiment, as it is performed in many studies to determine
r1 [30, 107]

The simulation results are confirmed by the results from the in vivo AIF
measurement in mice. The measured peak concentrations are respectively
26% and 29% of the corresponding Cmax. Therefore, the T ∗2 -neglecting
method fails with concentration underestimation ranging up to 14%, while
our first order approximation yields accurate concentration values when
compared with the exact conversion method. Incorrect determination of the
AIF, and in particular of the peak concentration, has been acknowlegded
as an important error source affecting the accuracy of the kinetic param-
eters [50, 89, 139, 141]. Cheng et al. found that the relative error in the
transendothelial transfer constant Ktrans is roughly inversely proportional
to the relative error in the AIF amplitude [27]. This suggests that a 15%
underestimation of the AIF peak, that can result from neglecting T ∗2 -decay
for all pulse sequences under consideration, causes a 15% overestimation of
Ktrans. This emphasizes the importance of incorporating T ∗2 -relaxation for the
determination of the AIF, which can easily be done with our first order method.

4.5 Contrast agent precision

In this section, the precision of the MR-measured concentration values is in-
vestigated. Consider a voxel containing a concentration Creal. In the previous
section, it was shown that the mean concentration, calculated from relative
signal enhancement approximately equals Creal, under the condition that an
appropriate conversion method is employed and that the MR-related errors are
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minimized. However, as a result of the noise on the MR-signal intensity, an
uncertainty is present on the calculated concentrations. In this section an an-
alytical expression is derived for this uncertainty and the type of distribution
of the calculated concentration is investigated in an in vitro experiment. This
section contains results presented in [25].

4.5.1 Theoretical derivation

Consider again the voxel containing a CA concentration Creal, corresponding
with a MR signal intensity Sreal. In practice, the measured MR-signal S arising
from that voxel can be described by a gaussian distribution with mean Sreal
and standard deviation σS [159]:

fS(S | Sreal, σS) =
1√

2πσS
e
− (S−Sreal)

2

2σ2
S (4.20)

The noise standard deviation σS is a constant for a given pulse sequence de-
sign (see section 2.3.3), independent of Sreal and thus independent of the CA
concentration [157]. If the noise in the dynamic series is the only error source
under consideration (thus neglecting the noise on the pre-contrast-signal S0)
and concentration is calculated from the relative signal enhancement, the stan-
dard theory of error propagation predicts the variance of the concentration
distribution:

σ2
C = σ2

S

[
dC

dS

]2

(4.21)

4.5.2 In vitro validation

To test this concentration uncertainty expression (eq. 4.21) and to investigate
whether the resulting concentration distribution remains gaussian, in vitro
experiments were performed with a dilution series of Gd-DOTA in deionized
water at room temperature (r1 and r2 from [44] or table 2.2) in a typical
tissue concentration range from 0 to 2 mM on a 1.5T Symphony scanner
(Siemens, Germany). 11 vials, approximately 1 cm in diameter and 7 cm in
length (0.000, 0.020, 0.050, 0.075, 0.10, 0.20, 0.40, 0.50, 0.75, 1.0, 2.0 mM),
were placed in the magnet bore parallel to the main magnetic field to reduce
susceptibility-induced image distortion at the air-fluid interface. 3 sets of 50
subsequent images were captured with the in-house IR-SPGRE pulse sequence
(see section 2.4.3). Each set had a distinctive inversion time (TI = 412-560-700
ms, TR=5000 ms, TE=3.42 ms, FA = 12°, imaging matrix 192 x 192, spatial
resolution 0.5 mm x 0.5 mm, slice thickness 7.5 mm). Different inversion
times were considered since the signal intensity derivative with respect to the
concentration of the IR-SPGRE sequence (eq. 2.28) is most sensititive to
variations in this parameter. For every image set, M0 and R10 were calculated
from a fit of the mean measured signal intensities in the vials to the signal
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Figure 4.7: Experimental concentration uncertainty plotted against uncertainty
predicted by eq. 4.21. (TR = 5000 ms, FA = 12°, TE = 3.42 ms,
r1 = 3.5 mM−1s−1).

intensity equation. S0 was estimated as the average signal intensity in the
water filled vial. With these values the distribution of 200 signal intensities in
every vial, stemming from 4 voxels in 50 subsequent images, was transformed
into a concentration distribution. Concentration calculation was performed
in Matlab, based on the relative signal enhancement, with the numerical
method as described above. The chosen voxels were located centrally in
the vials to exclude partial volume effect at the boundaries. The resulting
concentration distribution of every vial was tested for gaussianity with a
Kolmogorov-Smirnov test [160]. The experimental standard deviation is
plotted against the standard deviation predicted by eq. 4.21. For every image
set, Pearsons correlation coefficient between experimental and theoretical
standard deviation is calculated. The noise variance σ2

S for every image set is
determined as the average variance of the different signal distributions. The
inverse derivative in of IR-SPGRE signal equation is calculated analytically
and evaluated in the vial concentrations.

The measured standard deviations σC of the concentration distributions
are plotted against the theoretical values according to eq. 4.21, in fig. 4.7.
Pearson’s correlation coefficient between both values is above 0.95 for the
three image sets, showing experimental validity of eq. 4.21 for the IR-SPGRE
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Figure 4.8: Relative concentration uncertainty for 4 pulse sequences (table 4.1) plot-
ted versus CA concentration (A) and versus CA concentration relative
to maximal measurable CA concentration (B).

sequence. From a kolmogorov-smirnov test, all concentrations distributions
did not significantly differ from gaussian at the 5%-level (p>0.43). Mean
concentration values of the distributions were within -8% and +6% of the
preassumed vial concentrations. These results indicate that eq. 4.22 is a valid
assumption for the concentration distribution:

fC(C | Creal) =
1√

2πσC
e
− (C−Creal)

2

2σ2
C (4.22)

σC = σS

[
dS

dC

]−1

C=Creal

(4.23)

Although the in vitro results were obtained with an IR-SPGRE sequence, there
is no reason to doubt the validity of this distribution for SPGRE-pulse se-
quences.

4.5.3 Consequences for pharmacokinetic modeling

In fig. 4.8A the relative concentration uncertainty (σC/C) for the 4 pulse
sequences from table 4.1 are plotted against the absolute CA concentration
(M0/σS = 200, T10/T

∗
20=916/200 ms). Small concentrations (< 0.1mM) ex-

hibit high relative uncertainties for all 4 pulse sequences under consideration.
The noise levels on the SPGRE signal intensity are of the same order of
magnitude as the signal changes in this concentration range, making precise
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determination impossible. Higher concentrations have lower uncertainties,
but the concentration range that can be measured with acceptable precision
is clearly dependent on the pulse sequence settings. At the current SNR
(M0/σS), this range could roughly be estimated as 0.1 to 10mM for PS4, and
as 0.5 to beyond 10mM for PS1-PS3. In chapter 5, the influence of the pulse
sequence parameters on this range is investigated and a simple procedure
is proposed to find the optimal of the flip angle for precise determination
of a given concentration range. Fig. 4.8B shows the relative concentration
uncertainty as a function of the concentration relative to Cmax. Again some
general conclusions may be drawn: for concentrations above 50-60% of the
maximal measurable concentration, a steep increase is seen in their relative
uncertainties. This is in accordance with the findings of Schabel & Parker [30],
who proposed Cmax/2 as an upper limit for concentrations to be measured
with acceptable precision. Schabel & Parker, however, also take into account
the uncertainty on the pre-contrast signal intensity S0, which results in
lower precision values for concentrations calculated from the relative signal
enhancement than those obtained by eq. 4.23 and in fig. 4.8. Throughout this
work, this S0-uncertainty is consistently neglected. Generally, the pre-contrast
signal intensity is measured a number of times, denoted NB , and the average
S0-value over NB images is taken to calculate the relative signal enhancement.
This average value has an standard deviation given by σS/

√
NB . Therefore

by increasing NB , a high S0-precision can be achieved, and the validity of eq.
4.23 is preserved.

Other consequences for pharmacokinetic modeling are discussed in the next
chapters. In chapter 6 a new estimator is proposed for the fitting of pharma-
cokinetic models to DCE-MRI measured concentration data, as the commonly
used least square estimator is not optimal for data with varying variance. It
is shown that the concentration distribution (eq. 4.22 & eq. 4.23) has to be
taken into account when calculating confidence intervals on the estimated
pharmacokinetic parameters. Furthermore, in chapter 8, it is observed that
SPGRE pulse sequences operating at a reduced repetition time, but with
corresponding higher temporal resolution (see eq. 2.21), do not necessarily
produce more precise pharmacokinetic estimates. This effect is induced by
the higher concentration uncertainty when TR is reduced, and can be seen for
concentrations beneath 5mM in fig. 4.8: concentration uncertainty is higher in
pulse sequences with a smaller repetition time. Finally, it should be mentioned
that the concentration precision is only dependent on the conversion method
used. The accuracy of the MR-measured concentration is dependent on the
conversion method and on a number of MR-related errors, that reduce the ac-
curacy of the SPGRE signal intensity equation. The precision, however, is not
changed by these errors, but is only reliant on the method used for conversion.
This is an important remark for the rest of this work, as for precision analysis of
pharmacokinetic modeling estimates, these errors do not have to be considered.
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Chapter 5

Flip angle optimization for
dynamic contrast-enhanced
MRI studies with spoiled
gradient echo pulse
sequences

5.1 Introduction

5.1.1 Concentration noise

In the previous chapter the concentration uncertainty has been analysed and
discussed. It was shown that the noise on the MR signal intensity is trans-
formed to concentration noise, whose extent depends on the pulse sequence
design and the CA concentration itself. In this chapter, the derived analytical
uncertainty expression is further investigated for SPGRE pulse sequences. In
chapter 2, it was explained that the choice of SPGRE pulse sequence settings
comprises a trade-off between field of view, spatial and temporal resolution
and signal-to-noise ratio (SNR). However, a freedom exists in the choice of
the flip angle, that has been exploited by other authors for optimizing the
SNR [42] or the T1-dependent contrast [161]. The flip angle also influences
the concentration uncertainty, and an unappropriate choice may unnecessar-
ily cause higher concentration noise levels, leading to reduced pharmacokinetic
parameter precision [23]. Evelhoch was the first to propose a well-considered
flip angle selection to facilitate concentration measurement with SPGRE-pulse
sequences, but he did not quantify his idea [31]. Schabel & Parker recently
demonstrated the existence of a flip angle that minimizes concentration uncer-

89
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Table 5.1: Left: overview and description of the 6 parameters that influence the
value of the optimal flip angle. Right: Dimensionless quantities used
throughout this chapter and their ranges.

Parameter(s) Description Dimensionless Range
quantity

∆C concentration range to be measured γ 0.01-1
r1, r2 CA relaxivity coefficients R10TR 0.001-1
TR, TE SPGRE-pulse sequence parameters ∆R1TR 0-10
R10 native relaxation rate R1TR 0.001-10

tainty for a single concentration [30]. In their analysis this optimal flip angle
depends on the longitudinal and transverse relaxivity coefficients of the CA, the
native relaxation rates of the tissue of interest and the number of pre-contrast
scans. Consequently every study design requires a separate computational op-
timization procedure to find the optimal flip angle. Moreover, as the optimal
angle is highly dependent on the CA concentration as well, it is difficult to
select from this analysis a single flip angle that is suitable for the complete
CA concentration range typically encountered in kinetic modeling studies (0-
10mM). This chapter therefore gives an overview of the procedure that we have
proposed in [162], to select the optimal flip angle for pharmacokinetic modeling
studies employing SPGRE-pulse sequences.

5.1.2 Aim & methodology

In this study it is aimed to find the optimal flip angle αopt in a DCE-MRI
study with a SPGRE sequence, given the sequence parameters, the tissue(s)
of interest and the expected CA concentration range therein. The chapter
begins with an overview of the literature concerning flip angle optimization
for SPGRE-sequences, namely the ernst angle for maximizing SNR and the
pelc angle for optimizing T1-dependent contrast between tissues. Afterwards,
our analysis starts by deriving a theoretical expression for the flip angle
αC that minimizes concentration uncertainty for a single concentration in a
SPGRE-measurement. It is shown that this flip angle is only dependent on
two dimensionless variables. When T ∗2 -effects caused by the presence of the
CA can be neglected, our analysis predicts that minimizing concentration
uncertainty is equivalent to maximizing the local T1-contrast. It will be shown
that, for physiological CA concentrations occuring in most human tissues,
αC can be approximated by the pelc angle, which is only dependent on 1
dimensionless variable. An optimization procedure is then proposed for finding
the best suitable flip angle αopt for the imaging of a complete concentration
range. Exploiting the pelc approximation, it is demonstrated that αopt can
be estimated from two dimensionless variables and can easily be deduced
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from our contour plots for any study design. To test the consequences of
this optimal flip angle selection for kinetic parameter reproducibility, kinetic
modeling simulations are performed. Finally an in vivo study, in which test
animals are scanned at different SPGRE flip angles, is reported as a proof of
concept.

It is important to mention, that in order for flip angle optimization to be fea-
sible, a linear relationship between the R1 and R∗2-relaxation rates and the CA
concentration has to be assumed (see section 2.5). Proportionality coefficients
are r1 and r2, the longitudinal and tranverse relaxivity coefficients respectively:

R1 = R10 + r1 C (5.1)
R∗2 = R∗20 + r2 C (5.2)

The challenge of flip angle optimization is not in its mathematical derivation,
but rather in the identification of those variables which have a significant
influence on its value. From the analysis in chapter 4, the precision of a
SPGRE measured concentration is dependent on 7 parameters1: the concen-
tration itself, the flip angle α, r1 & r2, the repetition time TR & the echo time
TE , R10 and the SNR. As the flip angle has no influence on the SNR2, its
optimal value for the measurement of a concentration range, ∆C, is therefore
dependent upon 6 parameters, which are all summed in table 5.1. The merit
of the analysis in this chapter is mainly in the identification of 3 dimensionless
parameters, all combinations of the 6 variables in table 5.1, from which optimal
flip angle selection can be performed based on 2 contour plots: γ = r2TE

r1TR
is a

measure for the T ∗2 -effects caused by the presence of the CA, relative to the
associated T1-effects. R10TR is the product of the repetition time with the
native longitudinal relaxation rate. ∆R1TR = r1∆C TR is the product of the
repetition time with the total change in longitudinal relaxation rate, caused
by the presence of the CA. These parameters are also mentioned in table 5.1,
together with their ranges. To find these relevant ranges for the dimensionless
variables, 10 recently published DCE-MRI studies were examined which are
summarized in table 5.2 [18, 19, 37, 65, 66, 90, 135, 139, 141, 163]. These studies
employ 3 different CA’s, whose r1- and r2 -relaxivity coefficients are obtained
at 1.5T from the study of Rohrer et al. ( [44] or table 2.2). In the ten studies,
γ varies between 0.010 and 0.62. Taking into account the increasing r2/r1

ratio at increasing field strengths [44], the range for γ was set from 0.01 - 1.
Vincensini et al. measured the native longitudinal relaxation times in normal

1When CA concentration is calculated by means of the relative signal enhancement, Npre,
the number of pre-contrast scans has to be accounted for. However as explained in the
previous chapter this is neglected. In section 5.7 the consequences are discussed. Remark
that R∗20 is of no interest when relative signal enhancement is used (see chapter 4)

2Remind that we have defined the SNR as M0/σS , on which the flip angle has no influence.
Other authors define the SNR as the measured signal intensity divided by σS , which is of
course influenced by the flip angle.
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glandular tissue and in benign and malignant breast lesions. They found
that T10 varied between 375 and 1800 ms [45]. The results from Buckley et
al. in prostate tumors and muscle were all within this range [18]. Given the
TR-values in table 5.2, 0.001 - 1 is a safe range for R10TR. The concentration
range that occurs in a DCE-MRI study depends to a large extent on the
determination method for the arterial input function (AIF). As explained in
chapter 3, the AIF describes the concentration variation in the tumor capillar-
ies and has to be known in advance to estimate the kinetic parameters. If the
AIF is to be measured individually, Gd-DTPA concentrations up to 10 mM in
blood can be expected [21]. However, if the reference region method (RR) is
employed [145,164], a standard population averaged AIF [19,66] is used, or the
AIF is jointly estimated with the kinetic parameters [150], tissue concentrations
up to 2 mM should be measured (see section 3.4). Therefore, an appropriate
range for ∆R1TR is set to 0-10. The fourth dimensionless parameter that is
mentioned in table 5.1 and used throughout this chapter, R1TR, is the sum
of R10TR and ∆R1TR (eq. 5.1). Its range is therefore set to 0.001-10. For
other contrast agents with higher r1-relaxivity coefficients, these values hold as
the injected dose and resulting peak concentrations will typically be lower [165].

Table 5.2: SPGRE-pulse sequence parameters and contrast agent (CA) for 10 re-
cent DCE-MRI studies [65,66,90,112,135,139–141,163,166].

Study TR [ms] TE [ms] CA γ α [◦]
Batchelor 5.7 2.73 Gd-DTPA 0.54 10
Buckley 2.5 0.86 Gd-DTPA-BMA 0.42 30

Galbraith 80 9 Gd-DTPA 0.13 70
Hodgson 4.5 2 Gd-DOTA 0.53 30
Padhani 35 5 Gd-DTPA 0.16 70
Parker 4 0.82 Gd-DPTA-BMA 0.25 20
Pickles 7.6 4.2 Gd-DTPA 0.62 30

Schwenzer 3.91 1.45 Gd-DTPA 0.42 20
Yang 7.8 1.7 Gd-DTPA-BMA 0.26 60

Yankeelov 200 1.8 Gd-DTPA 0.010 30

Three of the studies from table 5.2 were used in practical examples throughout
this chapter (Batchelor, Yang & Parker). Especially the study of Parker et
al. was of particular interest from our point of view: they aimed to find a
population averaged AIF by performing a total of 67 blood concentration
measurements in the aorta or in the iliac arteries in a population of 23 cancer
patients. Gd-DTPA-BMA blood concentrations up to 10mM were found. At
every time point they analysed the standard deviation of the calculated blood
concentrations, which is suitable to compare to our theoretical results.
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5.2 Flip angle optimization in SPGRE-pulse se-
quences

In this section an overview is given of the well known flip angles in MR-literature
for maximizing signal intensity and T1-dependent contrast in SPGRE pulse
sequences.

5.2.1 Maximizing SPGRE signal intensity

The flip angle, maximizing SPGRE signal intensity in a tissue is known as the
ernst angle [42]. It can be derived by setting the derivative of the SPGRE
signal intensity equation with respect to the flip angle to zero and depends on
the repetition time and the tissue’s longitudinal relaxation time.

αE = acos(E1) (5.3)
E1 = exp(−TR/T1) (5.4)

If the SNR is defined as the ratio of the measured signal intensity S to the
noise standard deviation σS , the ernst angle maximizes the SNR. Throughout
this work however, SNR is defined as M0/σS , M0 being the proportionality
factor of the SPGRE signal intensity (eq. 2.27), on which the flip angle has no
influence.

5.2.2 Maximizing contrast-to-noise ratio

When the radiological investigation aims at distinguishing two or more tissues
with different T1-values, it is useless to maximize the SNR. Instead, the signal
difference between the two tissue should be maximized, i.e. the contrast-to-
noise ratio, to facilitate radiological interpretation on greyscale images. The
optimal flip angle in this case has been derived by the analysis of Buxton,
Pelc and Haselhoff [161, 167, 168]. Suppose an optimal distinction should be
visible between tissues with longitudinal relaxation times T1a and T1b. When
the tissues have comparable T ∗2 and proton density or when their influence can
be neglected, the signal difference or contrast is given by:

∆S = sin(α)
[

1− E1a

1− cos(α)E1a
− 1− E1b

1− cos(α)E1b

]
(5.5)

with E1a and E1b similarly defined as in eq. 5.4. An analytical expression
exists for the flip angle maximizing this contrast [168]:

αd = acos

−Ē1
2

+ Ē1 − 1 + δ2 +

√
Ē1

4 − (2δ2 + 2)Ē1
2

+ δ4 − δ2 + 1

Ē1 − 2Ē1 − δ2

(5.6)
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Ē1 =
E1a + E1b

2
(5.7)

δ =
E1a − E1b

2
(5.8)

In practive however, optimization is required for tissues with similar relaxation
times, which under sub-optimal conditions, are difficult to distinguish from one
another. Taking the limit for δ → 0 of eq. 5.6 yields:

αPelc = acos

[
2E1 − 1
2− E1

]
(5.9)

This is the pelc flip angle that maximizes local T1-contrast [161, 167], i.e. for
which ∂S/∂T1 is maximal. Pelc showed that this expression, with E1 evaluated
in the average T1-value of the two tissues under investigation, is a sufficient
approximation of eq. 5.6. Even if the difference in the T1-values ,∆T1, equals
the average of the T1-values, the contrast loss remains less than 1%. Therefore,
this pelc angle is widely used to optimize T1-dependent contrast between tissues
in SPGRE-sequences.

5.3 Flip angle optimization for a single concen-
tration

In this section a theoretical expression is derived for αC , the flip angle
maximizing concentration precision for a fixed concentration. A practical
example is used to demonstrate the potential of flip angle optimization
and to show (again) the existence of a maximal measurable concentration.
Afterwards, the expression for the concentration uncertainty, as derived in
chapter 4, is repeated and used to calculate αC . Finally, it is shown that the
pelc angle is a sufficient approximation for αC . Although αC is not the final
goal of this chapter, the theoretical expression and in particular the pelc angle
approximation will be exploited when deriving αopt

5.3.1 Practical example

Flip angle optimization for a single concentration aims at minimizing the
concentration uncertainty for that given concentration, thereby enabling its
most precise measurement. It differs from the flip angle optimization for T1-
dependent contrast in the sense that T ∗2 -relaxation, caused by the presence of
CA, has to be accounted for. In fig. 5.1 the normalized signal intensity is
plotted for the pulse sequence of Batchelor (table 5.2) versus the concentra-
tion at 3 different flip angles. At C = 1mM the concentration uncertainty is
evaluated graphically. While the signal noise dS is equal in all three cases, the
concentration noise is severely reduced for the flip angle of 25◦, in comparison
with 10◦ or 60◦. This straightforward example proves that a proper flip angle
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selection is indispensable for DCE-MRI, although it has only been discussed
in 2 studies [30, 31]. Secondly, fig. 5.1 shows again the existence of a flip an-
gle dependent maximal measurable concentration Cmax, above which the CA
concentration cannot be determined unambiguously. This maximal measurable
concentration has been discussed in the previous chapter (section 4.2) and the
contour plot (fig. 4.2) that was derived is an important element in the final
flip angle optimization strategy. For now it is not clear why this maximum
measurable relaxivity rate plot is necessary for our optimal flip angle analysis.
In the following it will be shown that αopt can be accurately selected without
taking into account R∗2-effects. Therefore it will have to be verified that the R1-
relaxivity rate in the study does not exceed the R1mm, the maximal measurable
longitudinal relaxivity rate, at the optimal flip angle and the corresponding γ.
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Figure 5.1: Left: normalized signal intensity versus CA concentration
(T10/T ∗20=916/200 ms, Gd-DTPA, TR/TE = 5.7/2.73 ms) for
three different flip angles with indication of the maximal measurable
concentration Cmax. Right: graphical analysis of the concentration
uncertainty for C = 1 mM, at the three flip angles. dC is expressed in
mM (dS = 0.01).

5.3.2 Concentration uncertainty

When finite SNR is considered as the only error source, the concentration
uncertainy is given by (see chapter 4):

σC = σS

[
dS

dC

]−1

(5.10)

dS

dC
= M0TRr1E

∗
2

[
E1sin(α)(1− cos(α))

(1− cos(α)E1)2
− γ

sin(α)(1− E1)

(1− cos(α)E1)

]
(5.11)

γ =
r∗2TE
r1TR

(5.12)
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With E1 as defined in eq. 5.4 and E∗2 = exp(−R∗2TE). γ comprises the ratio
of transverse to longitudinal relaxivity rate changes for any CA concentration
and is therefore a measure of R∗2-effects relative to R1-effects. If SNR is defined
as M0

σS
, eq. 5.10 can be rewritten as:

σC =
1

SNR

1
TEr2E∗2

γ

[
E1sin(α)(1− cos(α))

(1− cos(α)E1)2
− γ sin(α)(1− E1)

(1− cos(α)E1)

]−1

(5.13)

5.3.3 Optimal αC

The flip angle αC , minimizing concentration uncertainty for a single concen-
tration in a given tissue of interest, can be derived by differentiating eq. 5.11
with respect to α and equating this expression to zero :

d[dS/dC]
dα

= 0 (5.14)

By factorizing the signal derivative as in eq. 5.11, it can easily be seen that αC
is only dependent on the 2 dimensionless parameters γ and R1TR. After some
mathematics (see appendix), αC can be determined from:

cos(αC) =

−E1(E1 + 1) + γ(1− E1)(1 + E2
1) + (1− E1)

√
9E2

1 − 2γE1(1− E2
1) + γ2(1− E2

1)2

2E1(E1 − 2 + γ(1− E1))
(5.15)

In fig. 5.2A αC is depicted in a contour plot versus γ and R1TR. For every
study design, summarized in the parameter γ, and every tissue of interest and
CA concentration, summarized in R1TR, αC can be read off fig. 5.2A. Fig.
5.2B shows the corresponding minimum values of the dimensionless variable
SNR · σC · TEr2E

∗
2 as determined from eq. 5.13, from which minimal σC for

the particular concentration can be calculated if SNR, TE , r2 and R∗20 are
known. The dashed vertical line shows the variation in αC and the concentra-
tion uncertainty along the complete concentration range in the study of Parker,
0-10 mM in blood, for the corresponding γ-value of 0.25 (table 5.2). αC varies
between 7.2◦ for the lowest concentrations, and 55◦ for the peak concentrations,
showing the need for further optimization to find the best suitable value of the
flip angle αopt, which is located between these boundaries.

5.3.4 Pelc angle as approximation for αC

In the limit for γ = 0, eq. 5.15 reduces to:

cos(αC) =
2E1 − 1
2− E1

(5.16)

which is identical to the pelc angle for optimizing T1-dependent contrast. This
can be expected on physical grounds as γ → 0, corresponds to r2/r1 → 0 or
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Table 5.3: Several properties of the DCE-MRI studies

Study Ccrit [mM] a αexopt [◦] b αopt [◦] b ∆σC [%] c αexopt [◦]b αopt [◦]b ∆σC [%]c

2mM in tumor tissue 10 mM in blood

Batchelor 33 23.6 23.4 108 47.6 45.5 -d

Buckley 89 15.9 15.9 30 32.3 31.8 1
Galbraith 5.9 76.9 74.9 1 -e -e -e

Hodgson 49 19.9 19.8 13 39.8 38.6 7
Padhani 12 55.0 54.1 6 97.2 90.3 33
Parker 80 20.1 20.0 0 40.2 39.6 65
Pickles 22 27.2 26.8 1 55.4 51.7 72

Schwenzer 59 19.5 19.4 0 39.3 38.4 62
Yang 40 27.9 27.7 50 54.9 53.3 1

Yankeelov 6.0 99.6 99.0 741 -e -e -e

a Ccrit is the concentration at which the pelc angle approximation of αC fails
b αexopt is the optimal flip angle calculated based on eq. 5.18. αopt is the approximation

of the optimal flip angle based on (eq. 5.22).
c ∆σC is the average percentage decrease in concentration uncertainty by using the

optimal flip angle instead of the flip angle employed in the study.
d For the flip angle in the study of Batchelor, 10 mM is above the maximal measurable

concentration in blood.
e No flip angle optimization is possible for 10mM for this study

TE/TR → 0. In both hypothetical cases the T ∗2 -weighting of the SI is neg-
ligible in comparison with the T1-weighting. The derivative of the signal to
the concentration is then proportional to the derivative of the signal towards
R1 (eq. 5.11) and minimizing the concentration uncertainty is equivalent to
maximizing the local T1-contrast dS/dT1. From fig. 5.2A no αC variation
with γ is seen, unless for high R1TR-values (> 1). This indicates that the pelc
flip angle may be a sufficient approximation for the exact αC , unregarded the
γ-value. Fig. 5.3 shows the percentage deviation of the pelc flip angle from
the exact αC for different values of γ (A) and the associated percentage loss
in dS/dC (B). The difference between the exact αC and its approximation is
marginal for small R1TR and rises up to 30% for high γ-values and large R1TR.
The associated change in dS/dC however, remains negligible up to a critical
R1TR-value where it begins to rise steeply to 100%. For the 10 different DCE-
MRI protocols, table 5.3 contains the critical concentration Ccrit where the
decrease in dS/dC, caused by using the pelc angle instead of the exact αC , ex-
ceeds 10%. This concentration was determined in a tissue with T10 = 1250 ms,
which corresponds with the T1 value of blood, as the highest concentrations are
to be expected in arteries. It is clear that these critical concentrations fairly
exceed the expected physiological concentrations in human tissues, except for
the two studies with the highest TR (Yankeelov & Galbraith). However both
studies measured only tissue concentrations (0-2mM) and did not perform AIF
measurement in blood [37, 66]. Therefore it may be concluded that for the 10
studies reported in table 5.2 and 5.3, the pelc angle is a sufficient approxima-
tion for αC , irrespective the γ-value of the study. Although this implies that
γ and its associated T ∗2 -effects have no significant influence on αC , they highly
affect the exact σC-values as can be seen from fig. 5.2B.
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Figure 5.3: A. percentage deviation between the pelc approximation for αC and its
exact value as a function of R1TR for different values of γ. B. corre-
sponding relative loss in dS/dC.

5.4 Flip angle optimization for a concentration
range

5.4.1 Optimal flip angle αopt

In this section the optimal choice for the flip angle αopt is derived when perform-
ing a contrast enhanced MRI study, given the expected concentration range and
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the tissue(s) of interest. In order to find this optimal value for a given con-
centration range, the average relative contrast with respect to the maximum
possible contrast ρ is introduced:

ρ =
1

∆C

∫ ∆C

0

dS/dC ′(α)
dS/dC ′(αC′)

dC ′ (5.17)

∆C is the upper bound of the expected concentration range, αC is the optimal
flip angle for an individual concentration as predicted by eq. 5.15 or eq. 5.16.
By maximizing ρ with respect to α, any concentration within the expected
range will be imaged with the smallest possible uncertainty. In other words,
the signal difference (in time or in space) between two voxels with slightly
different concentrations will be as high as possible for any concentration in
that given range. From eq. 5.11, it can be seen that eq. 5.17 does not contain
E∗2 -factors. This implies that ρ can be rewritten with E1 as the new integration
variable. Leaving behind the explicit dependency of αC to E1, ρ becomes:

ρ =
1

r1TR∆C∫ Emax1

Emin1

sin(α) [(1− cos(α))E1 − γ(1− E1)(1− cos(α)E1)] [1− cos(αC)E1]2

E1sin(αC) [(1− cos(αC))E1 − γ(1− E1)(1− cos(αC)E1)] [1− cos(α)E1]2
dE1

(5.18)

Emin1 = exp(−TR(R10 + r1∆C) = exp(−TRRmax1 ) (5.19)
Emax1 = exp(−TRR10) = exp(−TRRmin1 ) (5.20)

Emin1 and Emax1 are the expected minimum and maximum values for E1 in the
study, derived from the maximum and minimum R1-relaxivity rates, Rmax1 and
Rmin1 respectively. The best suitable value for the flip angle is again derived
by differentiating eq. 5.18 with respect to α and equating this derivative to
zero. As αC is function of E1 and γ, it can be seen from eq. 5.18 that αopt
will depend on Emin1 , Emax1 and γ. Finding αopt for any study design thus re-
quires computational optimization based on numerical integration of the above
integral. However, from the previous section it is known that in normal physio-
logical situations, the pelc-expression for αC differs only weakly from the exact
αC-value and that the associated contrast loss is negligible. Therefore the R1-
and R∗2-dependencies will be decoupled in the rest of the analysis. R∗2-effects
and the associated parameter γ will only be used to calculate the minimum
value of E1 that can be measured unambiguously, while its effects on optimal
flip angle will be neglected. For this latter purpose, only R1-influence will be
taken into account, which was already justified for a single concentration. Ne-
glecting R∗2-effects is equivalent to setting γ to zero and inserting eq. 5.16 for
αC in eq. 5.18 for ρ:

ρ =
1

r1TRC

∫ Emax1

Emin1

dS/dC ′(α)
E1dS/dC ′(αC′(E1))

dE1 (5.21)
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=
4

3
√

3
sin(α)(1− cos(α))
log(Emax1 /Emin1 )

∫ Emax1

Emin1

√
1− E2

1(1 + E1)
(1− cos(α)E1)2E1

dE1 (5.22)

sin(αC) is evaluated as the positive square root of (1 − cos(αC)2), as in the
flip angle range of 0 to π the sine is always positive. The integral in eq. 5.22
can be evaluated analytically, avoiding the need for numerical integration. The
primitive function is however very complicated and of little practical interest
and is therefore not mentioned. It was calculated by using the Symbolic Math
Toolbox in Matlab (Mathworks MA). For every (Emin1 , Emax1 )-pair expression
5.22 can be maximized with respect to α, and the resulting αopt can be depicted
in a contour plot. Fig. 5.4A is a contour plot of αopt as a function of the
Rmin1 TR and ∆R1TR, as obtained by maximizing eq. 5.22. Fig. 5.4B shows
the corresponding maximum value of ρ calculated with eq. 5.22. This value
only comprises the T1-effects caused by varying concentration and is therefore
an overestimation of the real value of ρ (eq. 5.18). αC can now be regarded
as a special case of αopt, for ∆R1TR = 0. Fig. 5.4A also states that when
Rmin1 < ∆R1/2, the tissue of interest is of little importance for the selection of
the optimal flip angle.

5.4.2 Validity of decoupling presumption

Table 5.3 contains the exact values αexopt for the optimal flip angle based on
numerical integration of eq. 5.18 for the 10 DCE-MRI studies under consider-
ation and for the 2 concentration ranges of the corresponding contrast agents
mentioned in the introductory section. The approximate values of αopt deter-
mined with eq. 5.22 and fig. 5.4 are given as well. For the typical concentration
range found in tumor tissue, both values are in good agreement. For two stu-
dies [37] [66], 10mM is above the maximum measurable concentration Cmax for
the corresponding γ. For the 8 others, the difference between the approximated
and exact value of αopt grows with increasing concentration, as can be expected
from enhanced T ∗2 -effects. However, the maximum difference (7%) [19] remains
small. It may therefore be concluded that fig. 5.4 yields a sufficient approx-
imation for the optimal flip angle, provided that at this flip angle, given the
γ-value of the study, the expected concentration range does not exceed Cmax.
The average percentage increase ∆σ in σC by using the flip angle employed in
the study (table 5.2) instead of αopt, for the 2 concentration ranges is also men-
tioned in table 5.3. For the study of Batchelor et al., the maximum measurable
concentration at a flip angle of 10◦ is smaller than 10 mM. From these values
it is clear that unadapted flip angle choice causes a severe and unnecessary
uncertainty increase on the concentration curve up to 741%.

5.4.3 Robustness and trade-off of optimization criterion

Fig. 5.5 is based on the study of Parker et al. and assumes an arterial concen-
tration range (0-10mM). Fig. 5.5A shows the ratio between the concentration
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uncertainty at the optimal flip angle of 40.2◦ (table 5.3) to the uncertainty at
several other flip angles, as a function of concentration. The flip angles are
20◦, employed in the study itself, and 7.2◦ and 55◦, the optimal flip angles αC
for the minimum and maximum concentration in the range according to fig.
5.2. The figure shows the trade-off that is made by the optimization criterion.
Flip angles beneath αopt are better for the smallest concentrations, but cannot
reasonably depict the higher part of the concentration range. Flip angles ex-
ceeding αopt cause better concentration precision for the higher concentrations
in the range at the expense of poorer precision for the smallest concentrations.
Eq. 5.21 integrates these sacrifices into one parameter ρ. ρ is plotted against
the flip angle in fig. 5.5B, for the study of Parker et al. The broad maximum of
this ρ vs. flip angle curve shows that our method is robust to misestimation of
the concentration range. According to fig. 5.4 an over- or underestimation will
lead to an corresponding over- or underestimation of αopt. This robustness to
misestimation of αopt or the concentration range, is mirrored in the ∆σ-values
of table 5.3 as well. For the study of Padhani et al., a 27% overestimation
of αopt (70◦ instead of 55◦) causes a mere 6% average σC-increase. A 12%
underestimation of αopt in the study of Galbraith et al., leads to a σC-increase
of only 1%.

5.5 Kinetic modeling simulations

A simulation environment in Matlab (Mathworks, MA) was written, to as-
sess the influence of the proposed flip angle selection on the reproducibility of
the kinetic parameters in a typical DCE-MRI experiment. For three of the
DCE-MRI studies mentioned above [135, 139, 141], two different approaches
were investigated: kinetic modeling with an individually measured AIF and
kinetic modeling with a standard (or population averaged) AIF. The kinetic
model employed in the simulations is the Tofts model with vascular contribu-
tion [16]. Kinetic parameters are the transendothelial transfer constant Ktrans

(min−1), the interstitial space fraction νe, and the plasma fraction νp. The
tissue concentration varies according to eq. 5.23.

Ct(t) = νpCp(t) +Ktrans

∫ t

0

Cp(t′) exp
[
−K

trans

νe
(t− t′)

]
dt′ (5.23)

In the simulations, 104 kinetic parameters combinations are randomly selected
from a physiologically relevant range (Ktrans = 0.05 - 1 min−1, νe = 0.05 -
0.5 , νp = 0.03 - 0.15). As AIF the population averaged parametrized curve
derived by Parker was used (haematocrit was set to 0.45, [139] or eq. 3.16).
For every kinetic parameter combination the tissue concentration curve is cal-
culated according to eq. 5.23, with a temporal resolution of 0.1 s (to avoid
aliasing errors). This tissue concentration curve is sampled with the temporal
resolution ∆t and for the total scan time Tscan of the DCE-MRI study un-
der investigation (∆t/Tscan = 5/250 s for Batchelor, 2/360s for Yang, 5/375s
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Parker et al. (αopt = 40.1◦, TR/TE=4/0.82 ms, Gd-DPTA-BMA con-
centration range = 10 mM in blood, T10=1250 ms). B: variation of
optimization variable ρ vs. flip angle.
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for Parker). To mimic a pixelwise variation in the native longitudinal relax-
ation time, T10 is randomly selected from the range 600 ms - 1000 ms. Using
the pulse sequence parameters TR and TE from the study, the signal intensity
curves are calculated for Gd-DTPA for a given flip angle according to SPGRE
equation (eq. 2.27). After the addition of white Gaussian noise (SNR = 600),
the noise contaminated signal curves are recalculated to tissue concentration
curves [30]. For the standard AIF approach, the kinetic parameters are de-
termined from a fit of this concentration curve to the Tofts model with the
standard AIF from Parker et al. [139]. For the patient-specific AIF approach,
the procedure is repeated for the AIF measurement. Assuming a T10 of 1250
ms for blood [44], the signal intensity curve is calculated, contaminated with
white Gaussian noise and recalculated to a concentration curve. The latter is
used in the fit procedure to estimate the kinetic parameters. The reproducibil-
ity of a kinetic parameter θ for a given flip angle is then evaluated by the mean
relative error MRE:

MRE(α) =
100
N

N∑
i=1

|θ̂i(α)− θi|
θi

(5.24)

N being the number of simulations (104). The flip angle values for which
the MRE is simulated, are chosen as the αopt-values for a concentration
range varying between 0 and 10 mM (and for the pulse sequence settings of
the considered DCE-MRI study). For the standard AIF approach this αopt
is determined with T10 set to its maximal value in tissue (1000 ms in this
simulation), for the individually measured AIF approach T10 is set to 1250 ms
(the value in blood). This is in agreement with the flip angle optimization
algorithm that will be proposed in section 5.7. It should be mentioned that
MRE is a measure for the kinetic parameters reproducibility in the kinetic
parameter range under investigation, as we did not consider other error sources
(such as partial volume effect or inflow effects, B1-field inhomogeneities, errors
in T10, errors in the AIF,...). The only parameter that was changed in the
simulations is the flip angle. Therefore, the noise in the concentration-time
curve will solely depend on the flip angle and MRE is a measure for the
resulting kinetic parameter reproducibility.

For three DCE-MRI studies from table 5.2, fig. 5.6 shows the evolution of
the mean relative error in a physiological relevant kinetic parameter range as
a function of the flip angle. However, this flip angle is displayed on the abcis
axis as the concentration range for which the DCE-MRI experiment has been
optimized. This enables us to check the validity and the robustness of our
optimization strategy and to make more practical recommendations about the
concentration ranges. For the individually measured AIF approach, this αopt
is calculated in blood (T10 = 1250 ms), while for the standard AIF approach,
the maximal T10-value (1000 ms) in the simulations is used to determine αopt.
The variation of this optimal flip angle with the expected concentration range
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Figure 5.6: Results of the kinetic modeling simulations for the settings of three
DCE-MRI studies. Mean relative error as a function the flip angle.
This flip angle is expressed as the concentration range for which it is the
optimal value (see text). The relationship between the flip angle and the
concentration range is plotted in the third column. Two approaches are
investigated: kinetic modeling with a individually measured AIF and
kinetic modeling with a standard AIF.

is plotted for each of the three studies in the right column of fig. 5.6. When
the AIF is measured together with the tissue concentration curves, flip angle
optimization is indispensable for kinetic modeling, with MRE reductions up to
82% for Ktrans, 82% for νe and 92% for νp. The minimum of the MRE-curve is
broad, implying that the optimization procedure for kinetic modeling purposes
is very robust to the a priori expected concentration range. Moreover a flip an-
gle optimization for a concentration range between 2-6 mM results in an almost
equal reproducibility in the kinetic parameter range under consideration. This
is in very good agreement with the true concentration range to be measured
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Table 5.4: Mean kinetic parameter values and their mean 95% confidence intervals
over the tumor region in three mice

Mean kinetic parameter values Mean 95% confidence intervals
α [◦] ∆C [mM] a Ktrans [min−1] νe [] νp [] Ktrans [%] νe [%] νp [% ]

15 - b 0.41 0.4 0.055 10.9 11.1 32.1
24 0.57 0.25 0.32 0.046 6.2 6.7 15.7
54 5.6 0.31 0.29 0.042 10.5 10.2 29.4

a ∆C is the concentration range for which the employed flip angle is optimized, with T10

set to its mean value over the tumor region
b The flip angle of 15◦ is smaller than the αPelc-value of the average T10 in the tumor

for this AIF (0-6.5 mM). For the standard AIF approach, MRE-reductions are
smaller, up to 53% for Ktrans, 59% for νe and 67% for νp. The minimum of
the curve is more narrow, but the optimization strategy remains robust. A
concentration range of 1-3 mM can be considered as a practical recommenda-
tion for kinetic modeling with this standard AIF and for this kinetic parameter
range. Again, this is in agreement with the true tissue concentration range to
be measured in the kinetic parameter range under consideration (0-2.5 mM).
Our simulations thus confirm that our optimization strategy, in which con-
centration uncertainty is minimized, results in optimal reproducibility of the
kinetic parameter estimates. As predicted by the results from table 5.3, the
flip angle in the study of Batchelor et al. is too small, while for the study of
Yang et al. the flip angle is too high. The study of Parker et al. seems to be
well developed for kinetic modeling purposes. However, these statements are
only valid when the true AIF resembles the AIF used in the simulations.

5.6 In vivo demonstration

Three Male athymic nude mice were grown in plastic cages with free access
to tap water and standard pellet food. A HT29 (human colorectal cancer)
cell line was cultured and 1 million cells suspended in 0.1 ml of saline were
injected subcutaneously in the hind leg of the mice. Scans were performed
after two weeks, when the tumors had a diameter around one centimetre. Mice
were anaesthetised with intraperitoneal injection of ketamine and xylazine.
A catheter was placed in the tail vein before positioning in the magnet
bore. Gd-DOTA was administered in bolus through this catheter (dose = 0.2
mmol/kg).

MRI measurements were performed on a Siemens Symphony 1.5 T scanner.
A 2-D SPGRE pulse sequence (TR/TE = 15 ms/ 4.1 ms, FOV = 10 cm x
10 cm, matrix size = 128 x 128, slice thickness = 5 mm) was employed,
with a different flip angle for each animal (α = 15◦ - 24◦ - 54◦). To avoid
differences in the calculation of the T10-map, each animal underwent 3 series
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Figure 5.7: In vivo measured concentration curves (black points) with a SPGRE
pulse sequence (TR/TE = 15/4.1 ms, Gd-DOTA) in the tumor of three
mice at different flip angles. The fit to the TK model is also shown
(grey full line). Kinetic parameter estimates and their respective 95%
confidence intervals are mentioned.
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of pre-contrast measurements with the three flip angles (α = 15◦ - 24◦ - 54◦,
25 images/series). The T10-map of the tumor was calculated with a method
described by Cheng et al. [50]. After contrast injection, a dynamic series was
started with one of the three flip angles in which 185 images were captured with
a temporal resolution of 2s. Postprocessing of the images was done in Matlab.
Concentration curves were calculated for every pixel in the region of interest
around the tumor, based on the relative signal enhancement (S − S0)/S0 [30]
and the T10-map. S0 was determined as the mean signal intensity from the
pre-contrast series with the identical flip angle as the dynamic series. In vivo
Gd-DOTA relaxivities were taken from literature (table 2.2 or [44]). The bolus
arrival time was manually determined. The fitting of the concentration curves
to the kinetic model (eq. 5.23) was performed in Matlab, with a standard AIF
for Gd-DOTA from literature [169]. Pixels with a R2-value smaller than 0.5
were removed from the analysis. To assess the reproducibility of the kinetic
parameter estimates, the 95% confidence intervals were calculated for each
parameter with a method described in the next chapter.

Fig. 5.7 shows three concentration curves, measured in three different test
animals at different flip angles (these concentration curves were selected as
they exhibit the highest R2-value over the region of interest in each animal).
The fit to the Tofts kinetic model, the estimated kinetic parameter values and
their percentage confidence intervals are also mentioned in the figures. Table
5.4 contains the mean kinetic parameter values for the complete tumor region
and their mean percentage confidence intervals. In addition the concentration
range is mentioned, for which the employed flip angle is the optimal flip angle
(calculated with T10 set as the average value of the tumor region). From visual
inspection of fig. 5.7 it can be seen that the flip angle of 24◦ results in the
smallest concentration uncertainties. This is explained by the concentration
ranges ∆C in table 5.4. A flip angle of 24◦ is optimal for a concentration
range of 0.57 mM in the tumor, while the other flip angles are suboptimal for
the measured concentration ranges. Although the average kinetic parameter
values are not identical in the three animals, it is clear from both fig. 5.7 and
table 5.4 that flip angle optimization can reduce the confidence intervals of
the kinetic parameter estimates as a consequence of the reduced concentration
uncertainty on the measured curves.

5.7 Optimization strategy: overview and criti-
cal analysis

5.7.1 Optimization overview

Clinical relevance of kinetic parameters is crucially dependent on their preci-
sion and the associated reproducibility of the complete DCE-MRI & kinetic
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modeling technique. Increasing noise variance on measured concentration
values has been shown to decrease Ktrans-precision [23]. This concentration
uncertainty, arising from the non-linear signal intensity equation, is highly
dependent on the sequence parameters and the CA concentration itself [30].
Mostly the sequence parameters are determined as a trade-off between tempo-
ral and spatial resolution, field of view and SNR. However for SPGRE-pulse
sequences, a freedom is introduced by the flip angle of the excitation pulse.
A typical DCE-MRI investigation comprises a multiplicity of parameters
and variables, from native relaxation times of the tissue of interest and CA
relaxivity coefficients to the pulse sequence parameters and CA concentration
ranges (see table 5.1). Many of these can be calculated, measured or estimated
before the DCE-MRI investigation starts, and can therefore be used to select
the best suitable value for the flip angle. We have distinguished between αC ,
the flip angle minimizing concentration uncertainty for a single concentration
in the tissue of interest, and αopt, the best suitable flip angle for a complete
concentration range in the tissue of interest. αC can be considered as a specific
case of αopt, and therefore we will restrict our discussion to αopt.

Our analysis has shown that for the selection of αopt, the multiplicity of DCE-
MRI variables can be reduced to a set of 3 dimensionless quantities. Rmin1 TR
and ∆R1TR comprise the R1-range the study wants to cover and its associated
effects, while γ = r2TE

r1TR
is a measure for the R∗2-induced signal decrease that

will accompany any change in R1. It was demonstrated that R1- and R∗2-effects
may safely be decoupled for physiological concentration ranges in most human
tissues, leading to a straightforward procedure to determine the optimal flip
angle:

1. Calculate/estimate Rmin1 TR and ∆R1TR for the study

2. Extract αopt from the contour plot in fig. 5.4A

3. Calculate γ and determine R1mmTR for αopt from the corresponding con-
tour plot in chapter 4 (fig. 4.2)

4. Verify that Rmin1 TR + ∆R1TR < R1mmTR

If this latter condition is not satisfied, the decoupling presumption no longer
holds and a computational optimization method based on eq. 5.18 is imposed
or it is impossible to measure the premised R1 unambiguously at the given
γ-value. However, this situation is only likely at high TR-values and arterial
CA concentrations. Our results from table 5.3 show that this procedure
provides sufficient estimates for the optimal flip angle for the typical tissue
(0-2mM) and arterial (0-10 mM) concentration ranges in the 10 DCE-MRI
studies from table 5.2. For the two studies with the highest TR [37, 66], the
condition in step (iv) is not satisfied for an arterial concentration range. In
these cases, a reduction of TR or a narrowing of the intended concentration
range is necessary to allow flip angle optimization. A realistic complication of
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this procedure may occur when the flip angle is restricted by specific absorp-
tion rate (SAR) guidelines or slice profile considerations [42]. If 2D-spatially
selective RF-pulses are employed, the slice profile at high flip angle may
become increasingly non-uniform, diminishing the accuracy of SPGRE signal
intensity equation (see section 2.7 or [51]). In this case a suboptimal flip angle
value can be derived using fig. 5.2. By determining upper and lower bounds
for the flip angle, from the αC-values of Rmin1 TR and Rmax1 TR in fig. 5.2A
(similar to the dotted line), a trade-off can be made between concentration
uncertainty and SAR or slice profile restrictions.

5.7.2 Potential and shortcomings of flip angle optimiza-
tion

A possible difficulty of the described method lies in the determinination of ap-
propriate values of Rmin1 TR and ∆R1TR a priori. Rmin1 can be determined from
the maximum T10 in the tissue of interest. However, when ∆R1/2 > Rmin1 ,
it was shown that the native relaxivity rates of the tissue of interest do not
have a significant influence on αopt. This is of particular interest in blood,
where for Gd-DTPA concentrations above 0.4-0.5 mM, αopt solely depends on
the expected concentration range. This latter statement is confirmed by the
optimal flip angle variation with the concentration range in the right column
of fig. 5.6 for the two AIF determination strategies. If only one tissue of
interest is imaged, ∆R1 can be calculated from the expected concentration
range and the relaxivity coefficient of the CA under investigation. When the
AIF is determined from the MRI-images or the reference region method is
used, multiple tissues are subject of the DCE-MRI investigation. Rmax1 is then
to be calculated separately in every tissue of interest based on the various con-
centration ranges and the native T1 and ∆R1 is set to the maximum difference
between Rmax1 and Rmin1 . The expected concentration range is difficult to
determine as it will depend on unknown physiological characteristics that may
vary across various patients and different pathologies. However, as numerous
studies have described the concentration curves found in many tumor types,
reasonable estimates of the ranges can be made [10, 21]. In addition, fig. 5.5
and the ∆σC values from table 5.3 have shown that our method is robust
for misestimation of the concentration range. This statement is reinforced by
our kinetic modeling simulations, which are designed in accordance with the
algorithm above (T10 set to its maximal value for the calculation of αopt). It
should however be kept in mind that αopt is determined as a trade-off between
uncertainty on low and high concentrations in the expected range. Extending
the range impels higher αopt-values, at the expense of increased uncertainty
on the lowest CA concentrations (fig. 5.5). Our simulations also indicate that
a flip angle optimization in accordance with our algorithm effectively enhances
the reproducibility of the kinetic parameter estimates. In combination with
the robustness of our technique, the simplicity of the algorithm and the lack
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of computational optimization methods, our αopt can be considered as a very
good a priori selection for the flip angle.

As mentioned in the introduction, it is useful to compare our results to those
of Parker et al., who measured the standard deviation on every time point
of their population averaged AIF. They found very good reproducibility of
the second pass peak and the AIF tail (1-2mM), but they encountered a 50%
standard deviation on the first pass averaged peak concentration of 6mM [139].
Neglecting interindividual differences in the AIF peak, this is in agreement
with our findings as we predicted that the employed flip angle of 20◦ is optimal
for measuring concentration up to 2mM (table 5.3). Arterial concentration
(up to 10mM) should be measured at a 40◦-flip angle, which would decrease
σC at 6mM by 87%.

The in vivo measurements performed in this study can be considered as
a proof-of-concept of our optimization algorithm. It is clear that the
reproducibility of the kinetic estimates, expressed as the 95% confidence
intervals [35], can be reduced by using an optimized value for the flip angle.
These confidence intervals could be reduced with 43% for Ktrans, 39% for νe
and 51% for νp. Although this reduction can partially be caused by a better
model validity of the Tofts model for the measured concentration curves or
by the unequal averages of the kinetic parameters in the different animals,
fig. 5.6 confirms that the reduced concentration noise is the main cause for
the increased reproducibility. A more rigorous validation of the proposed
optimization strategy, with a higher number of subjects, should be performed
with a study similar to the one of Galbraith [66]. A similar study could
also incorporate the individually measured AIF strategy, which we could not
investigate in our mice experiments. Comparison of our simulation results with
the outcome of the in vivo measurements is difficult, as it concerns another
AIF and consequently different concentration ranges. However, both results
confirm that νp is the most senstitive parameter to the flip angle optimization.

Obviously, the exact values of αopt are determined by the optimization crite-
rion (eq. 5.21). Other criterions could be employed, such as minimizing the
average absolute or relative concentration uncertainty in a given range. Apart
from being severely influenced by T ∗2 -effects (eq. 5.11), the corresponding αopt
would not account equally for every single concentration in the range. In our
criterion, every concentration has a maximum weight of 1. As in DCE-MRI
no a priori information about the particular concentrations to be measured is
available (apart from the range), the criterion assures any concentration to
have the highest possible precision. It therefore provides the most suitable flip
angle to be chosen in advance. Moreover, we claim that other optimization
strategies will be less robust to the choice of the concentration range, due
to unequal weights of the different concentrations in that range. In the
theoretical analysis we have considered finite SNR as the only error source. In
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comparison to Schabel & Parker [30], no uncertainty on the pre-contrast signal
intensity S0 was taken into account. S0 is used in practice to determine the
CA concentration from signal intensity and tissue of interest native relaxation
rates. S0 uncertainty leads to a concentration detection limit, beneath which
no CA concentration values can be measured and affects σC for small CA
concentrations (< 0.1 mM). Therefore the optimal flip angle for these concen-
tration values will also depend on S0 and the σC-values resulting from our
analysis will be an underestimation. However, our approach can be justified
as the S0 uncertainty can be reduced as low as necessary by increasing the
number of pre-contrast scans. Also, including this error source in our analysis
would for instance make αC subject to γ, R1TR, R10TR and the number of
pre-contrast scans, imposing the need for computational optimization for any
study design. It should however be kept in mind that our optimal flip angle
is only valid for concentration ranges that sufficiently exceed the detection
limit, available from Schabel & Parker [30]. Moreover it should be mentioned
that the use of αopt will not enhance the accuracy of the kinetic parameters.
Bias in kinetic estimates is caused by many error sources, such as partial
volume or inflow effects, errors in r1 or r2 [30, 44], misestimation of T10 [50]
or improper knowledge of the AIF [141], etc. These errors do not disappear
when using an optimized flip angle. However, the reproducibility of the kinetic
estimates can be increased by using an optimal flip angle without making
other sacrifices. For several kinetic modeling applications, this reproducibility
is far more important than the accuracy of the kinetic parameters. For
instance, in therapy evaluation by comparing pre- and post-therapy kinetic
parameter values [131, 135], an increased reproducibility can severely enhance
the sensitivity of the combined DCE-MRI and kinetic modeling technique.
Flip angle optimization in DCE-MRI can therefore be an important step
towards a more widespread clinical acceptance of quantitative DCE-MRI [21].

Appendix: Mathematical derivations

Flip angle αC

To obtain αC the eq. 5.14 has to be solved. Omitting all factors independent
of α in eq. 5.11, renders eq. 5.14 equivalent to:

d

dα

[
E1sin(α)(1− cos(α))

(1− cos(α)E1)2
− γ sin(α)(1− E1)

(1− cos(α)E1)

]
= 0 (5.25)

If we set x = cos(α), this yields a quadratic equation in x:

x2 [E1(E1 − 2) + γE1(1− E1)] +

x
[
(1 + E1)E1 − γ(1− E1)(1 + E2

1)
]

+
[(1− 2E1)E1 + γE1(1− E1)] = 0 (5.26)
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The discriminant of this quadratic equation can be simplified:

D = (1− E1)2(9E2
1 − 2γE1(1− E2

1) + γ2(1− E2
1)2) (5.27)

The two solutions for x are given by:

x± =
−E1(E1 + 1) + γ(1− E1)(1 + E2

1)±
√
D

2E1((E1 − 2) + γ(1− E1))
(5.28)

Now it should be investigated which of both solution can only attain values
between -1 and +1. However, it is easier to state that physically, in the limit
for γ → 0, the solution should be identical to the pelc expression:

lim
γ→0

x+ =
1− 2E1

E1 − 2
(5.29)

lim
γ→0

x− = 1 (5.30)

x+ is therefore the only solution of eq. 5.14.
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Estimators for
pharmacokinetic modeling
& confidence intervals for
pharmacokinetic
parameters

6.1 Introduction

6.1.1 Post-processing protocol

One of the main issues in pharmacokinetic modeling of DCE-MRI data is the
absence of a standardized post-processing protocol [2, 19, 21]. Such protocol
should comprise both an appropriate estimation method and a procedure
to generate accurate confidence intervals for the kinetic parameters. An
estimator is nothing more than a mathematical expression that is minimized
with respect to a set of parameters, to obtain the most likely values for those
parameters. The most familiar is the least square estimator (LSQ), that
minizes the sum of squared differences between the observed concentrations
and the model concentrations. It is employed by most authors for its simplicity
and robustness [66, 140]. LSQ estimation is optimal for data that exhibit
homoskedastic, i.e. with equal variance, gaussian noise. Several authors,
however, have shown that when accurate conversion methods are used to
calculate CA concentration from MR signal intensity, the variance of the CA
concentration is heteroskedastic, i.e. varies with the concentration values
itselves [25, 30]. This was confirmed by our analysis in chapter 4. For such
heteroskedastic data, LSQ estimation may not be optimal, and the resulting

115
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uncertainty on the kinetic parameters may be lower when maximum likelihood
(MLM) estimation is used. A MLM estimator obtains best-fit values for the
kinetic parameters by maximizing the likelihood function of the observation.
This likelihood function accounts for the varying concentration variance and
physically represents the probability that the measured concentration data
truly occur. Generally, MLM estimators deliver the most precise estimates
of the model parameters and their advantages have been demonstrated in
other MRI related fitting problems [170]. In literature, several authors have
investigated the influence of the estimation technique on the accuracy and
the precision of the kinetic parameters. However, they mainly focussed on
the joint estimation of the kinetic parameters and the arterial input function
(AIF) [150] or the bolus arrival time [35, 113, 171]. None of these studies
incorporates the heteroskedasticity of the concentration data.

The second and even more significant part of a standardized post-processing
protocol is the construction of accurate confidence intervals for the kinetic
parameter estimates. CI’s are of crucial importance in several applications
that compare pre- and post-treatment kinetic parameters, in order to reliably
evaluate therapy or to demonstrate the anti-angiogenic effect of new vascular-
ization targeting compounds. The statistical significance of an observed kinetic
parameter change is totally dependent on an accurate estimation of the CI’s
for that parameter. In addition they are indispensable for the intercomparison
of kinetic modeling results from different scanning sites [2], especially as we
have shown that noise on the concentration curve is dependent on the SPGRE
pulse sequence parameters. Nevertheless, the construction of CI’s for kinetic
parameter estimates remains uninvestigated in literature.

The aim of this chapter is to investigate the use of MLM estimation for
the fitting of pharmacokinetic models to DCE-MRI data. It starts with a
practical example to illustrate the heteroskedasticity of the concentration
data and to demonstrate the advantages of a MLM estimator. Afterwards in
section 6.2 an overview is given of the current estimators for pharmacokinetic
modeling. In section 6.3 an expression is derived for the MLM estimator based
on the statistical distribution of MR-measured concentrations as obtained in
chapter 4. The performance of this estimator is compared to LSQ by means
of simulations. Section 6.4 describes and evaluates the practical calculation
methods of confidence intervals for both the LSQ and MLM estimators.
Finally, in section 6.5 the sensitivity of both estimators to errors in DCE-MRI
parameters, such as flip angle or native relaxation time, is investigated.

6.1.2 Practical example

MLM estimation takes into account the varying variance of the CA concen-
trations. As this variance strongly depends on the pulse sequence parameters,
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Table 6.1: SPGRE-pulse sequence parameters, temporal resolution and total scan
time for the studies of Batchelor et al. [135], Parker et al. [139] and Yang
et al. [141]

Study Study name TR [ms] TE [ms] α [°] ∆t [s] Tscan [s]

Batchelor PS1 5.7 2.73 10 5 250
Parker PS2 4 0.82 20 5 375
Yang PS3 7.8 1.7 60 2 360

BA

Figure 6.1: A. Relative signal enhancement versus Gd-DTPA concentration (T10 =
675 ms.) for three SPGRE pulse sequence designs [135, 139, 141]. Het-
eroskedasticity is illustrated for PS1: identical noise levels on the signal
intensity cause different noise levels on the concentration values. B.
Practical example of the advantage of the MLM estimator. From the
true concentration curve, a signal intensity curve is calculated and sam-
pled (pulse sequence parameters and AIF from Parker et al. [139]). After
the addition of gaussian noise these signal intensities are converted to
the measured concentrations. These concentrations are fit to the TK
model with both MLM and LSQ. MLM provides better estimates of the
true kinetic parameter values because the highly noisy peak concentra-
tions are given less weight.

the performance of MLM and LSQ is compared for three different pulse
sequences from recent DCE-MRI literature [135, 139, 141]. All three studies
employ a SPGRE pulse sequence, whose parameters are mentioned together
with other pulse sequence properties in table 6.1. These pulse sequences
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are chosen because their resulting concentration data will exhibit a different
degree of heteroskedasticity: fig. 6.1A shows the variation of the relative
signal enhancement E with the CA concentration in a physiologically relevant
concentration range (0 mM to 1.5 mM) 1. Due to the non-linear behaviour
of the SPGRE signal intensity equation, the calculation of the CA concentra-
tion from noisy signal intensity curves causes heteroskedastic concentration
data: while signal intensity uncertainty is unrelated to the CA concen-
tration (i.e. ∆E is constant), the concentration uncertainty ∆C strongly
depends on the CA concentration itself. It can be graphically inspected
that PS1 (Batchelor) exhibits the highest degree of heteroskedasticity for
physiological concentrations. The extent of heteroskedastity in PS2 (Parker)
is mediocre, while PS3 (Yang) no heteroskedasticity is apparent from fig. 6.1A.

Fig. 6.1B shows a practical (simulation) example of the consequences of
heteroskedasticity for the TK model (pulse sequence parameters from PS2,
AIF from [139]). The black dots are the concentration values, calculated from
the measured signal intensity in a tissue with [Ktrans, kep]=[0.9 min−1,1.8
min−1]. From visual inspection the heteroskedasticity of the curve can
be seen, with higher noise variances near the peak concentration. The
MLM estimator ([Ktrans, kep]=[0.942 min−1, 1.87 min−1]) considerably
improves the kinetic parameter estimates in comparison with the LSQ
estimator ([Ktrans, kep]=[1.01 min−1, 2.00 min−1]). The MLM fitted curve
resembles the true curve better, in particular around the peak. This exam-
ple suggests the importance of employing a MLM estimator for DCE-MRI data.

6.1.3 Nomenclature & quantities

For clarity, table 6.2 contains an overview of the different symbols used through-
out this chapter.

6.2 Overview of estimators for pharmacokinetic
modeling

6.2.1 Least square estimator

Most DCE-MRI studies employ a LSQ-estimator to obtain best-fit values of
the pharmacokinetic parameters. Suppose a DCE-MRI experiment measures n
concentration values, Ci = C1..Cn, on n time points, ti = t1..tn, that should be
fit to a kinetic model CT (t). The LSQ estimator minimizes the sum of squared
residuals ssq with respect to the parameter vector θ.

1it may be recalled from chapter 4 that the CA concentration is calculated from the
relative signal enhancement
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Table 6.2: Symbols

Symbol Definition

C measured concentration vector
CT (t,θ) General pharmacokinetic model
θ Parameter vector

L(C | θ) Likelihood function
σS Signal intensity standard deviation
σC Concentration standard deviation
Σ covariance matrix
Fij Fisher matrix elements

ssq(θ) =
n∑
i=1

[Ci − CT (ti,θ)]2 (6.1)

The success of LSQ is mainly due to its high robustness and its simplicity
for implementation. LSQ is the maximum likelihood estimator for data with
homoskedastic gaussian error terms.

6.2.2 Bayesian fitting method

Orton et al. have proposed a bayesian estimation method for fitting DCE-MRI
data to a pharmacokinetic model. The theory is based on the calculation of the
a posteriori distribution of the parameter vector θ, given the measured con-
centration vector C, p(θ|C). This calculation requires the knowledge of the
conditional distribution for the concentration vector C given θ, p(C|θ), and a
prior distribution for θ, pprior(θ), which are both assumed to be known. Ac-
cording to Bayes’ rule, the a posteriori distribution of θ can then be calculated
as:

p(θ|C) =
p(C|θ)pprior(θ)

p(C)
(6.2)

p(C) =
∫
p(C|θ)pprior(θ)dθ (6.3)

After marginalization of p(θ|C), the best-fit values of the pharmacokinetic
parameters are obtained as those values for which the marginal distribution
attain their maximum. This fitting method has the advantage that, apart
from the kinetic parameters, it can achieve a robust estimate of the onset
time. In addition, it has shown to reduce bias when compared to LSQ and the
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confidence intervals as determined from the marginal distribution were proven
to be highly accurate [35]. Furthermore, the theory can be adapted to include
the heteroskedastic distribution of the concentration data. Nevertheless, the
implementation of the procedure, in particular the calculation of the integral in
eq. 6.3, is complicated and requires numerical integration, which is susceptible
to errors.

6.3 Maximum likelihood estimator

In this section, a maximum likelihood estimator is derived for the concentra-
tion distribution as obtained in chapter 4. Afterwards the performance of this
estimator is compared to the LSQ estimator by means of simulations.

6.3.1 Theoretical derivation

Consider again a series of n measured concentration values, C = C1...Cn, on
time points t1...tn, that have to be fit to a kinetic model equation CT (ti,θ).
The MLM estimator aims at finding the best-fit values for the parameter vector
θ by maximizing the likelihood function L(C | θ). This likelihood function is
a function of the parameter vector, and denotes the probability that the joint
observation of C1...Cn truly occurs. Mathematically, it is the product2 of the
individual probability distributions of each measured concentration, fC(Ci |
CT (ti,θ)). As shown in chapter 4, these individual probability distribution are
gaussian, with expectation value CT (ti,θ) and with variance σC = σS

[
dS
dC

]−1
,

evaluated in CT (ti,θ).

L(C | θ) =
n∏
i=1

fC(Ci | CT (ti,θ)) (6.4)

fC(Ci | CT (ti)) =
1√

2πσC
e
− (Ci−CT (ti,θ))2

2σC (ti,θ)2 (6.5)

σC(ti,θ) = σS

[
dS

dC

]−1

C=CT (ti,θ)

(6.6)

By taking the natural logarithm of the likelihood function 3, it can easily be
shown that maximizing L(θ) is equivalent to minimizing:

−log [L(θ)] =
n∑
i=1

(Ci − Ct(ti,θ))2

2σC(Ct(ti,θ))2
− log

[
1

σC(Ct(ti,θ))

]
(6.7)

2As the measurements of the concentrations are independent of each other
3the so-calles log-likelihood function
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By defining the SNR as M0/σS and using equation 6.6, this can be rewritten
as:

−2log
[
L(θ′)

]
=

n∑
i=1

[Ci − CT (ti,θ)]2
[

dS′

dCT (ti,θ)

]2

SNR2 − 2log

[
dS′

dCT (ti,θ)
SNR

]
(6.8)

dS′

dCT (ti,θ) denotes the derivative of the normalized signal intensity (i.e. S/M0)
with respect to the CA concentration, evaluated in C = CT (ti,θ). θ′ is the
extended parameter vector, as the MLM estimator requires the additional esti-
mation of the SNR. For example, for the TK model, the MLM estimator finds
the best fit values for Ktrans and νe, by minimizing eq. 6.8 with respect to
Ktrans, νe and SNR.

6.3.2 Simulations

A simulation environment in Matlab (Mathworks, Ma) was written to compare
the performance of the MLM and LSQ estimator for the fitting of a measured
concentration curve to 2 kinetic models, the TK-model (eq. 6.9) and the ex-
tended TK model (eq. 6.10):

CTKT (t) = Ktrans

∫ t

0

Cp(t′)exp[−kep(t− t′)]dt′ (6.9)

CETKT (t) = νpCp(t) +Ktrans

∫ t

0

Cp(t′)exp[−kep(t− t′)]dt′ (6.10)

In comparison with the model equation from chapter 3, the parameter
kep = Ktrans/νe will be used throughout this chapter, instead of the physio-
logical parameter νe. The reason is that many studies have proposed clinical
applications by the use of Ktrans or kep, rather then νe. Therefore the accurate
and precise estimation of kep and its confidence intervals may be of greater
interest to the DCE-MRI community. The parameter vectors for both models
and for both estimator are summarized in table 6.3.

For the TK model, tissue curves were generated from eq. 6.9, for 4 combinations
of Ktrans/kep (1.2/2.4, 1.2/6, 0.3/0.6, 0.3/1.5). Physiologically these kinetic
parameter combinations are representative of tissues with a high (1.2 min−1)
and a low (0.3 min−1) transendothelial transfer constant both combined with
a large (νe = 0.5) and a small (νe = 0.2) EES fraction. For the ETK model,
these 4 parameter couples were all combined with a large (νp = 0.1) and a
small (νp = 0.05) plasma volume fraction. As AIF the parametrized form of
the population averaged AIF obtained by Parker et al. was used ( [139] or eq.
3.16). Hematocrit was assumed to be 0.4. The tissue curves were generated
with a temporal resolution of 0.5 s, to avoid errors caused by aliasing. From
these tissue concentration curves, signal intensity curves were calculated for
three pulse sequences from recent DCE-MRI literature [135,139,141]. All three
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Table 6.3: Parameter vectors estimated from MLM and LSQ for TK model and
ETK model

model LSQ MLM

TK model [Ktrans, kep] [Ktrans, kep, SNR]
ETK model [Ktrans, kep, νp] [Ktrans, kep, νp, SNR]

studies adopted SPGRE pulse sequences (signal intensity equation can be found
in chapter 2), with parameters as mentioned in table 6.1. White gaussian noise
is added to the signal intensity curves, and a sampling procedure is performed
with the temporal resolution of the corresponding pulse sequence set-up, for the
duration of Tscan (table 6.1). SNR (M0/σS) is set to 400. The resulting noisy
signal intensity curve is reconversed to a noisy tissue concentration curve by
means of the relative signal enhancement, as explained in chapter 4. This noisy
concentration curve is fitted to the corresponding model with both estimators.
For the MLM estimator the signal intensity derivatives with respect to the
concentration are adopted from chapter 4. This procedure is repeated 104 times
for every kinetic parameter combination and the performance of the estimators
for a parameter θ is compared based on their relative root mean squared error
(m is the number of simulations):

rmse(θ) = 100%

√∑m
i=1 (θ̂i − θ)2

θ
(6.11)

Table 6.4 contains the rmse-values for both estimators at the kinetic param-
eter combinations under consideration for the TK model. Overall, MLM is
never worse than LSQ and can lead to significant reduction in rmse-values.
In particular, in highly permeable/perfused tissues, rmse-reduction up to 17%
for Ktrans and 13% for kep can be achieved with MLM. For small Ktrans the
rmse-improvement with MLM is less. In general, the advantages of the MLM
estimators are mostly pronounced for PS1 followed by PS2. For the particular
case of Ktrans/kep = 1.2/6 min−1, fig. 6.2 shows the boxplots of the simulated
distribution of relative estimation errors θ̂−θ

θ . It is clear that for the three
pulse sequences MLM reduces the standard deviation of this distribution and
the estimation bias, thereby increasing both the precision and the accuracy of
the kinetic parameter estimates. For the ETK model, table 6.5 contains the
rmse-values. MLM never performs worse than LSQ and rsme reductions up to
11% for Ktrans and 14% for kep and νp can be achieved (PS1). Again, MLM
causes rmse-reduction for PS1 and PS2 in particular, while the estimates from
PS3 are minimally affected by the use of MLM. This can be understood from
fig. 6.1A, as the degree of heteroskedasticity of the data evolve from high in
PS2, over mediocre in PS2, to very low in PS3. As expected the MLM estima-
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Table 6.4: Root mean squared error values for the TK model

Study True values Ktrans kep
Ktrans/kep LSQ MLM LSQ MLM

[min−1]/[min−1] [%] [%] [%] [%]
PS1 1.2/2.4 7.3 6.3 7.2 6.3

1.2/6 16.8 13.9 17.3 15.2
0.3/0.6 4.6 4.6 6.7 6.7
0.3/1.5 8.3 8.2 9.0 8.8

PS2 1.2/2.4 4.8 4.6 4.8 4.6
1.2/6 14.0 13.4 13.0 12.4

0.3/0.6 3.6 3.6 4.5 4.5
0.3/1.5 8.6 8.5 9.1 9.0

PS3 1.2/2.4 2.9 2.8 3.0 3.0
1.2/6 6.5 6.4 6.8 6.7

0.3/0.6 3.0 3.0 3.8 3.8
0.3/1.5 6.9 6.9 7.4 7.4

tor is most usefull for the most heteroskedastic pulse sequences. The boxplots
for the ETK model are not shown because the results are similar to fig. 6.2
with improvements in both accuracy and precision of the kinetic parameter
estimates.

6.4 Confidence intervals for pharmacokinetic
parameters

6.4.1 Correlation matrix & Cramer-Rao lower bounds

CI’s of kinetic modeling estimates are obtained based on the estimation of the
covariance matrix Σ. For the Tofts model under consideration, a 95% CI for the
parameter θj can be constructed using the diagonal elements of the covariance
matrix:

CI95 = θ̂j ± 1.96Σjj1/2 (6.12)

The practical calculation of the covariance matrix depends on the estimator.
For maximum likelihood estimators, the covariance matrix can be calculated
as the inverse of the Fisher information matrix (FIM). The FIM is a concept
of estimation theory, that in the particular case of kinetic modeling, empha-
sizes how much information about the kinetic parameter vector is carried by
the observation of the n measured concentrations. It was first introduced by
Edgeworth & Fisher, while H. Cramer and C.R. Rao showed that the diag-
onal elements of the inverse FIM express an under bound on the variance of
an estimated parameter [172]. As MLM estimators exhibit the lowest possible
uncertainty among all estimators, the inverse FIM is used as an estimate for
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Table 6.5: Root mean squared error values for the ETK model

Study True values Ktrans kep νp
Ktrans/kep/νp LSQ MLM LSQ MLM LSQ MLM

[min−1]/[min−1]/− [%] [%] [%] [%] [%] [%]
PS1 1.2/2.4/0.1 11.5 10.9 9.8 8.8 18.2 16.1

1.2/2.4/0.05 10.2 10.2 8.8 8.4 25.7 24.8
1.2/6/0.1 33.7 30.1 24.9 21.4 19.4 16.7
1.2/6/0.05 29.3 26.7 21.3 18.7 30.3 28.0
0.3/0.6/0.1 7.2 7.0 8.5 8.4 10.9 9.8
0.3/0.6/0.05 6.2 6.2 7.9 7.9 13.9 13.4
0.3/1.5/0.1 14.1 13.3 12.4 11.7 11.2 10.1
0.3/1.5/0.05 11.9 11.7 10.8 10.5 15.5 14.8

PS2 1.2/2.4/0.1 6.3 6.2 5.5 5.3 9.1 9.0
1.2/2.4/0.05 6.5 6.1 5.4 5.3 16.3 16.2

1.2/6/0.1 19.7 18.9 15.5 14.7 10.8 10.6
1.2/6/0.05 18.9 18.4 15.1 14.5 19.8 19.6
0.3/0.6/0.1 4.8 4.8 5.1 5.1 6.7 6.5
0.3/0.6/0.05 4.6 4.6 5.0 5.0 11.9 11.9
0.3/1.5/0.1 11.4 11.3 10.3 10.1 7.1 6.9
0.3/1.5/0.03 11.0 10.9 10.2 10.1 12.8 12.7

PS3 1.2/2.4/0.1 3.8 3.8 3.4 3.3 5.9 5.9
1.2/2.4/0.05 3.8 3.8 3.3 3.3 11.5 11.5

1.2/6/0.1 10.4 10.3 8.2 8.2 7.5 7.5
1.2/6/0.05 10.4 10.4 8.1 8.1 15.9 15.9
0.3/0.6/0.1 3.7 3.7 4.1 4.0 4.9 4.9
0.3/0.6/0.05 3.7 3.7 4.1 4.1 9.2 9.2
0.3/1.5/0.1 8.7 8.7 8.1 8.1 5.2 5.2
0.3/1.5/0.05 8.6 8.6 8.1 8.1 10.4 10.4

the covariance matrix with MLM estimation. The mathematical expression of
its elements, for an observed concentration vector C, is given by:

Fij = E

[
d [log L(C | θ)]

dθi

d [log L(C | θ)]
dθj

]
(6.13)

L is the likelihood function as described in eq. 6.4, whose explicit dependence on
the measured concentration vector C is mentioned. In the framework of FIM,
C should be regarded as a statistical variable and E denotes the expectation
value among all possible values of C. θi and θj are the individual elements
of the kinetic parameter vector. For kinetic modeling estimates of DCE-MRI
data, the FIM-elements reduce to (the mathematical derivation can be found
in the appendix or in [25]).

Fkl =
n∑
i=1

dCT (ti,θ)
dθk

dCT (ti,θ)
dθl

(2α2
i +

1
σC(ti,θ)2

) (6.14)
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Figure 6.2: Boxplots of the relative error distribution (m = 10000) for the Ktrans-
and kep-parameters fitted from the Tofts model without vascular con-
tribution. The simulation input values were Ktrans/kep=1.2/6 min−1.
The error bars denote the 2.5%- and 97.5%-percentiles, the boxes indi-
cate the quartiles and the plus is the mean value of the relative errors.
The triangles show the average lower- and upperbounds of the MLM
and LSQ constructed confidence intervals.

αi =
d2S/dC2

dS/dC C=CT (ti,θ)

(6.15)

which in the framework of the MLM estimator can be rewritten as:

Fij =
n∑
i=1

dCT (ti, θ̂)

dθ̂i

dCT (ti, θ̂)

dθ̂j

2

(
d2S′/dC2

T (ti, θ̂)
dS′/dCT (ti, θ̂)

)2

+

(
dS′

dCT (ti, θ̂)
ˆSNR

)2


S’ is again the normalized signal intensity. dCT (ti)/dθ̂i denotes the derivative
of the tissue concentration with respect to the kinetic parameter θi, evaluated
in the best-fit value θ̂i.
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Table 6.6: Observed coverages for the TK model

Study True values Ktrans kep
LSQ MLM LSQ MLM

[min−1]/[min−1] [%] [%] [%] [%]
PS1 1.2/2.4 80.2 95.5 84.0 95.0

1.2/6 67.2 94.2 74.1 94.8
0.3/0.6 95.4 95.2 95.5 95.3
0.3/1.5 92.3 94.8 93.2 94.5

PS2 1.2/2.4 86.2 93.2 88.6 93.6
1.2/6 79.4 88.7 84.1 90.7

0.3/0.6 94.6 94.9 95.1 95.1
0.3/1.5 93.6 94.1 94.3 94.4

PS3 1.2/2.4 93.9 94.8 94.1 94.9
1.2/6 94.3 95.2 94.0 94.7

0.3/0.6 95.3 95.3 95.1 95.2
0.3/1.5 94.8 95.0 94.5 94.7

The covariance matrix for MLM estimates is therefore:

ΣMLM = F−1 (6.16)

6.4.2 Confidence intervals for least square

For LSQ estimators, most statistical software uses the hessian of ssq, evaluated
in the θ̂, as an estimate of the correlation matrix:

ΣLSQ = σ̂2

[ 1
2δ

2ssq

δθ̂
2

]−1

σ̂2 =
ssq(θ̂)
n− p

(6.17)

σ̂2 is an estimate of the variance of the error terms, p is the number of parame-
ters estimated. It can be checked that this formula concurs with the inverse of
the FIM for homoskedastic gaussian concentration data, for which LSQ would
be the maximum likelihood estimator.

6.4.3 Simulations

For the simulations described in the previous section, the 95%-CI’s of the
kinetic parameter estimates are calculated based on eq. 6.12 and eq. 6.17
& 6.16 for LSQ and MLM estimates respectively. For both parameters the
coverage is calculated, i.e. the procentual number of simulations for which the
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Table 6.7: Observed coverages for the ETK model

Study True values Ktrans kep νp
Ktrans/kep/νp LSQ MLM LSQ MLM LSQ MLM

[min−1]/[min−1]/− [%] [%] [%] [%] [%] [%]
PS1 1.2/2.4/0.1 77.7 95.1 81.9 95.3 71.6 91.9

1.2/2.4/0.05 80.9 94.3 82.7 94.5 71.0 94.2
1.2/6/0.1 64.2 94.2 67.0 93.7 59.6 93.9
1.2/6/0.05 68.0 94.9 71.1 94.0 69.2 94.1
0.3/0.6/0.1 92.4 94.1 94.2 94.6 80.8 94.1
0.3/0.6/0.05 94.7 94.7 95.0 94.9 94.3 95.0
0.3/1.5/0.1 88.1 94.9 91.3 94.5 71 94.15
0.3/1.5/0.05 90.6 94.4 91.9 94.5 84.2 94.0

PS2 1.2/2.4/0.1 87.6 93.9 88.1 94.1 96.5 94.5
1.2/2.4/0.05 87.5 93.5 87.9 93.8 89.5 94.0

1.2/6/0.1 84.1 93.9 84.3 93.0 85.0 94.2
1.2/6/0.05 85.6 93.8 85.0 93.0 87.7 94.5
0.3/0.6/0.1 93.9 95.0 94.3 94.5 90.7 94.9
0.3/0.6/0.05 94.2 94.5 94.4 94.5 93.3 94.5
0.3/1.5/0.1 92.8 95.0 94.0 95.1 89.8 94.9
0.3/1.5/0.05 94.2 94.9 93.9 94.9 91.4 94.4

PS3 1.2/2.4/0.1 93.7 94.8 93.2 94.6 93.6 94.6
1.2/2.4/0.05 93.7 94.7 93.3 94.6 93.8 94.5

1.2/6/0.1 92.8 94.5 93.4 94.3 93.2 94.5
1.2/6/0.05 93.0 94.6 94.5 95.0 93.6 95.2
0.3/0.6/0.1 95.3 95.4 95.7 95.5 93.4 94.7
0.3/0.6/0.05 95.1 95.1 94.7 94.8 95.5 95.5
0.3/1.5/0.1 95.0 95.0 94.9 95.1 94.6 95.3
0.3/1.5/0.05 94.9 95.0 94.6 94.6 94.0 94.5
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true value of the parameter is contained within the constructed CI’s.

The observed coverages of the 95%-CI’s, calculated with eq. 6.17 and eq. 6.16
respectively, are mentioned in table 6.6 for the TK model. It is clear that
the LSQ procedure consistently overestimates its own precision. The extent
of this overestimation grows in tissues with high Ktrans or as the temporal
resolution of the protocol decreases. The CI’s for the MLM estimator exhibit
coverages close to the expected 95%, with minimal dependence on the value
of Ktrans or on the temporal resolution of the employed protocol. Significant
overestimation of the precision of the MLM estimate is seen in only one specific
case (Ktrans/kep = 1.2/6, PS2). However, this effect is due to a bias in the
estimated parameters, as can be seen from fig. 6.2. PS2 exhibits the highest
bias in both Ktrans and kep and therefore the probability that the true value
is contained within the calculated CI is below 95%. In fig. 6.2 the average
boundaries of the 95% CI’s are depicted by triangles. A very good agreement
between these boundaries and the 2.5 % and 97.5 % percentiles of the error
distribution can be seen for MLM, also for the 1.2/6 min−1 combination. This
implies that even in this biased case, the CI is an excellent measure for the
reproducibility of the experiment. The LSQ-constructed intervals are too small
and can lead to erroneous conclusions when used as reproducibility measures
for comparing pre- and post-treatment kinetic modeling results. For the
ETK model, the observed coverages are mentioned in table 6.7. Again, LSQ
calculated CI’s severely overestimate the precision of the kinetic parameter
estimates and are highly dependent on the kinetic parameter values and the
pulse sequence settings. On the contrary, MLM calculated CI’s are highly
reliable and minimally dependent on pulse sequence or kinetic parameter
value. In addition for this extended model, LSQ fails in delivering reliable
CI’s for νp even at small Ktrans-values. Similar to the rmse-values, the use of
MLM calculated CI’s is most advantageous for PS1 and PS2. However, even
for PS3 significant improvements in the CI’s can be achieved with MLM.

6.5 Error sensitivity

From eq. 6.8 it is clear that the MLM estimator requires a number of param-
eters as the flip angle α, the native longitudinal relaxation rate R10 and the
relaxivity coefficients r1 and r2, all abundant for LSQ estimation. As explained
in chapter 2, it is characteristic for DCE-MRI that these parameters are subject
to errors, as they cannot be determined with infinite accuracy nor precision.
Therefore, an evaluation of the sensitivity of both estimators to these errors
is imposed. Although these parameters are abundant for the LSQ procedure
itself, their values are required for the conversion of signal intensity to CA
concentration and errors will affect the LSQ estimates as well [30]. To assess
for instance the sensitivity to errors in the flip angle, the simulations of sec-
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tion 6.3.2 are repeated: for the three pulse sequences under consideration and
the different kinetic parameters combinations, 103 signal curves infected with
white gaussian noise are simulated as described above. Each of these curves is
recalculated to a concentration curve with the real value of the flip angle from
table 6.1 (αr), but also with 8 erroneous values (αer = 0.9, 0.925, 0.95, 0.975
, 1.025, 1.05, 1.075 and 1.1 times αr ). The resulting concentration curves are
fitted to the corresponding kinetic model with the 2 estimators. For the MLM
estimator, the corresponding αer is used in the estimation procedure. The sen-
sitivity of each estimator to a given error in the flip angle is quantified by of
the mean relative distance MRD between the estimate at αer and the estimate
at αr. For the TK model this relative distance can be expressed as:

MRD(αer, αr) =
1
m

m∑
i=1

√√√√[K̂i(αer)− K̂i(αr)
K

]2

+

[
k̂i(αer)− k̂i(αr)

k

]2

(6.18)
in which for the compactness of the notation K and k are used for Ktrans

and kep respectively. m is the number of simulations (103). The MRD is an
objective measure for the shift in the kinetic parameter couple caused by the
error in the flip angle. By dividing every term by Ktrans or kep, it is assured
that every parameter is equally accounted for. For the ETK model an extra
term in the sum of eq. 6.18 is added for νp. For R10, r1 and r2, the procedure
is identical. The errors in the flip angle and in R10 are varied between -10%
and +10% of the true values, to cover reported error ranges with various
measurement techniques [30, 50, 51, 57]. For r1 and r2 the errors are varied
between -25% and 25% of their true value [44,173].

Fig. 6.3 shows the sensitivity of the kinetic parameter estimates to errors in
the flip angle, for the MLM (crosses) and LSQ (circles) estimators applied
to the TK model (dotted black lines) and the ETK (full grey lines). The
pulse sequences and the kinetic parameter combinations are mentioned in the
figure legends. The errors are expressed in terms of the mean relative distance
between an estimate at the true flip angle and the estimate at the erroneous
flip angle (eq. 6.18). For the three pulse sequences and the kinetic parameters
couples under consideration the MLM estimator is less sensitive to errors in
the flip angle. The sensitivity reduction is the highest for PS1, for which
it ranges up to 37% for the ETK model and up to 25% for the TK model.
For PS2 and PS3, the sensitivity reduction is less, but MLM never performs
worse than LSQ. In general, the advantage of MLM is more pronounced as
the sensitivity of the pulse sequence to flip angle errors increases. In addition,
fig. 6.3 states that the ETK model is more sensitive to errors in the flip
angle than its TK-counterpart. If both models would be equally sensitive, the
ratio of their MRD would be approximately

√
3/
√

2 ≈ 1.22. For the other
kinetic parameters couples, not shown in the figures, the sensitivity reduction
with MLM is smaller, but MLM does not perform worse than LSQ. Fig. 6.4
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Figure 6.3: Mean relative distance between the kinetic parameter set estimate at
the true flip angle and the kinetic parameter estimate at the erroneous
flip angle, as a function of the relative flip angle error. LSQ-sensitivity
is denoted with open circles, MLM-sensitivity with crosses. The full
grey lines represent the results for the ETK model, the dotted black
lines show the sensitivity of the TK model.
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shows for PS1, the sensitivity of the kinetic parameters estimates to errors
in the native relaxation rate R10, and in the relaxivity coefficient r1 and r2.
Again, MLM estimates are less sensitive to these error sources than their LSQ
counterparts. The results of PS2 and PS3 are not shown, because the trends
for errors in R10, r1 and r2 are similar than for errors in the flip angle (fig.
6.3): a smaller sensititivy reduction is seen for PS2 and MRD is almost equal
for PS3. The sensitivity reduction with MLM is again most pronounced for
the pulse sequences that are most senstive to a given error source.

6.6 Relevance & shortcomings of MLM in post-
processing

Clinical acceptance of DCE-MRI & kinetic modeling studies is greatly
depending on two important issues: the reproducibility of the results and
the ability to compare the results from different scanning sites. This latter
issue has been reported by several authors [12, 19, 21] and is mainly caused
by the use of different imaging acquisition techniques, different determination
methods for the AIF and lack of convention regarding post-processing of
DCE-MRI data (concentration calculation, fitting process, CI’s,...). In
recent literature, advances have been made regarding the AIF determination
method [139,141,150]. In addition, a great number of studies has improved the
accuracy of the CA concentration calculation by using SPGRE-signal intensity
based conversion techniques [30], thereby making the kinetic parameter
results less dependent on the employed pulse sequence settings [33]. In this
work we have investigated the influence of the fitting process for DCE-MRI
concentration data converted from SPGRE pulse sequence intensity and the
construction of CI’s for the kinetic parameter estimates. Our results show
a higher reproducibility and an increased accuracy of the kinetic parameter
values than with a conventional LSQ estimator. Moreover, as it has an
overall smaller rmse, the MLM estimator renders the kinetic parameter
estimates as independent as possible of the pulse sequence settings and the
employed DCE-MRI protocol [25]. This statement is enforced by our error
analysis, proving that MLM-estimates are less sensitive to errors in the
DCE-MRI parameters. However, the most important finding regarding the
comparability issue, is the reliable CI construction with MLM. Our results
not only show that LSQ consistently underestimates its own uncertainty,
but also that the observed coverages are stronlgy dependent on the pulse
sequence settings and the DCE-MRI protocol. MLM constructed CI’s closely
cover the expected 95% and their coverages are minimally dependent on the
pulse sequence. This enables a statistically justified comparison of kinetic
modeling results from different scanning sites. A reliable CI estimation is of
crucial importance for several DCE-MRI applications as well. For therapy
evaluation or for the testing of novel anti-angiogenic drugs an underestimation
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Figure 6.4: Mean relative distance between the kinetic parameter set estimate at
the true value of R10/r1/r2 and the kinetic parameter estimate at the
erroneous value of the concerned parameter, versus the relative parame-
ter error. LSQ-sensitivity is denoted with open circles, MLM-sensitivity
with crosses. The full grey lines represent the results for the ETK model,
the dotted black lines show the sensitivity of the TK model.
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of the kinetic parameter uncertainty may lead to erroneous conclusions, in
particular as LSQ CI’s are mainly unreliable for highly permeable/perfused
tissues (high Ktrans), typically occuring in pathological lesions. Therefore
we claim that our MLM estimator, and in particular our method for CI
construction, can be of great value as a part of a cross-site standardization of
post-processing techniques in DCE-MRI and kinetic modeling. This standard-
ization has been acknowledged by many authors as a essential step towards a
widespread acceptance of quantitative DCE-MRI in clinical practice [12,19,21].

The rmse-reductions and the error sensitivity reductions obtained with the
MLM estimator are most important for PS1 and PS2. For the rmse, this
can easily be explained by fig. 6.1. The extent of heteroskedastiticy of
the concentration data is much higher for PS1 than for PS2, while for PS3
the concentration data can be approximated as homoskedastic. The MLM
estimator accounts for the heteroskedasticity by dividing the contribution of
a measured concentration with a [dS/dC]2-factor. This reduces the weight of
the highly noisy data and causes the rmse-reduction. The error sensitivity
reduction is caused by this factor as well. For a complete analysis of the
concentration bias, caused by an error in an imaging parameter, we refer
to Schabel & Parker [30]. However, it is easy to see that the concentration
error associated with an error in an imaging parameter β (flip angle, R10,
r1 or r2) is proportional to dC/dβ = dC/dS.dS/dβ. Therefore, the MLM
estimator gives lesser weights to the concentrations that are most sensitive to
those errors. Our results show that the error reduction with MLM is more
pronounced for the pulse sequences that are most sensitive to these errors.
This implies that the advantages of the MLM estimator are depending on the
pulse sequence parameters. However, MLM never has a worse performance,
nor is it more sensitive to errors in the DCE-MRI parameters. In addition, a
small but significant improvement in the CI’s is seen in both fig. 6.2, table 6.6
and table 6.7 for PS3. Therefore we state that the use of MLM is beneficial
for all SPGRE pulse sequence design. In previous work, a reduction of the
Ktrans-uncertatinty up to 30% was shown for a IR-SPGRE sequence with
MLM [25], which demonstrates the applicability of the MLM estimator for
other types of pulse sequences.

It is difficult to compare our results with other studies regarding estimators
for DCE-MRI data. We have focussed on the implications of the concentration
data distribution, while other authors did not consider this issue. Orton et
al. investigated a bayesian estimator for Tofts modeling of concentration
data, but assumed a homoskedastic concentration distribution [35]. Fluckiger
et al. developped a method for the joint estimation of the AIF and the
kinetic parameters [150]. In their simulations, gaussian noise with constant
standard deviation was added to the tissue concentration curves. When these
estimation methods are used for heteroskedastic concentration data, we claim
that our MLM estimator can be used as a part of these techniques. Other
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studies, investigating the reproducibility [174] or the error sensitivity [36]
of kinetic parameters, with (heteroskedastic) concentration data stemming
from SPGRE-pulse sequence signal intensity, may also benefit from the use
of the MLM estimator. A drawback of the MLM estimation method is its
more difficult implementation when compared to LSQ. The dS/dC factor can
be found in [30]. As initial values for the minimization, identical parameter
values as with LSQ can be used. The formula for the CI’s is difficult to
implement and should be embedded in post-processing software, as it is done
for the LSQ CI construction. Furthermore our study has not considered
the influence of heteroskedastic concentration noise on the AIF, on the CI’s
for kinetic parameters. When the AIF is measured together with the tissue
concentration curves, this effect may broaden the CI’s significantly and should
be investigated in future work4. However, our results are directly applicable
to those studies using population averaged AIF’s or employing the reference
region method. Finally, it should be mentioned that in vivo comparison
of these estimators is useless, as no golden standard for kinetic parameter
measurement is available, nor can the accuracy of the CI’s be investigated in
a clinical study.

Finally, our results have demonstrated that the ETK model is more sensitive
to errors in the DCE-MRI parameters, in comparison with its non-vascular
counterpart. Although, this statement is independent of the estimator, we
wish to point attention to this result, as (to our knowledge) it has not been
demonstrated before in DCE-MRI literature. Comparison of the rmse-values
of table 6.4 and table 6.5 shows that the kinetic parameter estimates form the
ETK are less reproducible as well. However, Buckley showed that the inclusion
of a vascular contribution in the kinetic model can significantly improve
the physiogical interpretation of the kinetic parameters [18]. These findings
implie that a trade-off in the selection of kinetic models is enforced, between
the physiogical relevance on the one hand and the error sensitivity and re-
producibility on the other hand. This should be subject of further investigation.

Appendix: derivation of Fisher information ma-
trix elements

The Cramer-Rao inequality is a theorem from estimation theory that expresses
a lower bound on the variance of an estimator for a model parameter. This so
called Cramer Rao lower bound (CRLB) was first derived by Harald Cramer
and Calyampudi Radhakrishna Rao. The inequality theorem states that for a
set of parameter estimators, the difference between the covariance matrix and

4Preliminary simulation results suggest that when an appropriate flip angle optimization is
used, the accuracy of the MLM constructed CI’s remains high, even in the case of individually
measured AIF.
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the inverse of the Fischer matrix (FIM) is positive semi-definite. For practical
use, this means that the minimal variance of an unbiased estimator equals the
corresponding diagonal element of the inverse of the Fischer matrix. In this
chapter we have used this Cramer-Rao unequality and stated that the inverse
of the FIM is a good estimate for the covariance matrix.

Consider a parameter vector θ = [θ1 θ2 ... θn] and a corresponding likelihood
function for the response variable x, L(θ | x). Let θ̂ be an estimator for θ. If
θ̂ is an unbiased estimator the Cramer-Rao inequality theorem states that the
covariance matrix Σθ̂ of θ̂ satisfies:

Σθ̂ ≥ F (θ)−1 (6.19)

F (θ) is the Fischer Information Matrix, defined as:

Fij = E

[
d [log L(x | θ)]

dθi

d [log L(x | θ)]
dθj

]
(6.20)

E denotes the expectation value operator over all possible measurements of x.
The matrix inequality in eq. 6.19 is to be understood as Σθ̂ − F (θ)−1 being
positive semi-definite.

For the case of the DCE-MRI concentration measurement combined with Tofts
kinetic modeling the reponse variable x is the measured concentration vector
C. The likelihood function of this series of observations C = [Ci] on time
points ti, i=1..n, that should be fit to a kinetic model CT (ti), is given by:

L(C | θ) =
n∏
i=1

1√
2πσi

exp

[
− (Ci − Cti)2

2σi2

]
(6.21)

Cti = CT (ti,θ) (6.22)

σi = σS
1

dS/dC C=Cti

(6.23)

S is the signal intensity equation of the pulse sequence employed in the study.
Cti has been defined to simplify the notation of CT (ti,θ).The derivative of the
logarithm of the likelihood function L to a model parameter can be calculated
as:

d [log L(C | θ)]
dθk

= (6.24)

n∑
i=1

− 1
σi

dσi
dθk

+
(Ci − Cti)

σi2
dCti
dθk

+
(Ci − Cti)2

σi3
dσi
dθk
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With eq. 6.23 the derivative of σi to θk can be written as:

dσi
dθk

= −σiαi
dCti
dθk

(6.25)

αi =
d2S/dC2

dS/dC C=Cti

(6.26)

dCti
dθk

=
dC

dθk C=Cti

(6.27)

With eq. 6.25, eq. 6.24 can be rewritten as:

d [log L(C | θ)]
dθk

=
n∑
i=1

βik (6.28)

βik =
dCti
dθk

(αi +
Ci − Cti
σi2

− (Ci − Cti)2

σi2
αi) (6.29)

According to eq. 6.20 the elements of the Fischer matrix are:

Fkl = E

 n∑
i=1

n∑
j=1

βikβjl

 (6.30)

=
∫
· · ·
∫
L(θ | C)

n∑
i=1

n∑
j=1

βikβjl dC1 . . . dCn (6.31)

=
n∑
i=1

n∑
j=1

n∏
m=1

∫
fm(Cm | Ctm)βikβjl dCm (6.32)

In eq. 6.31, L(C | θ) is the likelihood function of the series of observations C
(eq. 6.21). It is the product of the individual gaussian probability functions
fm(Cm | Ctm) (eq. 6.5). For every m 6= i,m 6= j the integral in eq. 6.32 is
1, due to normalization of the gaussian distribution. The product reduces to a
multiplication of two integrals over dCi and dCj , as long as j 6= i. When j = i
only one factor remains. Therefore the summation should be split up into two
parts:

Fkl =
n∑
i=1

n∑
j=1,j 6=i

∫
fi(Ci | Cti)βik dCi

∫
fj(Cj | Ctj)βjl dCj

+
n∑
i=1

∫
fi(Ci | Cti)βikβil dCi (6.33)
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Since the central moment of uneven order of the normal distribution is zero,
the double sum in the first part of eq. 6.33 can be reduced to:

=
n∑
i=1

n∑
j=1,j 6=i

(
αi
dCti
dθk

(1− σi
2

σi2
)
)(

αj
dCtj
dθl

(1− σj
2

σj2
)
)

= 0 (6.34)

The Fischer matrix element reduces to:

Fkl =
n∑
i=1

∫
fi(Ci | Cti)

dCti
dθk

dCti
dθl

[
(Ci − Cti)2

σ4
i

+ α2
i (1− 2

(Ci − Cti)2

σ2
i

+
(Ci − Cti)4

σ4
i

)

+2αi
(Ci − Cti)

σ2
i

(1− (Ci − Cti)2

σ2
i

)
]
dCi

(6.35)

The central moment of fourth order equals 3σ4
i . The Fischer matrix element

is:

Fkl =
n∑
i=1

[
α2
i

dCti
dθk

dCti
dθl

(1− 2 + 3) + 0 +
dCti
dθk

dCti
dθl

1
σ2
i

]

=
n∑
i=1

dCti
dθk

dCti
dθl

(2α2
i +

1
σ2
i

) (6.36)

These matrix elements are derived in a model independent manner. They are
valid for any kinetic model, unregarded the number of parameters. Moreover,
eq. 6.36 can be used for different MR-sequences, as long as the resulting con-
centration distribution is gaussian and its variance satisfies eq. 6.23.
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Chapter 7

A stable and fast procedure
for the fitting of DCE-MRI
data to the AATH model

7.1 Introduction

In chapter 2, an overview was given of the models that are currently used
in clinical DCE-MRI studies. The compartmental models, as reviewed
and standardized by Tofts et al. [16, 17], enable the estimation of 2 or 3
pharmacokinetic parameters describing the physiology of the tissue of interest.
In the 2-parameter model, νe is the extracellullar extravascular space fraction
and Ktrans [min−1] is the transendothelial transfer constant. The latter
describes the joint effect of the plasma flow Fp through, and the permeability
PS of the tumours microvascular network (see chapter 2). The 3-parameter
compartmental model contains the plasma volume fraction νp as well, to
include the non-negligible contribution of the CA in the capillaries [16].
These 2- and 3 parameters models have been intensively investigated in
literature and have shown their applicability in many tumour types [119,131].
Nevertheless, it was shown that due to the simplified model assumptions, the
physiologic parameters one aims to measure are inaccurate [18]. A potential
modeling error is the assumption, inherent to the compartimental models,
that the mean transit time τ of the blood in the tumor is zero. Several studies
revealed non-negligible values in various tumour types, up to 90s in prostate
cancer [111] (see table 7.1). Another major disadvantage of the compartmental
model is the inability to achieve separate estimation of the plasma flow and
the permeability. It can only assess their joint effect through Ktrans.

The tissue homogeneity model (TH model) is a 4-parameter description of the

139
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capillary exchange mechanisms [78]. It enables estimation of both blood flow
and permeability and takes into account the finite transit time. The model
equations however, can only be solved in the Laplace or Fourier space, making
time domain fitting methods impossible. Very recently a fitting method in
fourier space was developped and tested [81]. An adiabatic approximation for
the TH model was derived in 1998 by St-Lawrence and Lee and enables the
separate estimation of νe, νp and both the plasma flow Fp and the permeability
surface area product PS [79, 80]. Several studies showed the benefits of this
4-parameter model over the 2- of 3-parameter models [26, 155]. In addition
Buckley found that the AATH model provides the most accurate estimates of
the true physiological parameters [18]. However, the model fitting has been
shown to be highly unstable [18, 24, 79, 81]. Due to intercorrelations between
the parameters, multiple local minima are apparent in the least square cost
function and a large amount of initial estimates for the kinetic parameters are
necessary to find the global minimum. In general 2 fitting methods exist. The
first one uses multiple initial estimates for the mean transit time and allows
all four parameters to vary freely, while the second method employs several
fixed values for the mean transit time, and allows variation of the 3 others
parameters only. As a result of the multiple and often unstable minimization
procedures that have to be performed in these procedures, the AATH model
fitting is highly time consuming.

In this chapter a new fitting procedure for the AATH model is proposed and
compared to the currently used fitting procedures by means of simulations.
The chapter starts by giving an overview of these current estimation methods
for the AATH model. By means of a practical example, the instability of these
procedures is illustrated and a number of observations is made, which lay the
foundation of the newly proposed fitting method in section 7.3. In section 7.4,
the set-up and the results of the simulations to compare the fitting methods
are explained. Finally in section 7.5 the potential and the shortcomings of our
new method are discussed.

7.2 Current status of AATH model fitting pro-
cedures

7.2.1 Practical implementation of AATH model

The AATH model [79] allows the separate estimation of 4 physiological pa-
rameters: Fp is the plasma flow [min−1 1], PS is the permeability-surface area
product [min−1], νe is the interstitial space fraction and νp is the plasma volume
fraction. To describe the model mathematically, 4 more variables are defined:

1if for simplicity the tissue density is assumed to be 1 g/ml
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Table 7.1: An overview of the studies using the AATH model to fit DCE-MRI [18,24,
26,111–113,155] or DCE-CT data [114]. The pathology and the employed
fitting method are mentioned as well. The τ -grid describes the different
τ -values used in the respective fitting methods. Kershaw (2010) has
investigated both fitting methods. The mean τ -value found in the clinical
studies is mentioned as well.

Study Pathology Fitting τ -grid mean τ [s]
method

Henderson(2000) breast cancer FMTF 60 values in 1-60s 24
Buckley (2002) simulation study MMTF - -
Buckley (2004) prostate cancer MMTF - -
Kershaw (2006) prostate cancer MMTF 30 values in 0.6-90s 19
Jeukens (2006) prostate cancer FMTF 50 values in 6-70s 25
Naish (2009) lung cancer FMTF 30 values in 2-60s 21
Kershaw (2009) prostate cancer MMTF - 60
Kershaw (2010) simulation study MMTF 30 values in 0.6-90s -

FMTF 90 values in 0.6-90s

the extraction fraction E, the mean capillary transit time τ , the endothelial
transfer constant Ktrans and the transfer constant between interstitial space
and plasma kep. The relationships between these variables and the physiologi-
cal quantities above are given in eq. 7.1.

E = 1− exp(−PS
Fp

)

τ =
νp
Fp

Ktrans = EFp (7.1)

kep =
EFp
νe

The impulse answer of the AATH model is given by eq. 7.2:

H(t) =


0 t < 0
Fp 0 < t ≤ τ
Ktransexp(−kep(t− τ)) t > τ

(7.2)

It may be clear from these equations that in practice the parameters Fp, Ktrans,
kep and τ can be estimated. The other parameters are calculated from eq.
7.1. The parameters that are reported differ between different studies. In
this work we only report the results for the physiological parameters. The
tissue concentration curve is determined as the convolution of the AIF with
this impulse answer (eq. 7.3), which in practice, is calculated as a discrete sum
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(eq. 7.4).

Ct(t) = Cp(t)⊗H(t) =
∫ t

0

Cp(t′)H(t− t′)dt′ (7.3)

Ct(tj) =
j∑

m=1

Cp(m)H(j −m+ 1)∆ (7.4)

In eq. 7.4, tj = (j − 1)∆, are the discrete times at which a DCE-MRI-image
is captured. ∆ is the time step between 2 subsequent DCE-MRI images. By
choosing this way of indexing, it is ensured that our equations are directly trans-
ferrable to mathematical programs as Matlab. The best-fit values of the AATH
parameters are determined by minimizing the sum of squared differences (ssq)
between the measured concentration curve and the convolution expression:

ssq =
n∑
j=1

[C(tj)− Ct(tj)]2 (7.5)

C(tj) is the CA concentration measured at time point tj . n is the number of
DCE-MRI images taken in the dynamic series.

7.2.2 Multiple minima in parameter space

To illustrate the difficulties encountered in the fitting of the AATH model, an
example concentration curve is used throughout this chapter, shown in fig.
7.1b. Figure 7.1a shows the simulated concentration curve, generated from the
tissue homogeneity model with pharmacokinetic parameters representative for
a breast tumor [18] and with the Parker AIF [139]. Parameters are mentioned
in table 7.2. The noisy concentration curve in fig. 7.1b is obtained by sampling
this simulated curve (∆t = 2s) and contaminating it with white gaussian noise
(SD = 0.05).

It is impossible to illustrate the existence of multiple minima of the ssq-cost
function in the 4-dimensional AATH parameter space. Therefore, fig. 7.1c
shows the cost function in a 1-dimensional cross section of the parameter space,
formed by the straight line adjoining the global minimum and a randomly
chosen local minimum. The parameter vector θ̂gl, corresponding with the
global minimum, was found by minimizing the sum of squared differences
between of the noisy concentration curve and the AATH model equation (eq.
7.5) with the simulation input parameters (table 7.2) as initial estimates for
the minimization algorithm (standard Matlab library Nelder-Mead simplex
algorithm). For the local minimum, θ̂loc, the simulation input parameters were
used as starting values as well, except for the starting value of νp, which was
tripled. The pharmacokinetic parameters corresponding to both minima are
mentioned in table 7.2. In fig. 7.1c, u is the parameter describing the straight
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line according to θ = θ̂gl+u(θ̂loc− θ̂gl). The global minimum (u = 0) and the
local minimum (u = 1) are designated in fig. 7.1c. It is clear that even in this
small cross section of the complete AATH parameter space, several minima
occur. Depending on the initial values, used in the minimization algorithm,
different results will present, which can be highly divergent. To find the global
minimum of the cost function, the currently used fitting procedures (see next
section) explore multiple starting points across the AATH parameter space.

To find a solution for this fitting problem, it is interesting to recognize the cause
of the occurence of local minima. Firstly, as with any model containing a high2

number of parameters, parameter intercorrelation occurs [18,24,26]. Parameter
intercorrelation is the phenomenom for which different parameter combinations
lead to approximately identical tissue concentration curves, making curve
fitting a hazardous task 3. The occurence of parameter intercorrelation for the
AATH model can be seen on fig. 7.1b, where the curves for the global (red) and
local minimum (green) are plotted together. Only a small curve shift around
the peak concentration can be inspected, although the parameters are highly
different. This intercorrelation is an intrinsic disadvantage of the AATH model.

However, in the case of the AATH model, the instability of the curve fitting
is caused by the model evaluation method as well. Most authors evaluate the
model concentrations by an explicit calculation of the discrete convolution in
eq. 7.4 [24, 26, 114, 155]. Although the analytical convolution in eq. 7.3 is
continuous in the parameter τ , its discrete counterpart in eq. 7.4 is not. This
can be seen in fig. 7.1d, plotting the variation of the AATH concentration
at 2 fixed time points versus the mean transit time. Whenever τ crosses a
multiple of the temporal resolution ∆, a jump in the concentration occurs.
This implies that for values of τ that are not a multiple ∆t, the convolution
expression is inaccurate. It also explains the discontinuities observed in the
cost function in fig. 7.1c. Moreover, the local minimum θ̂loc, found by the
minimization algorithm, is clearly a consequence of such discontinuity. Several
other similar minima can be observed in fig. 7.1c. This proves that this
convolution expression, that is often used as a practical determination method
for the AATH model concentrations is inaccurate and partly responsible for
the instability and occurence of local minima.

In view of these inaccuracies when τ is not a multiple of ∆, it is interesting to
investigate the variation of the ssq cost function with the mean transit time.

2The term ’high’ indicates a number of parameters that is larger than in other models
that also succeed in fitting a measured curve with an acceptable goodness-of-fit.

3Remark that parameter intercorrelation does not necessarily induce low parameter preci-
sion. The latter is due to a broad minimum of the cost function in parameter space, because
one or more parameters only affect the cost-function in a minor way. Parameter intercorre-
lation indicates that a change in a given parameter can be corrected by a change in an other
parameter, leading to multiple minima in the cost function. However, no conclusions can be
drawn about the broadness of these minima, and thus about the precision of the parameters
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Table 7.2: Parameter set used for the generation and corresponding to a global and
a local minimum of the curve in fig. 7.1b.

Fp [min−1] PS [min−1] νe νp

Simulation values 0.57 0.33 0.45 0.060
Global minimum 0.61 0.33 0.46 0.065
Local minimum 0.37 0.35 0.41 0.11

In fig. 7.1e, the cost function for the fixed τ fitting method is plotted (more
explanation can be found in the next section): for every τ -value, the optimal
values of the other 3 parameter are determined, that minimize the ssq cost
function. This minimal value of the cost function is then plotted against τ and
the minimum of this curve is regarded as the global minimum. The correspond-
ing parameters are chosen as the best fit-values. However, when inspecting fig.
7.1e, no variation can be seen between τ = 3∆ and τ = 4∆ (τ -input value
is 6.31s in the example, ∆ =2s). Therefore in fig. 7.1f, this part of the cost
function, subtracted with its minimal value, is enlarged. The differences are in
the order of 10−8, which is precisely the tolerance value on the cost function,
that stops the iterations of the Nelder-Mead simplex minimization algorithm.
When this tolerance value is changed, the differences change as well and remain
in the order of the tolerance value. Therefore these differences are not signifi-
cant, and it is proven that an estimate of τ is only precise up to a multiple of
∆. This will be used in the new fitting procedure.

7.2.3 Fixed mean transit time fitting procedure (FMTF)

FMTF performs multiple fits to the AATH model at different fixed τ -values
in which only Fp, Ktrans and kep are allowed to vary. The fixed τ -values are
typically varied in steps of 0.01 min, beginning from a lower limit up to an
upper bound that depends on the pathology. Finally, the fit with the lowest
ssq-value among all fixed τ -values is regarded as global minimum. For the
minimization procedure at a specific fixed τ -value, the initial values of Fp,
Ktrans and kep are determined as follows: a non-linear fit of the concentration
curve to the TK model equation is performed. The resulting best fit-values
for kep and Ktrans are used in both algorithms as starting points for these
respective parameters. For Fp, an initial value of 0.5 times the best-fit value
for Ktrans is chosen, which corresponds with an initial estimate of 0.5 for
the extraction fraction. To avoid parameter intercorrelation induced stability
problems in the fitting algorithm, many authors use bounded optimization
algorithms. All parameters are assumed to be non-negative, or even have lower
limit of 10−4 in their respective units [24]. The extraction fraction E and νe
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Figure 7.1: a: Simulated concentration curve from TH model and Parker AIF, rep-
resentative for a breast tumor. Parameters are mentioned in table 7.2.
b: Noisy concentration curve (black dots) and the fitted AATH model
curves in the global minimum and in a local minimum of the cost func-
tion. AATH fit parameters of the global and local minimum are men-
tioned in table 7.2. c: 1-dimensional cross section of the ssq cost func-
tion, obtained by adjoining the global and the local minimum along a
straight line described by the parameter u. d: variation of the AATH
concentration at two fixed time points versus the mean transit time. e:
variation of the ssq cost function with the mean transit time. f: cost
function minus its minimal value, plotted in a τ -interval with the width
of the temporal resolution.
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are physiologically and physically bounded to be smaller than 1. For Fp an
upper bound of 10 min−1 was proposed [24,113]. Table 7.1 mentions a number
of studies that employed the FMTF method, together with the corresponding
τ -grid.

7.2.4 Multiple mean transit time initial values fitting pro-
cedure (MMTF)

The MMTF method performs multiple fits to the AATH model equation for
multiple initial values for τ , with the initial values for the other parameters as
defined in the previous section. When for a given initial value of τ , a minimum
has been reached, the fit is restarted with the optimal parameter values from
this minimum changed by 5%, to decrease the influence of local minima. The
fit with the smallest ssq is again chosen as the global minimum. In table 7.1
the studies employing MMTF fitting are mentioned with the different choices
for the τ -initial values. As with the FMFT method, the pharmacokinetic
parameters are restricted, and bounded minimization methods are used. In
contrast to the FMTF method, MMTF allows all 4 parameters to vary freely
in the minimization algorithm.

Recently Kershaw & Cheng [24] compared FMTF and MMTF estimation for
the fitting of concentration data, simulated with the TH-model. They found
that FMTF reduces the median error in the extraction fraction and decreases
the interquartile range of alle parameters, especially for τ . This observation
implies that we only have to compare our new fitting procedure with the
FMTF method, as it is the better of both available methods. However, we do
not agree with the simulations set-up of Kershaw & Cheng. Their simulation
input values for τ were all beneath 75s. While for the FMTF method, the
maximal possible τ is determined by the upper bound of the τ -grid (90s for
Kershaw & Cheng, see table 7.1), for the MMTF their upper bound for τ in
the bounded optimization algorithm was 300s. This set-up is beneficial for
the FMTF method, as any global minimum with a τ -value above 90s in the
MMTF method, cannot be found by the FMTF method, but always leads to
an apparent worse resemblance with the true input parameters. Therefore,
our newly proposed fitting method is compared with both fitting procedures,
but with similar upper bounds for τ .
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7.3 Recursive grid based fitting procedure
(RGBF)

7.3.1 Overview

Our new fitting procedure is inspired on the findings in section 7.2.2, that the
precision of the τ -parameter for the convolution based fitting procedures is
bounded by the temporal resolution ∆. In other words, a fitting procedure
that considers multiples of ∆ as the only possible values for the mean transit
time, will not necessarily perform worse than the currently used procedures.
Therefore, the new fitting method is based on the fast calculation of a ssq-
grid in [τ , kep]-space. In this section, a structured overview is given of the
different steps in the RGBF-procedure, which is also shown in fig. 7.2. The
mathematical details are explained in the next section.

• Grid construction: a grid in [τ , kep]-space is constructed. In τ -direction
the resolution equals the temporal resolution ∆. Minimal τ is ∆, while
the maximal τ can depend on the pathology. To cover the majority of
the studies in table 7.1, it is set to 90 s for the rest of this chapter, but
it can easily be adapted. In kep-direction, kep varies in steps of 0.015
min−1 from a minimal value of 0.03 min−1 to a maximal value of 7.5
min−1. Again, upper- and lower bound can be adapted according to the
pathology. Fig. 7.2 shows the grid in [τ , kep]-space.

• Grid filling: in every node of the grid 3 parameters are calculated. Firstly,
the optimal values of Ktrans and Fp at the specific grid point are calcu-
lated by linear regression. With these parameters, the ssq is calculated
for every node. The practical aspects of this grid filling are explained in
the next section.

• Global minimum selection: the node with the smallest ssq-value is chosen
as the global minimum. The corresponding parameters are regarded as
the best-fit values.

7.3.2 Linear regression and recursion formula

The fast calculation of the ssq-grid is based on the following analytical expres-
sion for the AATH model which can be derived from eq. 7.3 and eq. 7.2:

Ct(t) =

{
Fp
∫ t

0
Cp(t− t′)dt′ t < τ

Fp
∫ τ

0
Cp(t− t′)dt′ +Ktrans

∫ t
τ
Cp(t− t′)exp [−kep(t′ − τ)] dt′ t ≥ τ

(7.6)
This can be rewritten as:

Ct(t) = Fp x1(τ, t) +Ktrans x2(τ, kep, t) (7.7)
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and x2-calculation. Below: Schematic overview of the different steps in
the RGBF.
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This equation shows that if τ and kep are fixed, Ktrans and Fp can be estimated
from standard linear regression to the measured concentrations, with x1 and x2

as independent variables. This estimation can be performed analytically, with
the standard matrix formulas for linear regression, and does not require time-
consuming and unstable minimization procedures or selection of appropriate
initial estimates. For a given gridpoint [τ , kep], the best-fit values are given by:[

F̂p
K̂trans

]
= (XTX)−1XCt (7.8)

with X being a 2×n matrix containing the x1- and the x2-vectors for that spe-
cific gridpoint, as its column vectors. From eq. 7.6, the analytical expressions
for x1 and x2 can be derived:

t < τ

{
x1(τ, t) =

∫ t
0
Cp(t− t′)dt′

x2(τ, kep, t) = 0
(7.9)

t ≥ τ

{
x1(τ, t) =

∫ τ
0
Cp(t− t′)dt′

x2(τ, kep, t) =
∫ t
τ
Cp(t− t′)exp [−kep(t′ − τ)] dt′

(7.10)

However, if x1 and x2 have to be determined based on a discretisation of eq.
7.9 and 7.10, little or no computational time would be gained in comparison
with the other estimation procedures. Therefore a recursion based procedure
was developped for the fast determination of x1 and x2 over the complete
grid. It starts with the discrete calculation x1(∆, t) (independent of kep) and
of x2(∆, kep, t). In addition a third variable is determined, x3(kep, t), required
for the recursion relationship of x2:

x1(∆, j) =
Cp(j) + Cp(j − 1)

2
∆ (7.11)

x2(∆, kep, j) = ekep(t−∆)
j−1∑
m=1

Cp(m)ekepm∆ + Cp(m− 1)ekep(m−1)∆

2
∆(7.12)

x3(kep, j) =
Cp(j)e

kepj∆ + Cp(j − 1)ekep(j−1)∆

2
∆ (7.13)

The values of x1(i∆, j) and x2(i∆, kep, j), i ≥ 2, can be calculated based on
the following recursion relationship:{

x1(i, j) = x1(i− 1, j) j ≤ i
x1(i, j) = x1(i− 1, j) + x1(1, j − i+ 1) j > i

(7.14)

{
x2(i, j) = x2(i− 1, j) j ≤ i
x2(i, j) = x2(i− 1, j)ekep∆ − x3(kep, j − i+ 1)ekep(i−j+1) j > i

(7.15)

Fig. 7.2 shows an schematic overview of these different steps. The proof of
these recursion relations is given in the appendix.
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Table 7.3: Ranges for the physiological parameters Fp, PS, νe and νp, from which
the simulation input values were selected. The ranges for the other pa-
rameters E, Ktrans, kep and τ were manually calculated from the phys-
iological parameters

Parameter min max

Fp [min−1] 0.15 1
PS [min−1] 0.01 0.8
νe 0.1 0.6
νp 0.03 0.15
E 0.095 1
Ktrans [min−1] 0.073 0.55
kep [min−1] 0.12 5.5
τ [s] 1.8 60

7.4 Comparison of fitting procedures

7.4.1 Simulation setting

A simulation environment was written in Matlab (Matworks, Ma) to compare
the performance of the fitting procedures. 104 parameter combinations were
selected from the ranges mentioned in table 7.3. For every parameter combina-
tion the tissue concentration was simulated according to the tissue homogeneity
model, with a method as described in [24]. As AIF, the parametetrized form
of the population averaged AIF, measured by Parker et al. was used [139]. To
avoid errors caused by aliasing, a temporal resolution of 0.1 s was used for the
generation of each curve, after which it is sampled with a temporal resolution
of 2s, for a total scan time of 360s (identical to the protocol of [141]). The
sampled curve is infected with white gaussian noise, with a standard deviation
of 0.05 and fitted to the AATH-model with each of the three fitting methods.
Their performance is compared for a parameter θ by means of the mean relative
error:

MRE =
1
n

n∑
i=1

| θ̂i − θi |
θi

(7.16)

θi is the simulation input value for the parameter θ in the ith simulation. θ̂i is
the corresponding estimate. n is the number of simulations. These simulations
were repeated for 4 other values of the temporal resolution (∆t=1-2-3-4-5 s).
For the FMTF and MMTF method, all parameters were constrained to be
non-negative. Physiologically νe has to be smaller than 1. Upper bounds for
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PS and Fp were set to 1.2 min−1 and 10 min−1 respectively. As mentioned
above (section 7.2.4), other authors demand E<1, and do not consider an
upper bound on PS. When comparing their results to the simulation input
values they typically evaluate Fp, E, νe and νp/ or τ [24]. PS-comparison is
avoided because when the estimated value of E is close to 1 (due to instability
reasons, this occurs frequently in flow-limited situations [18], see eq. 7.1 ), PS
becomes physiologically senseless or is impossible to calculate at all. However,
in this work we wish to evaluate the physiological parameters Fp, PS, νp
and νe. Therefore, instead of demanding that E<1, an upper bound has to
be imposed on PS to keep its value calculable. For the FMTF method, the
τ -grid varies from 0.6s to 90s in steps of 0.6s. To enable a fair comparison (as
explained in the previous section), the value of τ is bounded in the MMTF
method between 0.6 and 90 (maximal input value of τ is 60s, see table 7.3).
The grid for the RGBF procedure was designed as in fig. 7.2: in τ -direction the
grid step is ∆, going from τ = ∆ to τ=90s, again to enable a fair comparison
with the other fitting procedures. In kep-direction, the grid step, is 0.015
min−1, going from 0.03 min−1 to 7.5 min−1. Remark that this kep-grid is
well-designed to comprise all possible kep-values in the simulations (table 7.3).
For the RGBF method, the constraining of Fp, PS and νe is identical as in
the other methods.

The simulations as described in the previous paragraph are bulk simulations,
i.e. the mean relative error comprises information about the average perfor-
mance of the fitting procedures in a relevant parameter range. However, MRE
of such a bulk simulation does not provide insight into the accuracy and pre-
cision of individual kinetic parameter estimates. To assess the influence of the
RGBF-procedure on the accuracy and precision of the AATH-parameters, the
simulations were repeated for 4 fixed kinetic parameter sets. The parameter
set were chosen to be representative for a brain tumor, a breast tumor, a lung
tumor and a prostate tumor. The values are mentioned in table 7.4. For each
kinetic parameter set 103 simulations were performed and the parameter error
is depicted in a box plot.

7.4.2 Results

The MRE-values for the simulations with ∆t = 2s, are mentioned in table 7.5.
RGBF severely reduces the MRE for all parameters (58% for Fp, 25% for PS,
14% for νe and 22% for νp). In addition RGBF is much faster than the other fit-
ting procedures, with a reduction of 70% in computational time. The influence
of the temporal resolution of the data on the performance of the fitting proce-
dures is shown in fig. 7.3. The mean computational time for one fit is plotted
in fig. 7.4 against the temporal resolution. From these graphs is it indisputable
that our RGBF has a superior performance compared to the currently used
MMTF- or FMTF-methods, unregarded of the temporal resolution of the data.
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Table 7.4: Pharmacokinetic parameters in 4 different tumor types. Values adopted
from [18,113,155].

Pathology Fp [min−1] PS [min−1] νe νp τ [s]

Brain tumor 1.2 0.34 0.4 0.08 4
Breast tumor 0.57 0.33 0.45 0.06 6.3
Lung tumor 0.16 0.067 0.11 0.06 22.5
Prostate tumor 0.21 0.24 0.35 0.12 34.3

Table 7.5: MRE-values and mean computational time for the investigated fitting
procedures (∆t =2s, Tscan=360 s, σ = 0.05)

Fitting method Fp PS νe νp mean time[s]

MMTF 14.7 17.6 5.6 19.3 11.8
FMTF 14.2 17.3 5.5 18.5 18.8
RGBF 6.1 13.2 4.8 15.0 3.4
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Figure 7.3: Comparison of the three fitting procedures at different temporal resolu-
tion. The mean relative error is plotted for the 4 physiological param-
eters of the AATH model against the temporal resolution.

Fig. 7.5 shows the boxplots of the AATH-parameter error, for 4 kinetic
parameter combinations representative of different pathologies (table 7.4). In
all cases, bias (both median and mean error) in Fp is strongly reduced by
the RGBF-method. In particular when τ is small (breast & brain, see table
7.4), Fp-estimates from MMTF or FMTF exhibit biases of 20%. These errors
disappear with the RGBF-method in all pathologies, but for small τ this goes
at the cost of a higher interquartile range. The estimation of PS is benefitted
as well from using the RGBF-method, with consistent reductions in mean
and median error and interquartile range in all pathologies. For νe, RGBF
corrects for bias in breast and brain tumors, while in the other pathologies its
performance is comparable to the other fitting procedures. Finally, νp-bias is
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Figure 7.4: Comparison of the mean computational time needed to perform 1 fit,
at different temporal resolutions.

decreased in all pathologies and a reduction in interquartile range is apparent
when τ is small (brain & breast).

7.5 Potential & shortcomings

A growing clinical interest exists for the AATH-model [26, 111–113, 155].
The model has the ability to obtain separate estimations of blood flow and
permeability, where conventional pharmacokinetic models can only assess their
joint effect through Ktrans. By the inclusion of finite mean transit time, it has
been shown that the model is able to obtain statistically more significant fits
to the measured concentration curves [155] and that its parameters display
a higher degree of correlation with their true physiogical counterparts [18].
However, the model fitting is confronted with parameter intercorrelations
and instability. We have identified the practical evaluation method for the
AATH concentrations as the main cause of these instabilities. The discrete
convolution, currently used by the majority of the investigators as practical
evaluation method for the AATH concentrations, is discontinuous in the
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Figure 7.5: Boxplots of the relative error distribution for the AATH parameters,
fitted with the MMTF- (∗) , the FMTF- (◦) or the RGBF-method (×)
respectively. The error bars denote the 2.5% and 97.5percentiles. The
upper- and lower bounds of the boxes indicate the quartiles. The middle
line in the boxes is the median error. The signs (∗,◦ or ×) denote the
mean error. Kinetic parameter values for the different tumor types are
mentioned in table 7.4.

parameter τ . The resulting concentrations are inaccurate when τ is not a
multiple of the time step ∆t. As a consequence, many local minima that
occur in the ssq-cost function and the fitting procedures have been developped
that scan a high number of regions of the parameter space, to find a global
minimum. These fitting procedure are therefore highly time-consuming. From
our simulations, the calculation of a kinetic parameter map for a tumor with
1000 voxels and DCE-MRI scan with temporal resolution of 1s, lasts between
13 and 19 hours depending on the applied fitting procedure. In addition, these
fittings procedures require high data quality. Kershaw and Cheng recently
showed for the FMTF procedure that in order to ensure minimal bias (<5%)
a temporal resolution of 1.5s combined with high SNR is requires [24]. From
the trade-offs discussed in chapter 2, it is recalled that this kind of DCE-MRI
experiment design may be unfeasible, when an acceptable spatial resolution is
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required in the pathology. These practical considerations prevent the AATH
model, despite its high physiological significance, to become generally accepted
as improved pharmacokinetic model and to reveal its potential by clinical
studies. It should not be doubted that the development of a fast, stable and
accurate fitting procedure for the AATH model, will effectively enhance its
clinical relevance.

Our recursive grid based fitting procedure has proven to be superior to the
other available fitting methods: mean relative error is reduced severely in
bulk simulations, up to 58% for Fp; computational time is reduced up to
70%. Single value simulations show that both accuracy and precision of the
pharmacokinetic parameters benefit from the use of the RGBF-method. For
Fp, bias almost disappears although for low τ -values this goes at the cost of
decreased precision. This effect, however, has been observed by Garpebring
et al. as well, when testing their fourier domain fitting procedure for the
TH-model4 [81]. For νp and PS both the accuracy and the precision are
enhanced by the RGBF procedure. For νe, RGBF mostly affects the accuracy.
The succes of our RGBF-method is founded on the exclusion of all instabilities
in τ -direction. One of the problems when discretizing the AATH model
equation is the appearance of τ as a limit in the integral of eq. 7.6. The
accuracy of such discrete evaluation method is the highest when τ is a multiple
of ∆, the time step. The local minima in τ -direction, located in between
multiples of ∆, are often caused by the inaccuracies of the discrete evalution
method, rather than by true resemblance with the AATH model. The RGBF
method avoids this issue by excluding all values of τ that are not multiples
of ∆. Only those values of τ are considered, for which a high accuracy of
the concentration evaluation method is assured. The disadvantage is that the
complete parameter space has to be scanned, as no search algorithm can be
used to find the minimal ssq-value. However, the RGBF procedure reduces
the 4-dimensional parameter space to a 2-dimensional grid, by exploiting the
linearity of the Ktrans and Fp-parameters in the AATH model equations.
Furthermore, the recursion relationship reduces the compuational time to fill
the 2D-grid, to the time needed to fill a 1D-line in kep-direction. Thereby,
the speed of the procedure has been increased with approximately τmax/∆.
Remark that the MRE-reduction could be achieved without the recursion
relationship as well, but for the example quoted in the previous paragraph
(tumor with 1000 voxels), it would require approximately 12.5 days. With the
recursion relationship, the time needed is around 3 hours.

It is difficult to compare our MRE-results of the MMTF and FMTF procedures
to the of Kershaw & Cheng [24], as they employed a different AIF, a different
kinetic parameter range, and most importantly other parameter constraints

4It is commonly known that biased estimators may have lower standard deviation than
their unbiased counterparts.
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(see section 7.2.4). However, the reported errors are in the same order of
magnitude, and similar bias in Fp and νp are found. As mentioned above, our
new fitting method will not require the same high data quality as reported
by Kershaw & Cheng. Future studies should adress this issue. Garpebring et
al. compared their fourier domain method to the MMTF method, but used
an interpolation technique to increase the accuracy of the AATH convolution.
Remark that by adequately constraining the parameter values, only small
difference can be observed between MMTF and FMTF procedures, and no
conclusions can be made about the superiority of one of both. This consistent
constraining of the parameter values is one the strong points of our study and
supports the superiority of our RGBF-procedure.

Nevertheless, our study has a number of shortcomings that should be men-
tioned. First of all, the influence of the grid size in kep was not investigated.
As this grid step imposes an upper bound on the precision of the kep-estimates,
but affects the speed of the RGBF-method as well, it comprises a trade-off
that should be investigated further. Finally, the input data of our simulations
is homoskedastic, and not representative of true DCE-MRI data. This chapter
is only a proof-of-concept and the inclusion of the heteroskedastic data
distribution can easily be investigated in future work.

7.6 Conclusion

A new fast and stable fitting procedure has been developped for the AATH
model that overcomes the often cited fit instability problems and can mark the
beginning of an increased clinical acceptance of the model.

Appendix: formal proof of the recursion relation-
ship

In this appendix, a mathematical proof of the recursion relationships for x1 and
x2 is provided. For a thorough understanding, we define τi and tj , respectively
the τ -value and the time point corresponding with the indices i and j:

τi = i∆ (7.17)
tj = (j − 1)∆ (7.18)

The j-indexing scheme was chosen that j = 1 corresponds with t = 0, which
is in agreement with the Matlab-indexing. If tj < τi, eq. 7.9 has to used for
the calculation of x1(i, j) and x2(i, j). If tj ≥ τi, eq. 7.10 should be employed.
Therefore the proof is subdivided into three cases: j < i, j = i and j > i.
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• j < i

If j < i, tj is both smaller than τi and τi−1. Therefore, both
x1(i, j) and x1(i − 1, j) have to be calculated with eq. 7.9. As eq. 7.9
does not depend on τ , it is proven that:

x1(i, j) =
∫ t

0

Cp(t− t′)dt′ (7.19)

=
∫ (j−1)∆

0

Cp((j − 1)∆− t′)dt′ (7.20)

= x1(i− 1, j) (7.21)

For x2 a similar argumentation can be used: both x2(i, j) and x2(i−1, j)
are 0. The recursion relationships are proven for j < i

• j = i

In this case, tj < τi, but tj = τi−1. Nothing changes for x(i, j), which
still agrees to eq. 7.20. However, x1(i − 1, j) has to be calculated with
eq. 7.10:

x1(i− 1, j) =
∫ τi−1

0

Cp(t− t′)dt′ (7.22)

=
∫ (i−1)∆

0

Cp((j − 1)∆− t′)dt′ (7.23)

=
∫ (j−1)∆

0

Cp((j − 1)∆− t′)dt′ (7.24)

= x1(i, j) (7.25)

x2(i, j) remains 0 in this case. As tj = τi−1, x2(i − 1, j) = 0 when
calculated with eq. 7.10. The recursion relationships are proven for j = i.

• j > i

Firstly an expression is derived for x1(1, j − i + 1). As j > i,
tj−i+1 > τ1. Therefore x1(1, j− i+ 1) is calculated according to eq. 7.10:

x1(1, j − i+ 1) =
∫ ∆

0

Cp((j − i)∆− t′)dt′ (7.26)

=
∫ (j−i)∆

(j−i−1)∆

Cp(u)du (7.27)
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(7.28)

The last expression is obtained by substituting u = (j − 1)∆ − t′ in the
integral. For x1(i, j), eq. 7.10 has to be used as well, as tj > τi:

x1(i, j) =
∫ τi

0

Cp(tj − t′)dt′ (7.29)

=
∫ i∆

0

Cp((j − 1)∆− t′)dt′ (7.30)

=
∫ (i−1)∆

0

Cp((j − 1)∆− t′)dt′ +∫ i∆

(i−1)∆

Cp((j − 1)∆− t′)dt′ (7.31)

= x1(i− 1, j) +
∫ (j−i)∆

(j−i−1)∆

Cp(u)du (7.32)

= x1(i− 1, j) + x1(1, j − i+ 1) (7.33)

Eq. 7.32 has been derived from eq. 7.31 by using that (first term) tj >
τi−1 as well, and therefore eq. 7.10 is valid for x1(i − 1, j) and (second
term) by substituting u = (j − 1)∆− t′.
Similarly, for x2(i, j), eq. 7.10 has to be used:

x2(i, j) =
∫ tj

τi

Cp(tj − t′)exp [−kep(t′ − τi)] dt′ (7.34)

=
∫ tj

τi−1

Cp(tj − t′)exp [−kep(t′ − τi−1 −∆)] dt′ −∫ τi

τi−1

Cp(tj − t′)exp [−kep(t′ − τi)] dt′ (7.35)

= ekep∆x2(i− 1, j)− y(i, j) (7.36)

y(i, j) =
∫ i∆

(i−1)∆

Cp((j − 1)∆− t′)exp [−kep(t′ − i∆)] dt′ (7.37)

=
∫ (j−i)∆

(j−i−1)∆

Cp(u)exp [−kep((j − i− 1)∆− u)] du (7.38)

= ekep(i−j+1)∆

∫ (j−i)∆

(j−i−1)∆

Cp(u)exp [kepu] du (7.39)

= ekep(i−j+1)∆

∫ tj−i+1

tj−i

Cp(u)exp [kepu] du (7.40)

= ekep(i−j+1)x3(kep, j − i+ 1) (7.41)

The recursion relationship is now proven for j > i as well.
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Chapter 8

Protocol optimization for
pharmacokinetic modeling:
influence of total scan time
and temporal resolution

8.1 Introduction

To our knowledge, all studies investigating the influence of protocol design
on kinetic parameter estimation, use a simulation methodology to assess
the accuracy and the precision of the kinetic parameters, in absence of a
validation standard. Typically, a (simplified) simulation set-up is as follows:
a tissue concentration curve is generated according to a given kinetic model,
sampled and infected with white gaussian noise with constant variance. This
distorted curve is then fit to the kinetic model under consideration and the
best-fit values are compared to the input values used for curve generation.
To assess accuracy, the simulation is repeated m times for a fixed kinetic
parameter set, and the average of the m best-fit values is compared to the
true values. The variance of the m best-fit values is a measure for kinetic
parameter precision. The higher m, the better the statistical power of the
simulation set-up. This procedure has two major disadvantages. First of all,
to get sigificant results, m has to be in the order of 102 − 103 for every kinetic
parameter set under investigation. Therefore, it is very time-consuming, and
it is difficult to perform simulations for a wide range of kinetic parameters or
investigate multiple protocol designs. Therefore, most of these studies are in
fact case-studies, in which the influence of one single parameter or error source
(temporal resolution, accuracy of the AIF, noise level, injection protocol,... )
is investigated for one single kinetic model. Although these studies are of great
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value for assessing kinetic parameter accuracy, the reproducibility of pharma-
cokinetic modeling and the design of standardized protocol may be difficult
without a generalized framework. Secondly, only a limited number of studies
effectively investigate the influence of the pulse sequence parameters [28, 36].
Nevertheless, pulse sequence parameters have a major influence on the kinetic
parameter precision as they determine the concentration noise levels at fixed
SNR (see chapters 3, 5& 6). In addition, pulse sequence parameters are
coupled to spatial resolution, SNR and temporal resolution. The repetition
time for instance has an important influence on temporal resolution and their
common relationship is dependent on the sampling strategy of k-space (see
chapter 2). It minimal value is determined by the field-of-view, the spatial
resolution and the bandwidth. In chapter 2, it was shown that strategies to
adapt the temporal resolution, such as partial fourier sampling, inevitably
affect the SNR as well. These trade-offs between temporal resolution, spatial
resolution and SNR have only been taken into account in a minority of the
simulation studies [28].

Our Cramer-Rao Lower bound (CRLB) framework, that was proposed in
chapter 6 to predict the confidence intervals on the kinetic parameters, has the
ability to investigate the influence of any parameter on the kinetic parameter
precision by one single calculation, instead of multiple simulations. CRLB
describe how noise on the MR signal vs. time curve is transported throughout
the different processing steps (concentration calculation, fit procedure) to
uncertainty on the kinetic parameters and naturally incorporate the temporal
resolution of the scans, the SNR of the MR images, the total scan time and
the non-linearities between signal enhancement and CA concentration. They
are therefore of particular interest for investigating the reproducibility of the
DCE-MRI protocol and to make recommendations for protocol optimization.
As they have been derived in chapter 6 in a model-independent manner, they
can be implemented for any kinetic model and model comparison becomes
feasible. However, CRLB can only assess kinetic parameter precision. Accu-
racy and estimation bias, due to error sources of improper protocol design or
MR-related errors, should be investigated by the case studies mentioned above.
Nevertheless, kinetic parameter precision and more general the reproducibility
of DCE-MRI and pharmacokinetic modeling is of crucial importance for
increasing the clinical acceptance of several promising applications, as was
shown by the example in chapter 1. In particular for the testing of novel
anti-angiogenic therapy, treatment follow-up, or cancer characterization, an
optimized protocol with high reproducibility is indispensable. In addition,
on mathematical grounds, the accuracy of a parameter cannot be discussed
without acceptable precision.

In this chapter the CRLB methodology is employed for protocol optimization
and precision analysis of kinetic parameter estimates. It contains an expanded
version of the work proposed in [25]. The chapter starts with the introduction
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and the validation of the CRLB methodology in section 8.2. In section 8.3,
the influence of the kinetic parameters values themselves and the SNR in the
DCE-MRI measurements on the kinetic estimates precision in the TK model
are analysed. Total scan time and temporal resolution are investigated in
section 8.4 and section 8.5 respectively. In section 8.6 the relevance of flip
angle optimization, in accordance with chapter 5, is examined. Finally the
precision of the ETK-parameters and TK-parameters is compared in section
8.7 and some practical recommendations are formulated in section 8.8.

8.2 Cramer-Rao lower bounds methodology

8.2.1 Fisher matrix elements

In chapter 6 it was confirmed that the maximum likelihood estimator (MLM)
exhibits the smallest possible variance on kinetic parameter estimates. These
underbounds on the uncertainty are called the CRLB. In practice, CRLB are
calculated as the diagonal elements of the inverse fisher matrix. The fisher ma-
trix elements ,Fkl, for a DCE-MRI experiment measuring n CA concentrations
time points ti, with signal intensity variation S(C) and given SNR (M0/σS),
and for a general kinetic model CT (θ), with a parameter vector θ, were derived
in the appendix of chapter 6 :

Fkl =
n∑
i=1

dCTi
dθk

dCTi
dθl

(2α2
i +

1
σ2
i

) (8.1)

αi =
d2S/dC2

dS/dC C=CTi

(8.2)

σi =
1

SNR

[
dS′

dC

]−1

C=CTi

(8.3)

For simplicity of notation, CT (ti) are written as CTi. dCTi
dθk

denotes the deriva-
tive of the kinetic model equation to the kth element of the parameter vector θ,
evaluated in CTi. S′ is the normalized signal intensity (S/M0). Remark that
for αi it does not matter whether S or S′ is used.

8.2.2 Validation by simulations

As mentioned in the introduction, kinetic parameter precision is mostly as-
sessed by repeated simulations. To justify the CRLB-methodology used in this
chapter, the results from such simulations are compared to the results from the
CRLB framework. As in chapter 6 the validity of CRLB for calculating kinetic
parameter confidence intervals has already been shown for three SPGRE-pulse
sequences, an IR-SGPRE sequence has been used in this section [131]. Pulse
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Table 8.1: Protocol parameters for the pulse sequences of Ceelen et al. (PS1) [131],
Galbraith et al. (PS2) [66] and for 1 self-defined pulse sequence (PS3).
For the IR-SPGRE pulse sequences, inversion time was 560 ms.

Study Pulse sequence ∆t [s] Tscan [s] TR [ms] TE [ms] α [°]

PS1 IR-SPGRE 1.1 550 1100 4.12 12
PS2 SPGRE 12 360 80 9 70
PS3 IR-SPGRE 1.1 360 1100 3.42 12

sequence details are found in table 8.1 (PS1). The validation was performed
for Gd-DTPA as CA (r1 and r2-values can be found in [44] or table 2.2) and
for the TK model:

CTKT (t) = Ktrans

∫ t

0

Cp(t′)exp[−kep(t− t′)]dt′ (8.4)

For a given Ktrans and νe, tissue concentration curves were generated accord-
ing eq. 8.4 with a temporal resolution of 0.1 s and with the AIF as modelled
by Weinmann (see eq. 3.18, dose = 0.1 mmol kg−1). These curves are sampled
with the temporal resolution and for the total scan time of PS1. From these
sampled curves, signal intensity curves are generated according to the signal
equation of IR-SPGRE pulse sequences (see chapter 2). T10 was set to 675
ms [45]. After adding gaussian noise with fixed standard deviation (SNR =
M0/σS = 100) to the signal curve, the concentration-time curve is recalculated
and fitted to the TK model with the MLM estimator as described in chapter 6.
This procedure is repeated 103 times for every kinetic parameter couple. The
standard deviation of the resulting kinetic parameter distributions is compared
to the uncertainty values predicted by the CRLB. To calculate the CRLB’s, the
fisher matrix elements are implemented in Matlab, with the signal intensity and
TK model derivatives calculated analytically and accordingly implemented.
The CRLB vs. simulations comparison is performed for Ktrans varying
between 0.02 and 1.2 min−1 combined with νe=0.3 and νe = 0.5, covering
ranges from other simulation [23,175] or clinical studies [45,66] with Gd-DTPA.

Fig. 8.1 shows the standard deviations σK and σν on the simulated kinetic
parameters’ distribution obtained with the MLM estimator, and the CRLB for
PS1. The uncertainties are shown for a LSQ estimator as well. It is clear that
the MLM obtained standard deviation concurs with the minimal standard
deviation as predicted by the CRLB for both kinetic parameters. This
confirms that the results from CRLB analysis are identical to those obtained
from repeated simulations and justifies the use of the CRLB for protocol
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optimization. In addition, the advantage of using MLM estimation instead of
LSQ is illustrated for IR-SPGRE pulse sequences, with σK-reductions up to
30% for high Ktrans (1.2 min−1) and νe (0.5). Both σK and σv of the LSQ
estimator evolve in a similar manner as the CRLB, implying that CRLB can
be used to make predictions about the precision of kinetic parameter estimates
with LSQ-estimators as well.

8.2.3 Validation by comparison with literature

Clinical validation CRLB is a laborious task. It requires the experimental
estimation of the standard deviation on the kinetic parameters, which can
be achieved by performing paired examinations on test subjects. Several
difficulties emerge however: firstly, an almost identical patient localisation is
required, to ensure that the DCE-MRI errors (flip angle deviation from its
nominal value, partial volume effects, error in T10,...) are approximately equal
in both examinations. Although this is difficult in clinical studies, it may
be feasible in an animal model. In test animals, however, the fast growing
implanted human tumor cell line may undergo significant vascular changes in
the time period between the paired examinations, as at least 24h-48h interscan
time may be needed, to ensure total Gd-clearance and for toxicity (of both
sedative and Gd-complex) reasons. In clinical studies these problems may be
sidestepped by performing a ROI-analysis instead of pixel-by-pixel validation.
A second problem is posed by the AIF. CRLB assume a single AIF, although
it is unlikely that AIF is identical in both examinations. Therefore the CA
injection protocol and all physiological factors influencing the shape and the
amplitude of the AIF (heart rate, blood pressure, injection site, ...) should
be identical. Again, this problem can be partially avoided by assuming a
fixed standard AIF, as the cost of reduced accuracy of the kinetic parameters.
Nevertheless, Cheng showed that the error in Ktrans scaled linearly with the
underestimation of the AIF peak [27]. Therefore, when the error in the AIF
is not identical for both of the paired examinations, a change in Ktrans will
occur, that cannot be explained by the CRLB.

Taking into account the above considerations, no in vivo validation of the CRLB
was performed. Instead, the results of an experimental kinetic modeling repro-
ducibility study from literature are compared with the predicted reproducibil-
ity from CRLB analysis. In an often cited paper, Galbraith et al. tested the
reproducibility of kinetic parameters in tumors and muscles by means of sta-
tistical analysis of paired examinations in a group of 16 patients [66]. They
employed the TK model (eq. 8.4) with a population-averaged Weinmann AIF
and performed a whole ROI analysis. As measure for kinetic parameter re-
producibility, the within-patient coefficient of variation (wCV) and the ratio of
between patient variance to within patient variance were used:
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Figure 8.1: Standard deviation σK (A) and σν (B) of the LSQ- and MLM-
estimators, versus Ktrans and for 2 values of νe (data points), and
Cramer-Rao lower bounds on σK and σν calculated with eq. 8.1 (solid
line). Other simulation parameters are mentioned in the text.
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Table 8.2: Reproducibility statistics for the data of Galbraith et al. [66].

Parameter p-value wCV Variance
for Kendall’s τ ratio

Ktrans
muscle 5.94 10−5 36.7 % 2.54

Ktrans
tumor 0.0016 8.9% 6.19

νmuscle 0.1254 5.6% 6.46
νtumor 0.3502 2.2 % 17.66

wCV =

√∑
d2

N

µθ
(8.5)

d is difference in the kinetic parameter θ between the paired examinations,
N is the number of patients and µθ is the mean kinetic parameter value in
the group of patients. By digitizing figure 1 from Galbraith et al. the mean
[Ktrans, νe]-couples over both examinations for the 16 patients in the study
were obtained, in tumor and in muscle respectively. With these values and the
protocol parameters for the SPGRE-pulse sequence employed by Galbraith
(table 8.1, PS2), the absolute values of σK and σv in tumor and muscle were
simulated with the CRLB-expressions. wCV and the variance ratio were
calculated for both kinetic parameters in both tissues by substituting σθ for d
in eq. 8.5. Kendall’s τ for correlation between σθ and θ was determined as
well. For muscle a T10-value of 1008 ms was assumed [30].

Fig. 8.2 shows the absolute values of the standard deviation on the kinetic
parameters for the 16 patients in the reproducibility study as predicted
by CRLB (SNR = 100). Table 8.2 contains the p-value for the hypoth-
esis that a correlation is existing between the size of a kinetic parameter
and its standard deviation, based on kendall’s τ correlation coefficient.
From these values and from fig. 8.2, it is obvious that (at the 5%-level)
σK depends strongly on the value of Ktrans for both muscle and tumor,
whereas σv shows no significant correlation with the size of νe. Table 8.2
contains the wCV and the variance ratio as well. For this cohort of patients,
CRLB predicts that both kinetic parameters are more reproducible in tumor
than in muscle. Within the same tissue, νe is the most reproducible parameter.

The experimental results from Galbraith et al. are very similar: they found
a significant correlation between the difference in Ktrans-estimates of paired
examinations and the size of the mean Ktrans. For νe no such correlation
could be found. In their group of patients, they determined νe as the
more reproducible kinetic parameter in tumors and demonstrated a worse
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Figure 8.2: Absolute values of the standard deviation on the kinetic parameters σK
and σv for the kinetic parameter couples in the study of Galbraith et
al. Protocol details are mentioned in table 8.1.
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kinetic parameter reproducibility in muscle in comparison with tumor [66].
These findings are in excellent agreement with the theoretical CRLB-based
reproducibility analysis of fig. 8.2 and table 8.2, which can be considered as
proof-of-concept of the CRLB framework.

8.3 Tofts & Kermode model: Influence of ki-
netic parameter value and SNR

In this section the reproducibility of the TK-model parameters, Ktrans and
νe is investigated. As most clinical studies have identified Ktrans as the most
important or decisive for clinical applications, its reproducibility is the main
concern of this section. Throughout the rest of this chapter, as a measure for
kinetic parameter uncertainty, the coefficient of variation of kinetic parame-
ter, cθ = σθ/θ, is used. As a measure for precision, its inverse value is employed.

Before analysing the influence of total scan time and the trade-off’s concerning
temporal resolution, the precision of the kinetic parameters is investigated for
2 fixed pulse sequences from DCE-MRI literature [66, 131]. Pulse sequence
type and parameters are mentioned in table 8.1 (PS1 & PS2). CRLB are
calculated for Ktrans and νe varying in the physiologically relevant range of
0.02-1.2 min−1 and 0.1-0.5 respectively [23, 26, 175]. The Weinmann AIF for
Gd-DTPA is used and the native T1-relaxation time T10 was set to 675 ms [45].
To evaluate the influence of the SNR of the MR-measurement on the kinetic
parameter precision, SNR is varied between 5 and 200.

Fig. 8.3 A & B plot the coefficient of variation cK or the relative standard
deviation on Ktrans as a function of the kinetic parameter values for PS1
and PS2 respectively. It is clear that Ktrans-precision is highly dependent on
the kinetic parameters themselves. An increase in Ktrans-uncertainty is seen
for both low Ktrans and high Ktrans, the latter being strongly dependent on
the νe-value: higher EES-volumes allow more reproducible determination of
Ktrans. A similar trend can be observed for νe, whose coefficient of variation
is shown in fig. 8.3 C & D (with logarithmic axis, due to the large range):
an increase in uncertainty is observed at both low and high Ktrans. Again at
high Ktrans, higher EES volumes exhibit higher precision, while al low Ktrans,
small EES volumes have higher precision. Lopata and coworkers investigated
the frequency response of the TK-model and found that it acts as a low-pass
filter with a cut-off frequency given by kep = Ktrans/νe [23]. This denotes that
of all frequencies present in the arterial input function, those above Ktrans/νe
are attenuated and explains the observations in fig. 8.3 A-D: At high Ktrans

combined with increasing νe, i.e. high cut-off frequencies, the temporal resolu-
tion of the pulse sequences under investigation fails to adequately sample the
increased frequencies in the concentration curve, causing high uncertainties.
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Figure 8.3: A-B: Coefficient of variation for Ktrans as a function of Ktrans and
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PS1 (C) and PS2 (D). E-F: Ktrans-precision, expressed as the inverse
of the uncertainty, versus ratio for 3 different kinetic parameter couples
for PS1(E) and PS2(F).
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This statement is reinforced by the observation that the uncertainty increase
at high Ktrans and low νe is most pronounced for the pulse sequence with
the smallest temporal resolution (PS2). At low Ktrans, combined with high
νe, i.e. when the cut-off frequency is small, the total scan time of the pulse
sequences under investigation fails to cover1 an adequate part of the frequency
spectrum of the concentration curve, causing increased uncertainties. Again,
this statement is confirmed when comparing the extent of the uncertainty
increase of both pulse sequences under investigation in fig. 8.3. Finally, fig.
8.3E & F plots the variation of the Ktrans-precision (expressed as the inverse
of the coefficient of variation) with SNR. For three kinetic parameter couples,
it is clear that the kinetic parameter precision is proportional to the SNR of the
MR-measurement. The proportionality factor is however strongly dependent
on the kinetic parameter values and the pulse sequence design. Similar SNR
in the MR-signal is converted to smaller kinetic parameter precision by PS2 in
comparison with PS1, due to longer total scan time, higher temporal resolution
and different concentration uncertainties. This shows that noise propaga-
tion in kinetic parameter estimation is highly influenced by the protocol design.

8.4 Total scan time

The influence of the total scan time Tscan on kinetic parameter uncertainty is
analysed by doubling Tscan for PS1 and PS2 and inspecting the ratio of σK
at both scan times. To investigate whether Tscan requirements are dependent
on the studies pulse sequence equation, the pulse sequence parameters or the
temporal resolution, a third pulse sequence (PS3) was defined (table 8.1). It
is identical to PS1, but the total scan time corresponds to PS2. For PS3, scan
time was again doubled and the uncertainty ratio was analysed. From these
results, it will be clear that increasing total scan time always enhances kinetic
parameter precision. Therefore, to make practical recommendations about the
total scan time needed for precise determination of the kinetic parameters, we
introduce the concept of precision efficiency:

Γ =
1

σK Tscan
(8.6)

Γ describes the average precision per total scan time unit. Minimal necessary
scan time for a kinetic parameter couple [Ktrans, νe] will be derived by
maximizing Γ for PS1.

Fig. 8.4A shows the ratio σK(Tscan)
σK(2Tscan) for PS1-PS3, as a function of Ktrans.

As expected from the previous section, the influence of Tscan is primarily on
the precision of low Ktrans combined with high νe-values. Ktrans-precision in
rapidly enhancing tissues, with small fractional EES-volume is for both PS1

1The smallest frequency in the sampled signal is 1/Tscan
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Table 8.3: Protocol parameters for the SPGRE pulse sequences of Padhani et al.
(PS4) [19], Yang et al. (PS5) [141] and Batchelor et al. (PS6) [135].
SNR of PS4 is assumed to be 400. SNR of the other pulse sequences was
calculated based on the scalingrelationship in eq. 8.7.

Study ∆t [s] TR [ms] TE [ms] α [◦] ∆x/∆y/∆z [mm] B0 [T] SNR

PS4 10 35 5 70 0.98/1.3/10.0 1.5 400
PS5 2 7.8 1.7 60 1.2/2.7/8.0 1.5 508
PS6 5.04 5.7 2.73 10 2.9/2.0/2.1 3 359

and PS2 scarcely influenced by doubling total scan time. It is interesting to
see that the uncertainty ratio curves for PS1 and PS2 are parallel for both
νe-values. This indicates that the influence of Tscan depends solely on the
kinetic parameter value. This is confirmed by the uncertainty ratio curve of
PS3. It is practically identical to the one of PS2, though pulse sequence, pulse
sequence parameters and temporal resolution differ. Increasing scan time from
360 s to 720 s reduces σK equally for PS2 and PS3, unregarded the other
protocol parameters. Total scan time requirements can therefore be deduced
independent of other protocol parameters and are only relying on the kinetic
parameter values. Fig. 8.4B is a contour plot of the scan time maximizing
precision efficiency (eq. 8.6) for PS1. Low Ktrans combined with high νe again
need the longest Tscan. Increasing Tscan above the values from fig. 8.4 still
decreases Ktrans-uncertainty, but the precision increase is smaller than the
increase in total scan time and therefore no longer efficient. For this particular
case of Tofts modeling of Gd-DTPA concentration curves, a scan time of 15
minutes is sufficient to achieve high Ktrans-precision in the complete kinetic
parameter range under consideration.

8.5 Temporal resolution

To estimate the influence of temporal resolution on kinetic parameter precision,
we have simulated the CRLB for three different DCE-MRI protocols from liter-
ature. The details of these three studies [19,135,141], employing very different
temporal resolutions, are mentioned in table 8.3. However, while total scan time
can be prolonged without affecting any other imaging parameter, this is not the
case for the temporal resolution. In chapter 2, it was discussed that a trade-off
exists between temporal resolution, spatial resolution and SNR. Therefore to
compare the kinetic parameter precision in the DCE-MRI protocols with differ-
ing temporal resolution, we have used the scaling relationship [42](see chapter
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2):

SNR ∝ B0

∆x∆y∆z
√
NxNyNEX√
BW

(8.7)

∆x∆y∆z is the product of the three voxel dimensions (the voxels volume).
NEX is the number of averages, and is directly proportional to ∆t. In the case
of partial fourier imaging NEX can be smaller than one [42]. For the three
pulse sequences (PS4-PS6) under investigation, the voxel dimensions were
available and a fair comparison of the SNR could be made (NEX=1), assuming
identical field of view and bandwidth. For PS4 a SNR of 400 was assumed,
and the SNR of PS5-PS6 is calculated based on the scaling relationship
above (table 8.3). The total scan time of the protocols was set to 15 min, to
exclude any effects from non-sufficient scan time. The CRLB are simulated
for both the Weinmann AIF and the Parker AIF and T10 was set to 675 ms [45].

Fig. 8.5 & fig. 8.6 show for the Parker AIF and the Weinman AIF respectively,
the procentual Ktrans-uncertainty for νe = 0.1 and νe = 0.5 respectively, as a
function of Ktrans for three pulse sequences (PS4-PS6). Despite having the
highest temporal resolution and SNR, PS5 does not yield the most precise
Ktrans, except for high Ktrans low νe combinations. Moreover, the pulse
sequence with the smallest temporal resolution has the best performance of
the three pulse sequences under consideration for a large kinetic parameter
range. For PS6, this could be understood from the lower SNR in the MR-
measurement, but for PS5 this is a surprising and contra-intuitive observation.
As we have assumed a fixed scan time of 15 minutes for the three protocols,
the data curve acquired with PS5 or PS6 always contains more data points
than the corresponding data curve of PS4. This lower kinetic parameter
precision can only be caused by higher concentration uncertainty on these
data points. Fig. 8.5 and fig. 8.6 C & D plot the procentual concentration
uncertainty as a function of time for two kinetic parameter couples, whose
reproducibility is higher in PS4. Concentration uncertainty is considerably
lower in PS4. Compared to PS6, this reduced noise level on the concentration
curve induces more reproducible kinetic parameter estimates over the complete
range. Compared to PS5, small Ktrans/ high νe combinations, the higher
concentration uncertainty in PS5 is not cancelled out by the extra amount of
information. For high Ktrans/small νe-couples however, the higher temporal
resolution becomes the decisive factor and despite of the higher concentration
uncertainty, kinetic parameter precision is better with PS5. This is in
accordance with the analysis in the previous section. As SNR in PS5 is
higher than in PS4, the higher concentration uncertainty can only emerge
from the non-linear conversion of MR signal to CA concentration. These
results show the effects of the non-linear conversion between MR signal and
CA concentration and indicate that due to the strong link between temporal
resolution and repetition time, protocols with higher temporal resolution do
not necessarily deliver more precise kinetic parameter estimates.
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Figure 8.5: A-B: coefficient of variation for Ktrans as a function of Ktrans for three
pulse sequences with different temporal resolution and SNR (table 8.1)
with the Parker AIF. C-D: procentual concentration uncertainty vs.
time for the three pulse sequences for two kinetic parameter combina-
tions.
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Figure 8.6: A-B: coefficient of variation for Ktrans as a function of Ktrans for three
pulse sequences with different temporal resolution and SNR (table 8.1)
with the Weinmann AIF. C-D: procentual concentration uncertainty vs.
time for the three pulse sequences for two kinetic parameter combina-
tions.

Another interesting issue that can be adressed with the CRLB framework, is
the trade-off between temporal resolution and SNR. As explained in chapter
2, this trade-off is comprised in the value of the parameter NEX. In this
section the influence of NEX is investigated: is it usefull to increase SNR
at the expense of a reduced temporal resolution, or on the contrary, should
temporal resolution be kept as high as possibile, unregarded of the inevitable
SNR sacrifices. Therefore, kinetic parameter uncertainty is calculated with
the CRLB for PS4-PS6, for ∆t between 1s and 25s. NEX is then calculated
based on the baseline temporal resolution of the corresponding DCE-MRI
protocol and SNR is adapted according to the scaling relationship above.
While in practice, NEX can only adopt a limited number of values (0.5, 0.75,
1 , 2,...), this analysis is of great value to assess the trade-off between SNR
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Figure 8.7: Ratio of Ktrans-uncertainty at varying temporal resolution, to the un-
certainty at a temporal resolution of 1 s, for two different kinetic param-
eter combinations and two different AIF’s (PS4). Temporal resolution
is changed by changing NEX, and SNR is adapted according to eq. 8.7.
For PS5-PS6 the result is almost identical.

and temporal resolution.

Figure 8.7 shows the ratio of Ktrans-uncertainty at varying temporal reso-
lution, to the uncertainty at a temporal resolution of 1 s, for PS4 and at
two kinetic parameter couples and for two different AIF’s. As the temporal
resolution requirements strongly depend on the value of the kinetic param-
eter themselves, it is important to evaluate this trade-off for both a high
Ktrans/small νe-couple (1.2 min−1/0.1) as for low Ktrans/high νe-couple (0.3
min−1/0.5). For the other protocols, the figures are not shown, because they
are almost identical. The figure indicates that when pulse sequence parameters
(TR, FA, TE ,...) are fixed, temporal resolution should be reduced as small as
possible (e.g. by partial fourier acquisition), despite the higher SNR in the
MR images. The curves for high Ktrans/low νe break down at ∆t = 12s and
∆t = 15s for the Parker and Weinmann AIF respectively. As this is seen
for the other pulse sequences as well, these values can be considered as a
lower limit for the temporal resolution for the kinetic parameter range under
consideration. At higher values of ∆t, high Ktrans/small νe-couples can no



178 Chapter 8

0 0.2 0.4 0.6 0.8 1 1.2
2

4

6

8

10

12

14

16

18

20

c K
 [%

]

 

 

Ktrans [min−1]
0 0.2 0.4 0.6 0.8 1 1.2

1

2

3

4

5

6

7

Ktrans [min−1]

 

 

c K
 [%

]

PS4
PS5
PS6

PS4
PS5
PS6

ν
e
 = 0.5ν

e
 = 0.1

Figure 8.8: Coefficient of variation for Ktrans versus Ktrans for the three pulse
sequences of table 8.3, with optimal flip angle for measuring a 0-2mM
concentration range (Parker AIF).

longer be precisely determined, even at high SNR in the MR-images.

8.6 Flip angle optimization

Fig. 8.8 is a copy of fig. 8.5, but the flip angle in the three pulse sequences
is adapted to its optimal value to measure a 2mM concentration range of
Gd-DTPA in the tissue of interest as predicted from the analysis in chapter
5 (55◦ for PS4, 28◦ for PS5, 23.6◦ for PS6). First of all, it is clear that the
use of the optimal flip angle effectively reduces the uncertainty on the kinetic
parameters (up to 30% for Ktrans measured with PS4), confirming the results
of the simulations in chapter 5. Secondly, fig. 8.8 shows that, under optimal
flip angle conditions, PS5 delivers more precise kinetic parameters estimates
over the complete range under consideration, which is not the case for the
suboptimal flip angle conditions of fig. 8.5. This results shows flip angle
optimization can annihilate the effect of increased concentration uncertainty
at lower repetition times. As technological improvements enable smaller
repetition time and corresponding higher temporal resolution in DCE-MRI,
this trend should be accompanied by a robust flip angle optimization to avoid
the unwanted and contra-intuitive effects of higher concentration uncertainties.
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8.7 Extended Tofts & Kermode model

In this section the precision of the ETK-model parameters, Ktrans, νe and νp
is investigated by means of the CRLB. A physiologically relevant range for νp
is given by 0.01-0.2. [16, 17]. For the pulse sequence settings of PS4 and PS5,
fig. 8.9 plots the coefficient of variation for νp, and the ratio of Ktrans- and
νe-uncertainty in the ETK to the uncertainty in the TK model, versus νp, for
three different Ktrans/νe-couples. It is clear that by incorporating an extra
parameter in the model fitting, the uncertainty of Ktrans and νe increases
in a similar way. This increase is most important for the kinetic parameter
couples that are most sensitive to the temporal resolution and rises slowly
with increasing νp. Small νp (<0.03) cannot be determined with acceptable
precision, unregarded the pulse sequence or the value of the other kinetic
parameters. νp-uncertainty decreases with increasing νp or decreasing Ktrans.
These observations prove that it is statistically useless to employ the ETK-
model for fitting DCE-MRI data when the plasma fraction is smaller than 0.03.

8.8 Conclusion & practical recommendations

Our CRLB framework has the potential to efficiently simulate the effect of all
protocol parameters on the kinetic parameter precision. Thereby it accounts
for the effect of the pulse sequence parameter on concentration uncertainty, the
influence of temporal resolution and total scan time. CRLB describe how noise
on the MR signal intensity is propagated throughout the entire post-processing
protocol to uncertainty on the kinetic parameters. We have validated our
CRLB-framework by means of simulations and by comparison with an experi-
mental reproducibility study. Combined with the relationships between tempo-
ral resolution, pulse sequence parameters and SNR, the CRLB-framework can
be used to optimize any DCE-MRI protocol. In this chapter we have performed
such optimizations for a cartesian k-space sampling strategy, which has led to
a number of practical recommendations for DCE-MRI protocol design:

• Ktrans-uncertainty is proportional to the SNR in MR-measurement.
This implies that higher kinetic parameter precision may be obtained
at higher field strengths. In chapter 2, however, it was mentioned that
at higher field strengths a number of MR-related errors becomes more
prominent. Unless these errors can be avoided or corrected for, this
imposes a trade-off in pharmacokinetic modeling between precision and
accuracy.

• The necessary total scan time is solely dependent on the kinetic
parameter range under consideration. The lowest kep-values that



180 Chapter 8

0 0.1 0.2
1.1

1.2

1.3

1.4

1.5

ν
p

K
tr

an
s  U

nc
er

ta
in

ty
 r

at
io

 

 

0 0.1 0.2
1.1

1.2

1.3

1.4

1.5

ν e U
nc

er
ta

in
ty

 r
at

io

ν
p

0 0.1 0.2
0

20

40

60

c ν 
p [%

]

ν
p

 

 

0 0.1 0.2
1

1.5

2

2.5

ν
p

K
tr

an
s  U

nc
er

ta
in

ty
 r

at
io

0 0.1 0.2
1

1.5

2

2.5

ν
p

ν e U
nc

er
ta

in
ty

 r
at

io

0 0.1 0.2
0

20

40

60

ν
p

c ν 
p [%

]

Ktrans/ν
e
 = 1.2/0.1

Ktrans/ν
e
 = 0.3/0.5

Ktrans/ν
e
 = 0.6/0.2

PS4

PS4

PS4

PS5

PS5

PS5

Figure 8.9: Above: Ratio of Ktrans in the ETK-model to the uncertainty in TK
model plotted versus νp for PS4 and PS5 and for three Ktrans/νe-
couples. Middle: Identical plot for νe. Below: Coefficient of variation
of νp versus νp for PS4 and PS5 and for three Ktrans/νe-couples. For
clarity, the legend is only mentioned in one figure.
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have to be measured with acceptable precision, determine the neces-
sary scan time. Practical recommendations for total scan time can
be obtained from fig. 8.4. 15 min is adviced for the kinetic parame-
ter range under consideration (Ktrans=0.02-1.2 min−1 and νe = 0.1-0.5).

• The influence of temporal resolution on the precision of the kinetic
parameter is difficult to assess, due to the trade-off between temporal
resolution, spatial resolution, spatial coverage and SNR. However, when
the spatial resolution, field of view and pulse sequence parameters are
fixed, it is useful to increase spatial resolution by for instance partial
fourier sampling. The trade-off between SNR and temporal resolution
tends to the side of the latter.

• Technological developments enable shorter repetition times. Reducing
TR increases concentration uncertainty wich may annihilate the effect of
the increased temporal resolution. We therefore advice that the trend
in DCE-MRI, in which enhanced temporal resolution is obtained by
reducing the repetition time, should be accompanied with flip angle
optimization as proposed in chapter 5.

• The necessary temporal resolution is determined by the highest kep
values in the tissue of interest. For pharmacokinetic modeling in the
kinetic parameter range under consideration with the Parker AIF or the
Weinman AIF, ∆t should not exceed 12s or 15s respectively.

• Under a similar DCE-MRI protocol, the parameters of the ETK model
are less reproducible then their TK-counterparts. When estimation
reveals a νp-value beneath 0.03, this value is irreproducible and the
TK-model should be used instead.

A drawback of the CRLB-framework is that it cannot assess the bias of
the pharmacokinetic estimates. Influence of the protocol parameters on
MR-related error sources, as mentioned in chapter 2, is not taken into account.
Furthermore, when the AIF is measured individually by monitoring the signal
intensity in feeding artery of the tissue of interest, CRLB may still predict the
precision of the pharmacokinetic estimates, but their accuracy can be severely
violated by insufficient sampling of the AIF peak [27].
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Chapter 9

Conclusions & Perspectives

In this conclusive chapter, a number of important realizations in this work is
summarized and it is explained how they may contribute to assess the three
main limitations of pharmacokinetic modeling as listed in chapter 1. We start
by outlining the main innovations of our work. Afterwards the three main
limitations are discussed separately. Throughout the sections, a number of
perspectives and opportunities for future research are mentioned.

9.1 Innovations

The main innovation that is introduced in this work, is the inclusion of
a concentration distribution and corresponding concentration uncertainty,
that depends upon the pulse sequence parameters and the CA concentration
itself. The derivation of this distribution, as mentioned in chapter 4, lays the
foundation of the majority of the results in the following chapters. Although,
this pulse sequence dependent and heteroskedastic concentration noise, was
proposed by Schabel & Parker [30] in 2008 for SPGRE pulse sequences, to
our knowledge, the consequences for pharmacokinetic modeling have not
been assessed. However, the neglection of the link between pulse sequence
parameters and concentration uncertainty is not so surprising. Firstly, it may
be remembered that at the start of pharmacokinetic modeling around 1990,
a linear relationship between signal enhancement and CA concentration was
assumed for the conversion of signal intensity to CA concentration ( [16,33] or
section 4.3.4). The use of the non-linear conversion methods has only gained
interest in the last decade. When the linear conversion method is employed,
the concentration noise is not significantly dependent on the pulse sequence
parameters, but only on T10 and r1 (eq. 4.19), rendering it homoskedastic in
a given voxel. Heteroskedasticity and pulse sequence parameter dependence
only occurs when non-linear conversion methods are employed. Secondly,
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heteroskedasticity is not easily detected by visual inspection, as may be
clear from the concentration curve examples throughout this work. The
inclusion of the concentration distribution and the assessment of its conse-
quences for pharmacokinetic parameters is therefore a logic step in DCE-MRI
research, that follows from the increasing use of non-linear conversion methods.

We have shown that the dependence of the concentration uncertainty on the
pulse sequence parameters and on the true CA concentration itself comprises a
number of challenges and opportunities for DCE-MRI protocol design and post-
processing of DCE-MRI data. It implies a number of trade-off considerations
in DCE-MRI protocol design, and it explains the contra-intuitive observation
that protocols with higher SNR and higher temporal resolution yield less
precise pharmacokinetic estimates (chapter 8). The latter phenomenom has
never been observed before in any simulation study, and shows the importance
of accounting for the concentration distribution in pharmacokinetic modeling.
In addition, the dependence of the concentration uncertainty on the pulse
sequence parameters offers the opportunity to tune the pulse sequence
parameters for precise determination of a fixed concentration range, thereby
enhancing the reproducibility of pharmacokinetic modeling without the need
for technological improvements (chapter 5). Although flip angle optimization
had been introduced by Schabel & Parker, our framework is more general,
more practical in use and its consequences for pharmacokinetic modeling were
investigated. Futhermore, for a fixed protocol design, the heteroskedasticity
of the concentration curve has important consequences for the post-processing
algorithms. The LSQ-estimator is not optimal and a MLM-estimator should
be used instead. For the construction of confidence intervals on the kinetic
parameters, the heteroskedasticity should be accounted for, to avoid severe
overestimation of the precision of the kinetic estimates (chapter 6). The latter
is of course of crucial importance for promising applications of pharmacoki-
netic modeling as treatment follow-up and the testing of novel anti-angiogenic
therapies, and was never before investigated. It may be concluded that the
inclusion of this varying concentration distribution is not a second-order effect,
but a natural step in the evolution of quantitative DCE-MRI, that has a
significant influence on protocol design on post-processing techniques.

In this work, we have mainly focussed on the SPGRE-pulse sequence, as it
is abundantly used in pharmacokinetic modeling studies. However, the effect
of the heteroskedastic concentration noise has to be evaluated for other pulse
sequences as well. We claim that the proposed frameworks in this work,
are perfectly capable for protocol optimization and post-processing of other
pulse sequences. First of all, our CRLB-framework has been derived based
on 1 single assumption (σC ∼ dC/dS), which comprises the standard theory
of error propagation and whose validity should not be doubted for other
pulse sequences. The flip angle optimization is based on the maximization of
the parameter ρ (eq. 5.17). For SPGRE-pulse sequences it was shown that
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this leads to a decoupling of T1 and T ∗2 -effects, thereby enabling a contour
plot depiction of the optimal flip angle. For other pulse sequences, a similar
methodology can be followed, starting from the flip angle αC for a single
concentration, to the maximization of ρ. It will of course depend on the
pulse sequence properties whether decoupling and contour plot depiction are
possible, or whether computational optimization is imposed . For IR-SPGRE
pulse sequences for instance, the framework may enable optimization of the flip
angle at fixed inversion time or vice versa, optimization of the inversion time
(within it boundaries), at fixed flip angle. These are important perspectives
for further research, for which our work lays the foundation.

The other important innovation of our work is the stable and fast fitting proce-
dure for the AATH model. The well-known fitting problems have already been
reported by Henderson and coworkers in 2000, which was the first study to
use the AATH model for separate estimation of plasma flow and permeability
in tumors [26]. Despite this huge advantage over the TK- or ETK-model, who
can only assess the joint effect of Fp and PS through Ktrans, the number of
published studies with the AATH model is almost negligible when compared
to those employing the TK- or ETK-model. The main reasons for this are the
mathematical fitting complications and instabilities that effectively restrict the
clinical use of the AATH-model. Apart from the development of the two fitting
procedures as mentioned in chapter 7, the AATH-fitting has not been assessed,
untill very recently Garpebring et al. proposed a fourier domain method for
TH-model fitting. Therefore, it should not be doubted that our new fitting
procedure, that improves both the accuracy and the precision of the AATH
parameters and reduces the necessary computational time, will enhance the
clinical acceptance of the AATH model. As the parameters of the AATH
model were shown to exhibit the best correlation with their physiological
counterparts [18], the recursive-based fitting procedure may contribute to
an experimental validation of pharmacokinetic modeling, and it can be an
important step in the clinical acceptance of the complete pharmacokinetic
modeling technique. The fitting procedure can be of interest for the DCE-CT
community as well [114].

9.2 DCE-MRI protocol

Throughout this work, a number of protocol recommendations has been
formulated, that we aim to summarize in this section. In chapter 3, it was
shown that protocol requirements are dependent upon the AIF determination
strategy. Each of these strategies has a number of advantages, but also intro-
duces additional error sources or imposes more severe protocol requirements.
For optimal accuracy of the pharmacokinetic parameters, the AIF should be
measured individually. However, this may be complicated due to technological
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(inflow effects, too low temporal resolution,...) or physiological (absence
of a major artery in the field of view, dispersion, partial volume effects,...)
limitations. The other strategies, as reviewed in chapter 3, suffer from inter-
individual difference in the AIF (population averaged strategy) or in reference
region pharmacokinetic parameters (single reference region method), or require
the estimation of additional AIF parameters (multiple reference region & joint
estimation of AIF). We therefore think that the DCE-MRI community should
not try to find the optimal AIF determination strategy, but should rather
aim at developping standardized protocols for each AIF determination method.

9.2.1 Generalities

Flip angle optimization should be part of every DCE-MRI protocol. The
tuning of the flip angle to the other SPGRE-parameters and the premised
concentration range is costless (no trade-off) and has been shown to increase
the precision of the pharmacokinetic estimates in both chapter 5 and chapter 8.
As technological developments enable smaller repetition times, a trend exists
in DCE-MRI to increase the temporal resolution by reducing TR. This trend
should be accompanied by flip angle optimization, to avoid unexpected kinetic
parameter precision decrease caused by increased concentration noise under
these circumstances. As mentioned in chapter 5, the premised concentration
range depends on the pathology and the AIF, and is a parameter that should
be well-considered. The necessary total scan time is dependent on the minimal
kep, for which precise estimation is necessary. This minimal value is related to
the pathology as well, but also to the kinetic parameters of the healthy tissue
of interest. Although we have only shown the relationship between kep and
Tscan for the TK-model, the result should not be doubted for the other models.
All models exhibit a very similar long-term behaviour, as is shown in fig. 3.4,
that is mainly determined by kep. Finally, in chapter 8, the importance of
field of view and spatial resolution was mentioned. A 50% reduction of the
spatial resolution for instance, allows a doubling of the temporal resolution
at a higher SNR. Therefore the loss in anatomical information is traded
for increase kinetic parameter precision (and possibly accuracy). All these
considerations prove the obvious statement that DCE-MRI protocol design is
highly dependent on the pathology and the tissue of interest. Breast DCE-MRI
or prostate DCE-MRI have unequal field of view, require distinctive spatial
resolution and are sensitive to different error sources. For every pathology,
adapted DCE-MRI protocols should be developped and in particular the
trade-off between spatial and temporal resolution should be investigated by
the corresponding medical community.
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9.2.2 Individually measured AIF

When the AIF is measured by monitoring the signal intensity in a large feeding
artery of the tissue of interest, the minimal temporal resolution is determined
by an accurate sampling of the AIF peak (tyically 1-5s) [24,27]. The repetition
should be reduced as low as technically possible, not only to obtain the highest
temporal resolution, but also to reduce the inflow effects [60]. At this low
repetition time, flip angle optimization is indispensable. The flip angle should
be optimized for a typical concentration range of 0-10 mM of the Gd-chelates
mentioned in table 2.2. We did not assess the effect of this flip angle on the in-
flow effects, but as it may be significant [21], it should be investigated in future
research. In addition, for an arterial concentration range, even at low repetition
time, the optimal flip angles are relatively large (see table 5.3) imposing the
need for slice profile or SAR considerations. In chapter 5, we have formulated
an alternative optimization strategy if the flip angle is constrained to lower val-
ues. The effect of reducing NEX (partial fourier acquisition) should be further
investigated. We know that it increases the precision of the pharmacokinetic
estimates for a population averaged AIF, but the increased noise level on
the individually measured AIF may reduce the reproducibility of the technique.

9.2.3 Population averaged AIF

If a population averaged AIF is employed, the conclusions from chapter
8 are all valid. Temporal resolution should be below 12s or 15s for the
Parker or Weinmann AIF respectively and determines the precision of the
highest kep-value to be measured. Flip angle should be optimized for 0-2mM
concentration range in the tissue interest. Increasing the temporal resolution
by reducing NEX, effectively enhances the kinetic parameter precision.

9.2.4 Other AIF strategies

When the reference region method is used or the AIF is jointly estimated
from the tissue concentration curves, a number of extra parameters has to
be estimated [148–150]. As these techniques are relatively new, the effect of
the temporal resolution should be further investigated. It is impossible to
reconstruct or fit a swiftly varying AIF, from low temporal resolution data,
imposing the need for more rapid sampling when compared to the population
averaged approach. For the same reason, the trade-off between temporal
resolution and SNR might still tend to the side of the temporal resolution,
but this should be investigated further. Flip angle optimization should be
performed for a typical tissue concentration range of 0-2mM.
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9.2.5 Trade-off between accuracy and precision

During this work a number of conflicting interests has emerged concerning the
accuracy and the precision of the pharmacokinetic estimates. For instance,
DCE-MRI at higher field strenghts increases the SNR and may be of particular
interest for breast imaging, for which the required spatial resolution and spatial
coverage, cause limited temporal resolution or low SNR. At 3T, increased SNR
can increase the precision of the pharmacokinetic estimates. However, the
extent of B1-field inhomogeneities at 3T is much higher and imposes a severe
drawback on the accuracy of the pharmacokinetic estimates [36]. Another
example concerns incomplete spoiling, which may be reduced at the cost of
a higher temporal resolution [61]. The AIF determination strategy comprises
the same trade-off. Population averaged AIF have been shown to increase the
repeatability of pharmacokinetic estimates [139] but their accuracy is infected
by intra-individual differences in the AIF [27]. According to the optimization
criterion in chapter 5, flip angle optimization for the arterial concentrations
when individually measuring the AIF, increases the concentration uncertainty
for the tissue concentrations. This may decrease the precision of the resulting
pharmacokinetic parameters, who are typically considered as highly accurate
for this AIF determination strategy. All these examples show that in phar-
macokinetic modeling a trade-off between parameter accuracy and parameter
precision exists. Parameter precision is important for applications as treatment
follow-up or the testing of anti-angiogenic therapies, while parameter accuracy
may be interesting for other applications as tumor detection and tumor
characterization. Optimized protocol design should consider this trade-off and
different standardized protocols should be developped for different applications.

9.3 Model selection

One of the shortcomings of our work, is that we did not succeed in proposing
clear guidelines for model selection. We can only summarize some general
observations that were made throughout the different chapters. Remark that
a difference exists between the accuracy of a parameter and its agreement
with the true physiological quantity it aims to measure. The accuracy of a
parameter is optimal when all error sources are minimized. However, even
in the absence of error sources, a difference may exist between the estimated
parameter and its true physiological counterpart, caused by the invalidity of
the model assumptions. Generally, when fitting multiple models to identical
data, the parameters of the higher order models exhibit better correlations
with the true physiological parameters [18], as higher-order models have less
strict assumptions. However, this goes at the cost of increased uncertainties,
which we have observed when comparing the ETK- and the TK-parameters at
a fixed protocol design. Kershaw & Cheng found a similar uncertainty increase
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for the AATH-parameters, altough our new fitting procedure may reduce
the absolute differences [24]. In addition, in chapter 6, an increased error
sensitivity was observed for the parameters of the ETK-model when compared
to the TK-model. In combination with the example from chapter 3 we may
conclude that when ETK-modeling, reveals a νp-value beneath 0.03-0.05, the
TK model should be used instead. The reason is that the estimated νp-value
has very limited precision, and that the ETK-values for Ktrans and νe are less
reproducible, more prone to MR-related errors than their TK-counterpart,
who exhibit identical physiological relevance. For the AATH-model, no such
analysis was made, but it should be subject of further investigation. The
development of our new AATH-fitting procedure was ment as a first step to
perform such an investigation and can comprise an important step in further
validation of pharmacokinetic modeling.

9.4 Post-processing

We have contributed to the development of standardized post-processing
techniques by deriving an accurate first-order corrected conversion method
for SPGRE-signal intensity [34], by proposing and testing a MLM-estimator
for pharmacokinetic modeling together with a highly accurate technique for
confidence interval construction, and by developping a stable and fast fitting
procedure for the AATH-model. From engineering point of view, the question
may be raised why the signal intensity conversion to CA concentration is not
always performed with the most accurate numerical method (see chapter 4).
However, as no post-processing software for DCE-MRI and pharmacokinetic
modeling exists, the medical research community is mainly interested in a
straightforward conversion method that can plainly be implemented. In
post-processing software, our first-order method has the ability to speed up
the concentration calculation, as it does not require numerical minimization,
or it can be used in simulation studies. As mentioned in chapter 7, the MLM
estimator and the corresponding confidence interval construction should be
embedded in post-processing software. For population-averaged AIF, we have
shown their superiority above the currently used LSQ-methods, especially
for pharmacokinetic modeling applications in which the knowledge of the
kinetic parameter precision is indispensable. For individually measured
AIF, the accuracy of the MLM confidence intervals should be investigated
further. As mentioned in a footnote in chapter 7, preliminary results shows
that when the concentration noise is minimized by flip angle optimization
for arterial concentrations, the coverage of the MLM constructed confidence
intervals remains close to 95% for the individually measured AIF strategy.
This is a very interesting subject for future research and shows again the
power of flip angle optimization. For the other AIF strategies, in particular
the joint estimation of the AIF and the pharmacokinetic parameters, the
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MLM constructed confidence intervals may be an underestimation of the true
uncertainty, as additional AIF parameters have to be estimated. Again, this
should be subject of further investigation. Nevertheless, the MLM-methods
are a very important step in the development of a statistical framework to
evaluate the precision and the measurement variability of pharmacokinetic
parameterers between and within centers.

9.5 Limitations

Apart from several already mentioned shortcomings, the main limitations of
our work is the relative absence of in vivo validation. Only for flip angle
optimization and for the first-order corrected conversion method an in vivo
proof-of-concept was proposed. For post-processing or protocol design however,
such validation is a very difficult task. First of all, there is no golden standard to
test the accuracy of the pharmacokinetic estimates, which makes use dependent
on simulations. The precision of the pharmacokinetic parameters on the other
hand, could be experimentally assessed by performing paired examinations in a
population of test subjects, as performed by Galbraith et al [66]. This method
is prone to other measurement variations, such as improper patient placement
between scans, patient motion, injection protocol or physiological changes,
that cannot be explained from our CRLB-framework constructed confidence
intervals. In addition, to test a number of different DCE-MRI protocols, the
scale of the population study should be infeasibly high. Nevertheless, the
clinical acceptance of this work will benefit greatly if we would succeed in
demonstrating the realisations and innovations of our results in clinical studies.
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