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6 Lineaire operatoren

De doelstelling van dit hoofdstuk is om voor een gegeven lineaire operator
een “goede” matrixvoorstelling te vinden die ons in staat stelt om deze ope-
rator beter te begrijpen. Dit is zowel voor theoretische als voor praktische
doeleinden zeer belangrijk.

6.1 Eigenwaarden en eigenvectoren

Een essentieel begrip in de theorie van de lineaire operatoren is het begrip
van een eigenvector.

Definitie 6.1.1. Zij V een K-vectorruimte en f : V → V een lineaire ope-
rator.

(i) Een niet-nul element 0 6= v ∈ V is een eigenvector van f als f(v) = λv
voor een λ ∈ K.

(ii) Zij 0 6= v ∈ V een eigenvector van f met f(v) = λv. Dan is λ een
eigenwaarde van f .

(iii) Zij λ een eigenwaarde van f . Dan is ker(λ1V −f) de eigenruimte van
f bij de eigenwaarde λ.

We beschouwen voor elke A ∈Mn(K) de operator LA : Kn → Kn. Als we
bovenstaande definitie toepassen op deze operator, bekomen we de volgende
definitie voor de eigenwaarden en eigenvectoren van een matrix.

Definitie 6.1.2. Zij A ∈Mn(K) een n× n-matrix over K.

(i) Een niet-nul element 0 6= v ∈ Kn is een (rechtse1) eigenvector van A
als Av = λv voor een λ ∈ K.

(ii) Zij 0 6= v ∈ Kn een eigenvector van A met Av = λv. Dan is λ een
eigenwaarde van A.

1We kunnen ook linkse eigenvectoren definiëren door A te beschouwen als een lineaire
operator op de rijruimte Kn via rechtse vermenigvuldiging; de linkse eigenvectoren van A
zijn dus de (getransponeerde van) de rechtse eigenvectoren van At.
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(iii) Zij λ een eigenwaarde van A. Dan is

kerL(λIn−A) = {w ∈ Kn | (λIn − A)w = 0}

de eigenruimte van A bij de eigenwaarde λ.

Opmerking 6.1.3. Stel dat λ een eigenwaarde van f is. Dan is de ei-
genruimte van f bij λ de unie van de verzameling van alle eigenvectoren
bijhorende bij λ en de nulvector 0 ∈ V (die per definitie geen eigenvector is).
We gaan dit gemakkelijk na:

ker(f − λ1V ) = {v ∈ V | (λ1V −f)v = 0}
= {v ∈ V | f(v) = λv}
= {0} ∪ {v ∈ V \ {0} | f(v) = λv}.

Voorbeelden 6.1.4. (1) Zij A = diag(λ1, . . . , λn) ∈ Mn(K). De elementen
van de standaardbasis e1, . . . , en van Kn zijn eigenvectoren van A met
respectieve eigenwaarden λ1, . . . , λn.

(2) Op de eindig-dimensionale ruimte Kn voor n ∈ N heeft de shiftoperator

S : Kn → Kn : (a1, . . . , an)t 7→ (0, a1, . . . , an−1)
t

eigenvectoren. De vectoren (0, . . . , 0, an)t zijn eigenvectoren met bijho-
rende eigenwaarde 0 als an 6= 0.

(3) We beschouwen nu de shiftoperator op de oneindig-dimensionale vector-
ruimte KN =

∏
i∈NK van rijen van elementen van K die gelabeld zijn

met de natuurlijke getallen. De shiftoperator

S : KN → KN : (a0, . . . , an, . . .)
t 7→ (0, a0, a1, . . . , an, . . .)

t

heeft geen eigenvectoren. Immers, als voor een v ∈ KN

S(v) = (0, a0, . . . , an, . . .)
t = λ(a0, . . . , an, . . .)

t

voor een zekere λ ∈ K, dan is λa0 = 0. Als λ = 0 volgt onmiddellijk dat
ai = 0 voor alle i; als λ 6= 0 is a0 = 0, maar dan volgt uit λai = ai−1 voor
alle i ≥ 1 opnieuw dat alle ai = 0. We concluderen dat uit S(v) = λv
voor een λ ∈ K volgt dat v = 0. Bijgevolg heeft S geen eigenvectoren.

We bespreken een methode om voor een lineaire operator f op een eindig-
dimensionale vectorruimte V (of matrix A ∈ Mn(K)) alle eigenwaarden en
eigenvectoren te bepalen.

In Definitie 5.4.5 hebben we de karakteristieke veelterm van een lineaire
operator f en van een matrix ingevoerd. We bewijzen nu een zeer handig
criterium om te bepalen welke elementen van K eigenwaarden bijhorend bij
f zijn.
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Stelling 6.1.5. (i) Zij A ∈Mn(K). Een scalair λ ∈ K is een eigenwaarde
van A als en slechts als χA(λ) = det(λIn − A) = 0.

(ii) Zij V een n-dimensionale K-vectorruimte en f : V → V een lineaire
operator. Een scalair λ ∈ K is een eigenwaarde van f als en slechts als
χf (λ) = det(λ1−f) = 0.

Bewijs. (i) Een element λ ∈ K is een eigenwaarde van A als en slechts dan
als er een v ∈ Kn \ {0} bestaat waarvoor (λIn−A)v = 0 ∈ Kn, of nog,
als en slechts als het homogeen n×n-stelsel (λIn−A)X = 0 een niet-nul
oplossing heeft, waarbij X een kolomvector is met n onbekenden.
Uit Stelling 2.5.14(ii) volgt dat (λIn − A)X = 0 een niet-nul oplossing
heeft als en slechts als rk(λIn − A) < n. Wegens Stelling 5.3.12 is dit
op zijn beurt equivalent met det(λIn − A) = 0.

(ii) Zij B een willekeurige basis van V met bijhorend coördinatenisomor-
fisme β : V → Kn, en zij A de matrixvoorstelling van f t.o.v. B. Uit
Opmerking 5.1.5(ii) volgt dat Aβ(v) = β(f(v)) voor alle v ∈ V . Dan
gelden volgende equivalenties, met v ∈ V en λ ∈ K:

f(v) = λv ⇐⇒ β(f(v)) = λβ(v) ⇐⇒ Aβ(v) = λβ(v).

Met andere woorden, v ∈ V is een eigenvector van f met eigenwaarde
λ als en slechts als β(v) een eigenvector is van A met eigenwaarde λ.
Dus λ is een eigenwaarde van f als en slechts als het een eigenwaarde
van A is. Wegens (i) is λ een eigenwaarde van f als en slechts als
det(λ1−f) = det(λIn − A) = 0. �

Gevolg 6.1.6. Een lineaire operator f op een n-dimensionale K-vector-
ruimte V (of een matrix A ∈Mn(K)) heeft hoogstens n eigenwaarden.

Bewijs. De veelterm χf (x) (resp. χA(x)), die van graad n is, kan hoogstens
n wortels hebben in K. �

Constructie 6.1.7. Met behulp van de vorige stelling kunnen we nu een
methode opstellen om alle eigenwaarden met bijhorende eigenvectoren van
een matrix A ∈Mn(K) te bepalen:

(1) Bepaal de karakteristieke veelterm χA(x).

(2) Los de vergelijking χA(x) = 0 op met x ∈ K. Er zijn maar eindig veel op-
lossingen λ1, . . . , λs van deze vergelijking in K, dit zijn de eigenwaarden
van A in K.

(3) Bepaal voor elke λi, i = 1, . . . , s, de eigenruimte

{w ∈ Kn | (λiIn − A)w = 0 ∈ Kn}.
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Opmerking 6.1.8. De eerste stap van Constructie 6.1.7 kan men uitvoeren
door de determinant van een matrix te berekenen; dit kan men steeds (met de
nodige rekentijd) doen door bijvoorbeeld te ontwikkelen naar een geschikte rij
of kolom. De derde stap komt neer op het oplossen van een lineair stelsel; dit
kan men steeds (met de nodige rekentijd) doen door bijvoorbeeld rijreductie
naar de echelonvorm uit te voeren.

De enige stap waarvoor we geen methode besproken hebben is de tweede
stap, namelijk het bepalen van de wortels van een veelterm in één variabele
van graad n. Als we werken in 2- of 3-dimensionale ruimten is het steeds mo-
gelijk om alle oplossingen van de karakteristieke veelterm te berekenen. Voor
hogere dimensies zijn er niet altijd algemene oplossingsmethoden bekend; het
zoeken naar oplossingsmethoden voor veeltermen van hogere graad heeft tot
de ontwikkeling van heel wat algebräısche theorieën geleid. Zo kan men bij-
voorbeeld bewijzen dat er (in zekere zin) geen algemene oplossingsmethode
kan bestaan voor het bepalen van de oplossingen van veeltermvergelijkingen
van graad 5 of hoger. De bespreking van dit probleem (over een willekeurig
veld) is voor de wiskundigen onderwerp van de cursus “Algebra II”.

6.2 Diagonaliseren van operatoren

We passen nu de theorie van de eigenwaarden en eigenvectoren toe om een ge-
geven lineaire operator f in een zo eenvoudig mogelijke gedaante te brengen.
In het ideale geval kunnen we een basis vinden zodat de matrix van f een
diagonaalmatrix is; we noemen de operator in dat geval diagonaliseerbaar.

Het diagonaliseren van matrices is in concrete toepassingen van uiter-
mate groot belang. Een operator wordt vaak gegeven als een welbepaalde
matrix, bijvoorbeeld bekomen door het uitvoeren van experimenten, en het
diagonaliseren ervan (indien dit mogelijk is) zet de operator om in een zeer
begrijpelijke en interpreteerbare gedaante: het geeft voor elke basisvector
een “expansie- of contractiefactor” weer, zodat het gemakkelijk te visualise-
ren valt wat het effect is van het toepassen van de operator.

Stelling 6.2.1. Een lineaire operator f op een eindig-dimensionale K-vec-
torruimte heeft een diagonaalmatrix als matrixvoorstelling als en slechts als
V een basis heeft bestaande uit eigenvectoren voor f .

Bewijs. Stel dat f ten opzichte van de basis B = {b1, . . . , bn} als matrixvoor-
stelling een diagonaalmatrix A = diag(λ1, . . . , λn) heeft; dan is, voor alle
1 ≤ i ≤ n,

f(bi) = 0b1 + · · ·+ 0bi−1 + λibi + 0bi+1 + · · ·+ 0bn = λibi.

128



Dus B is een basis van V bestaande uit eigenvectoren van f .

Zij omgekeerd B = {b1, . . . , bn} een basis van eigenvectoren voor de ope-
rator f ∈ End(V ). Uit f(bi) = λibi volgt dat de matrixvoorstelling van f ten
opzichte van B een diagonaalmatrix is. �

Definitie 6.2.2. (i) Een operator f op een eindig-dimensionale vector-
ruimte V is diagonaliseerbaar als er een matrixvoorstelling van f is
die een diagonaalmatrix is.

(ii) Een matrix A ∈ Mn(K) is diagonaliseerbaar als de lineaire operator
LA : Kn → Kn diagonaliseerbaar is.

Lemma 6.2.3. Een matrix A ∈ Mn(K) is diagonaliseerbaar als en slechts
als er een matrix P ∈ GLn(K) bestaat zodat P−1AP een diagonaalmatrix is.

Bewijs. Veronderstel eerst dat A (en dus LA) diagonaliseerbaar is. Dan be-
staat er een basis B = {b1, . . . , bn} bestaande uit eigenvectoren. Zij P =
(b1, . . . , bn). Dan geldt AP = (λ1b1, . . . , λnbn) = (b1, . . . , bn)·diag(λ1, . . . , λn).
Bijgevolg is P−1AP = diag(λ1, . . . , λn).

Veronderstel omgekeerd dat er een P ∈ GLn(K) is zodat P−1AP een dia-
gonaalmatrix diag(λ1, . . . , λn) is, en beschouw de basis B = {Pe1, . . . , P en}
van Kn. Zij bi := Pei. Dan geldt P−1A(b1, . . . , bn) = diag(λ1, . . . , λn). Dus
A(b1, . . . , bn) = P diag(λ1, . . . , λn). Het is dan duidelijk dat de matrix van
LA ten opzichte van de basis B dan precies de diagonaalmatrix P−1AP is.

�

Stelling 6.2.4. Zij V een n-dimensionale vectorruimte, en zij f ∈ End(V ).

(i) De eigenvectoren van f die horen bij verschillende eigenwaarden, zijn
lineair onafhankelijk van elkaar.

(ii) Als f juist n verschillende eigenwaarden heeft, dan is f diagonaliseer-
baar.

(iii) Als f diagonaliseerbaar is, dan is V de directe som van de eigenruimten
van f horende bij de verschillende eigenwaarden van f .

Bewijs. (i) Zij {vi}i∈I een verzameling van eigenvectoren van een operator
f met f(vi) = λivi waarbij alle λi verschillend zijn. We argumenteren
uit het ongerijmde. Als {vi}i∈I lineair afhankelijk is, dan is er een relatie

a1v1 + · · ·+ a`v` = 0 , (6.1)

met ` minimaal zodat alle termen ongelijk zijn aan nul. We nemen het
beeld van het linkerlid onder f , en we bekomen

f(a1v1 + · · ·+ a`v`) = a1λ1v1 + · · ·+ a`λ`v` = 0 . (6.2)
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Vermenigvuldig vergelijking (6.1) met λ1 en trek deze af van vergelij-
king (6.2); dan is

a2(λ2 − λ1)v2 + . . .+ a`(λ` − λ1)v` = 0 .

Vermits alle ai 6= 0 en voor alle i = 2, . . . , `, (λi− λ1) 6= 0, bekomen we
een lineaire relatie met minder dan ` termen. Dit is een tegenspraak
met de keuze van `.

(ii) Aangezien er n verschillende eigenwaarden zijn voor f , volgt er uit (i)
dat er n lineair onafhankelijke eigenvectoren zijn voor f . Een lineair
onafhankelijke verzameling met n elementen is een basis voor V . Uit
Stelling 6.2.1 volgt nu het gestelde.

(iii) Veronderstel dat λ1, . . . , λ` de verschillende eigenwaarden van f zijn.
Aangezien f diagonaliseerbaar is, is er een basis B = {v1, . . . , vn} van
V zodat de matrix A van f een diagonaalmatrix is, waarbij de elementen
op de diagonaal van A precies de eigenwaarden van f zijn. We ordenen
de basis B zodanig dat de eigenwaarden gegroepeerd staan:

A = diag
(
λ1, . . . , λ1︸ ︷︷ ︸

n1 keer

, . . . , λ`, . . . , λ`︸ ︷︷ ︸
n` keer

)
.

Stel nu m1 = 0 en mi = n1 + · · ·+ ni−1 voor elke i ∈ {2, . . . , `}; dan is
de eigenruimte Vi behorende bij de eigenwaarde λi gelijk aan

Vi = 〈vmi+1, . . . , vmi+ni
〉 ,

en duidelijkerwijze is nu

V = V1 ⊕ V2 ⊕ · · · ⊕ V` . �

Niet alle lineaire operatoren zijn diagonaliseerbaar. We werken twee voor-
beelden uit van matrices over R die niet diagonaliseerbaar zijn, en een voor-
beeld van een matrix die wel diagonaliseerbaar is:

Voorbeelden 6.2.5. (1) Beschouw de matrix

A =

1 0 0
0 0 1
0 1 0

 ∈M3(R).

De karakteristieke vergelijking van A is

χA(x) = (x− 1)(x2 − 1) = (x− 1)2(x+ 1);
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deze heeft twee oplossingen, namelijk 1 en −1, waarbij 1 multipliciteit
2 heeft. We hebben dus twee verschillende eigenwaarden λ1 = 1 en
λ2 = −1. De eigenruimte bij λ1 = 1 is gelijk aan {(r, s, s)t | r, s ∈ R},
de eigenruimte bij λ2 = −1 is gelijk aan {(0, r,−r)t | r ∈ R}. We vinden
dus dat

B =


1

0
0

 ,

0
1
1

 ,

 0
1
−1


een basis van R3 is die bestaat uit eigenvectoren. Bijgevolg is A diago-
naliseerbaar; de matrixvoorstelling van LA : R3 → R3 : v 7→ Av t.o.v. B
is diag(1, 1,−1).

(2) Beschouw de matrix

B =

1 0 0
0 −1 0
0 1 −1

 ∈M3(R).

De karakteristieke vergelijking van B is

χB(x) = (x− 1)(x+ 1)2;

deze heeft twee oplossingen, namelijk 1 en −1, waarbij −1 multipliciteit
2 heeft. We hebben dus twee verschillende eigenwaarden λ1 = 1 en
λ2 = −1. De eigenruimte bij λ1 = 1 is gelijk aan {(r, 0, 0)t | r ∈ R}, de
eigenruimte bij λ2 = −1 is gelijk aan {(0, 0, r)t | r ∈ R}. Er zijn te weinig
lineair onafhankelijke eigenvectoren om een basis van R3 te construeren;
bijgevolg is B niet diagonaliseerbaar.

(3) Beschouw de matrix

C =

1 0 0
0 0 1
0 −1 0

 ∈M3(R).

De karakteristieke vergelijking van C is

χC(x) = (x− 1)(x2 + 1);

deze heeft vergelijking heeft slechts één oplossing over R, namelijk 1. We
hebben dus één eigenwaarde λ = 1. De eigenruimte bij λ = 1 is gelijk
aan {(r, 0, 0)t | r ∈ R}. We hebben dus opnieuw te weinig lineair onaf-
hankelijke eigenvectoren om een basis van R3 te construeren; bijgevolg
is C niet diagonaliseerbaar.
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In het voorgaande voorbeeld hebben we twee matrices B en C beke-
ken die niet diagonaliseerbaar zijn over R. Deze twee voorbeelden van niet-
diagonaliseerbare operatoren zijn echter verschillend van aard.

In voorbeeld (3) heeft de karakteristieke vergelijking van C slechts één
oplossing over R (multipliciteiten van de oplossingen meegerekend). De ope-
rator is niet diagonaliseerbaar, omdat als we de wortels tellen met hun mul-
tipliciteit, de karakteristieke vergelijking niet genoeg wortels heeft.

In voorbeeld (2) heeft de karakteristieke vergelijking van B wel genoeg
wortels, namelijk één van multipliciteit 1 en één van multipliciteit 2. Maar
in dit geval zijn de dimensies van de eigenruimten te klein om een basis van
eigenvectoren te hebben.

Voorbeeld 6.2.6. Zoals we hebben vermeld, was het probleem bij Voor-
beeld 6.2.5(3) dus dat we te weinig wortels hebben. We bekijken nu wat er
gebeurt als we de matrix C beschouwen over het veld C in plaats van over
het veld R. Stel dus

C =

1 0 0
0 0 1
0 −1 0

 ∈M3(C).

De karakteristieke vergelijking van C is (met i ∈ C met i2 = −1)

χC(x) = (x− 1)(x2 + 1) = (x− 1)(x+ i)(x− i);

deze vergelijking heeft nu drie verschillende oplossingen over C, namelijk
1,−i, i. De matrix C heeft dus drie verschillende eigenwaarden, namelijk
λ1 = 1, λ2 = −i, λ3 = i, en uit Stelling 6.2.4(ii) volgt onmiddellijk dat C
diagonaliseerbaar is.

Voor de volledigheid bepalen we de eigenruimten van C. De eigenruimte
bij λ1 = 1 is gelijk aan {(r, 0, 0)t | r ∈ C}. De eigenruimte bij λ2 = −i
is gelijk aan {(0, r,−ir)t | r ∈ C}. De eigenruimte bij λ3 = i is gelijk aan
{(0, r, ir)t | r ∈ C}. We vinden dus dat

B =


1

0
0

 ,

 0
1
−i

 ,

0
1
i


een basis van C3 is die bestaat uit eigenvectoren. Hieruit volgt dus nogmaals
dat A diagonaliseerbaar is; de matrixvoorstelling van LA : C3 → C3 : v 7→ Av
t.o.v. B is diag(1, i,−i).

In het vorig voorbeeld hebben we aangetoond dat de matrix C over C
wel diagonaliseerbaar is. Maar natuurlijk is ook niet iedere matrix over C
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diagonaliseerbaar: als we de matrix B over het veld C gaan beschouwen, dan
blijft deze niet diagonaliseerbaar.

Opmerking 6.2.7. (i) In een algemeen veld K kan het ook voorkomen
dat de karakteristieke veelterm niet genoeg wortels heeft over K. Voor
de wiskundigen wordt in de cursus “Algebra II” aangetoond dat er dan
steeds een groter veld bestaat dat K bevat waarover de karakteristieke
veelterm dan wel genoeg wortels heeft. Een dergelijk veld wordt dan
een splijtveld van de karakteristieke vergelijking genoemd.

(ii) Uit Gevolg 1.2.7 volgt dat elke veelterm van graad n over de complexe
getallen C wél n wortels heeft (als we de multipliciteiten meerekenen).

(iii) Als de karakteristieke vergelijking van f op een n-dimensionale K-vec-
torruimte n wortels heeft, dan kunnen we deze schrijven als

χf (x) =
t∏
i=1

(x− λi)ni , met λi ∈ K,

waarbij λ1, . . . , λt de verschillende wortels van χf zijn.

We onderzoeken nu wanneer een operator met een bovenstaande karakte-
ristieke vergelijking diagonaliseerbaar is. Hiertoe voeren we volgende definitie
in.

Definitie 6.2.8. Zij V een K-vectorruimte en f : V → V een lineaire ope-
rator met als karakteristieke veelterm

χf (x) =
t∏
i=1

(x− λi)ni met λ1, . . . , λt ∈ K.2

(We merken nogmaals op dat dit een assumptie is.)

(i) De algebräısche multipliciteit van een eigenwaarde λi van f is gelijk
aan ni, i.e. de multipliciteit van λi als wortel van de karakteristieke
veelterm χf (x).

(ii) De meetkundige multipliciteit van een eigenwaarde λi van f is gelijk
aan de dimensie de eigenruimte behorende bij λi, dit is dus gelijk aan
dim ker(λi 1−f).

Merk op dat de meetkundige multipliciteit van een eigenwaarde steeds
groter dan of gelijk aan 1 is.

2We nemen aan dat de λi twee aan twee verschillend zijn.
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Lemma 6.2.9. Zij V een K-vectorruimte en f : V → V een lineaire operator
met karakteristieke veelterm

χf (x) =
t∏
i=1

(x− λi)ni met λ1, . . . , λt ∈ K.

Voor iedere i is dim(ker(λi1V − f)) ≤ ni. Anders gezegd, de meetkundige
multipliciteit van een eigenwaarde is steeds kleiner dan of gelijk aan de alge-
bräısche multipliciteit van deze eigenwaarde.

Bewijs. We noteren de eigenruimte behorende bij de eigenwaarde λi met
Vi = ker(λi1V − f). Zij dan ri := dim(Vi) de meetkundige dimensie van λi.
We zullen aantonen dat (x−λi)ri een deler is van het karakteristiek polynoom
van f ; dit impliceert dan dat ri ≤ ni.

Beschouw nu een vaste i, en stel r = ri en λ = λi. Zij {v1, . . . , vr}
een basis van Vi. We breiden deze basis uit tot een basis van V : B =
{v1, . . . , vr, w1, . . . , ws}. We stellen de matrixvoorstelling op van f ten op-
zichte van deze basis. Deze wordt bekomen door de matrix te beschouwen
waarvan de kolommen

f(v1), . . . , f(vr), f(w1), . . . , f(ws)

zijn. We hebben

f(v1) = λv1

f(v2) = λv2
...

f(vr) = λvr;

over de beelden f(w1), . . . , f(ws) hebben we geen bijkomende informatie.
Dan is de matrixvoorstelling van f t.o.v. B gelijk aan

A =

(
λIr B
0 C

)
voor zekere (onbekende) matrices B ∈Mr,n−r(K) en C ∈Mn−r(K).

Er geldt dat χf (x) = det(xIn − A). Als we deze determinant bepalen
door telkens (r opeenvolgende malen) te ontwikkelen naar de eerste kolom,
volgt er dat (x− λ)r een deler is van χf (x) = det(xIn − A). �

Uit het voorgaand lemma volgt dat, als de algebräısche multipliciteit van
een eigenwaarde gelijk is aan 1, de meetkundige multipliciteit dan ook gelijk
is aan 1.
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We kunnen nu een criterium bewijzen voor het al dan niet diagonaliseer-
baar zijn van een operator.

Stelling 6.2.10. Zij V een K-vectorruimte en f : V → V een lineaire ope-
rator met karakteristieke veelterm

χf (x) =
t∏
i=1

(x− λi)ni met λ1, . . . , λt ∈ K.

Zij Vi = ker(λi1V − f) de eigenruimte behorende bij de eigenwaarde λi, voor
elke i. Dan is f diagonaliseerbaar als en slechts als voor elke eigenwaarde
λi geldt dat dim(Vi) = ni, of met andere woorden, als en slechts als voor
iedere eigenwaarde de algebräısche multipliciteit gelijk is aan de meetkundige
multipliciteit.

Bewijs. Aangezien de graad van χf (x) gelijk is aan n, is dim(V ) = n =
n1 + · · · + nt. Voor iedere eigenruimte Vi kiezen we een basis Bi. Uit Stel-
ling 6.2.4(i) volgt dat de verzameling C = B1 ∪ · · · ∪ Bt lineair onafhankelijk
is.

Nu splitsen we op in twee gevallen:

(i) Stel dat dim(Vi) = ni voor alle i. We tellen het aantal elementen in C;
dit is gelijk aan

dim(V1) + · · ·+ dim(Vt) = n1 + · · ·+ nt = n = dim(V ).

Dus C is een basis van V bestaande uit eigenvectoren van f . Uit Stel-
ling 6.2.1 volgt dat f diagonaliseerbaar is.

(ii) Stel dat dim(Vi) < ni voor een bepaalde i, en merk op dat steeds
dim(Vj) ≤ nj voor alle j. In dit geval is het aantal elementen in C
kleiner dan dim(V ):

dim(V1) + · · ·+ dim(Vt) < n1 + · · ·+ nt = n = dim(V ).

Hieruit volgt dat C geen basis is van V . Aangezien iedere eigenvector
van f in span(C) zit, kunnen we nooit dim(V ) lineair onafhankelijke
eigenvectoren vinden. Dus f is niet diagonaliseerbaar. �

We illustreren dit nieuwe criterium aan de hand van enkele voorbeelden.

Voorbeelden 6.2.11. (1) We beschouwen de matrix A ∈ M3(R) uit Voor-
beeld 6.2.5. Aangezien χA(x) = (x−1)2(x+1), kunnen we Stelling 6.2.10
toepassen. De eigenwaarde λ1 heeft algebräısche multipliciteit 2, de ei-
genwaarde λ2 heeft algebräısche multipliciteit 1. Uit de bepaling van de
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eigenruimten volgt dat de eigenwaarde λ1 meetkundige multipliciteit 2
heeft; we kunnen dus onmiddellijk concluderen dat A diagonaliseerbaar
is.

(2) Beschouw de matrix B ∈M3(R) uit Voorbeeld 6.2.5. Aangezien χB(x) =
(x − 1)(x + 1)2 kunnen we Stelling 6.2.10 toepassen. De eigenwaarde
λ1 heeft algebräısche multipliciteit 1, de eigenwaarde λ2 heeft algebra-
ische multipliciteit 2. Uit de bepaling van de eigenruimten volgt dat
de eigenwaarde λ2 meetkundige multipliciteit 1 heeft; we kunnen dus
onmiddellijk concluderen dat B niet diagonaliseerbaar is.

(3) Beschouw de shiftoperator S op Kn uit Voorbeeld 6.1.4(2), en beschouw
de standaardbasis B = {e1, . . . , en} van Kn. Ten opzichte van deze basis
B heeft S de matrixvoorstelling

A :=



0 0 · · · 0 0 0
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 0 0 0
0 0 · · · 1 0 0
0 0 · · · 0 1 0


.

Herhaaldelijk ontwikkelen naar de laatste kolom geeft χA(x) = xn; we
kunnen dus Stelling 6.2.10 toepassen. De shiftoperator S heeft dus 1
eigenwaarde λ = 0 met algebräısche multipliciteit n. De eigenruimte bij
λ is gelijk aan {(0, . . . , 0, k) | k ∈ K}; bijgevolg is de meetkundige mul-
tipliciteit van λ gelijk aan 1. We besluiten dat S niet diagonaliseerbaar
is.

Opmerking 6.2.12. Zij V een K-vectorruimte en f : V → V een lineaire
operator met karakteristieke veelterm

χf (x) =
t∏
i=1

(x− λi)ni met λ1, . . . , λt ∈ K.

Als f niet diagonaliseerbaar is, is het toch steeds mogelijk om een “mooie”
matrixvoorstelling voor f te geven.

Er bestaat namelijk steeds een basis voor V zodat de matrixvoorstelling
van f ten opzichte van deze basis een zeer eenvoudige vorm heeft, namelijk
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een blokdiagonaalmatrix 
J1

J2
. . .

Jm

 ,

waarbij de blokken matrices zijn met een unieke eigenwaarde λ, met 1-en
juist onder de diagonaal, en met alle andere componenten gelijk aan nul, i.e.
blokken van de vorm 

λ 0 0 · · · 0 0 0
1 λ 0 · · · 0 0 0
0 1 λ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · λ 0 0
0 0 0 · · · 1 λ 0
0 0 0 · · · 0 1 λ


.

Matrices met deze bijzondere vorm noemen we Jordan3 matrices. De blok-
diagonale matrixvoorstelling van f noemt men de de Jordan normaalvorm
van f .

Voor een bewijs van dit feit verwijzen we voor de wiskundigen naar de
cursus “Algebra I”.

6.3 Hermitische en symmetrische operatoren

We bestuderen het diagonaliseerbaar zijn van bijzondere klassen van opera-
toren op de standaard inproduct-ruimten over R en C.

Definitie 6.3.1. (i) Beschouw de n-dimensionale inproduct-ruimte Cn met
het standaard inproduct 〈v, w〉 = vtw. Zij f : W → W een operator op
een deelruimte W ≤ Cn. We noemen f een hermitische4 operator als
voor alle v, w ∈ W geldt dat

〈f(v), w〉 = 〈v, f(w)〉 . (6.3)

3Genoemd naar de Franse wiskundige Marie Ennemond Camille Jordan (1838–1922).
4Genoemd naar de Franse wiskundige Charles Hermite (1822–1901).
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Als f = LA een hermitische operator is op Cn, dan geldt dat voor alle
v, w ∈ Cn dat

vtAtw = (Av)tw = vt(Aw) = vtAw ,

waaruit volgt dat
At = A .

Dergelijke matrices noemen we hermitische matrices.

(ii) We kunnen precies dezelfde definitie beschouwen voor Rn in plaats van
Cn; we noemen f : W → W met W ≤ Rn een symmetrische operator
als voor alle v, w ∈ W de gelijkheid (6.3) geldt. Indien f = LA een
symmetrische operator is op Rn, dan is At = A, i.e. A is een symme-
trische matrix. Merk dus op dat de reële hermitische matrices juist de
symmetrische matrices zijn.

Stelling 6.3.2. Zij f een hermitische operator op Cn. Dan geldt:

(i) Alle eigenwaarden van f zijn reëel.

(ii) Eigenvectoren behorende bij twee verschillende eigenwaarden zijn ortho-
gonaal.

(iii) De operator f is diagonaliseerbaar, en er bestaat steeds een orthonor-
male basis van eigenvectoren voor f .

Bewijs. (i) Stel dat λ een eigenwaarde is van f met eigenvector v, m.a.w.
f(v) = λv. Nu is

λ〈v, v〉 = 〈λv, v〉 = 〈f(v), v〉 = 〈v, f(v)〉 = 〈v, λv〉 = λ〈v, v〉.

Omdat v 6= 0 ∈ Cn, is 〈v, v〉 6= 0, zodat λ = λ en dus λ ∈ R.

(ii) Stel dat λ een eigenwaarde is van f met eigenvector v en µ een eigen-
waarde is van f met eigenvector w met λ 6= µ. Aangezien λ, µ ∈ R
is

λ〈v, w〉 = 〈f(v), w〉 = 〈v, f(w)〉 = µ〈v, w〉.

Er volgt dat (λ− µ)〈v, w〉 = 0, dus is 〈v, w〉 = 0.

(iii) We tonen aan dat er een orthonormale basis van eigenvectoren van f
bestaat door gebruik te maken van inductie naar de dimensie. Voor
1-dimensionale ruimten is de uitspraak triviaal.
Als inductiehypothese nemen we aan dat er voor iedere hermitische
operator op Cn−1 een orthonormale basis van eigenvectoren is. Stel
dat f een eigenvector v met eigenwaarde λ heeft; deze bestaat zeker
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want de karakteristieke vergelijking van f heeft steeds een wortel in
C. Noem W het orthogonaal complement van Cv, dus Cn = Cv ⊕W
en dim(W ) = n − 1 (zie Gevolg 4.2.5). Voor w ∈ W geldt dus dat
〈v, w〉 = 0. We tonen aan dat ook 〈v, f(w)〉 = 0:

〈v, f(w)〉 = 〈f(v), w〉 = λ〈v, w〉 = 0.

Hieruit volgt dat f(W ) ⊆ W , wat betekent dat de restrictie van f
tot W een hermitische operator is op W . Omdat dimW = n − 1
volgt nu uit de inductiehypothese dat W een orthonormale basis van
eigenvectoren heeft voor de restrictie van f op W ; deze basis noteren
we met {w1, . . . , wn−1}. Aangezien Cn = Cv ⊕W , is{

1
‖v‖v, w1, . . . , wn−1

}
een orthonormale basis van V bestaande uit eigenvectoren van f . �

Opmerking 6.3.3. In de praktijk gaan we vaak als volgt te werk om een
orthonormale basis van eigenvectoren van een hermitische operator te vin-
den. We bepalen eerst de eigenwaarden en eigenruimten voor f ; aangezien
f diagonaliseerbaar is, is V de directe som van de eigenruimten. Voor iedere
eigenruimte apart bepalen we nu een orthonormale basis bestaande uit ei-
genvectoren van f . Wanneer we al deze basisvectoren samenvoegen krijgen
we een basis van V . Uit Stelling 6.3.2(ii) volgt dan dat al deze basisvectoren
loodrecht op elkaar staan.

Gevolg 6.3.4. Beschouw de inproduct-ruimte Rn met het standaard inpro-
duct 〈v, w〉 = vtw. Zij A een symmetrische matrix in Mn(R).

Alle eigenwaarden van A zijn reëel en er bestaat een orthonormale basis
van eigenvectoren voor A, dus A is diagonaliseerbaar.

Bovendien is de transitiematrix van de standaardbasis naar een orthonor-
male basis {b1, . . . , bn} van eigenvectoren voor A een orthogonale matrix P ,
en er geldt dat

P tAP = diag(λ1, . . . , λn) ,

waarbij λ1, . . . , λn de eigenwaarden van A zijn (die alle reëel zijn). De i-de
kolom van P bestaat precies uit de coördinaten van de eigenvector bi ten
opzichte van de standaardbasis.

Bewijs. Een symmetrische matrix in Mn(R) definieert een hermitische matrix
over C; we kunnen dus het bewijs van Stelling 6.3.2 adapteren. De rest van
het gestelde volgt uit Opmerking 5.2.2(ii), Opmerking 5.2.6 en Stelling 5.2.8.

�
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