Can string theory cure heart rhythm disorders? (*)

Hans Dierckx^a, Olivier Bernus^b and Henri Verschelde^a

^a Ghent University, Department of Mathematical Physics and Astronomy, Belgium, hans.dierckx@ugent.be ^b University of Leeds, Institute of Membrane and Systems Biology, United Kingdom

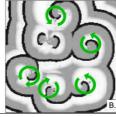
What on earth have a beating heart and a cosmic string in common?

- · Some types of heart rhythm disorders: rotating spirals on the heart's surface.
- · Rotation axis = "filament"
- Filament dynamics closely resembles cosmic strings.

What do we do?

- Start from generic reaction-diffusion equations describing electric activation in the heart muscle
- · Borrow mathematical methods from geometry, string theory and general relativity
- Look for solutions to the equations
- Translate findings to a cardiac context

What are you supposed to do?


Follow the spiral counterclockwise: let the mathematical treatment lead you from cell physiology over geometric considerations to general relativity and string theory, and all the way back to medical implications...

Bushfire, zebra stripes, the Mexican wave

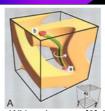
- ... and cardiac tissue are all examples of excitable media.
- Point stimulus can trigger activation waves
- · Recovery time after each excitation
- Underlying reaction-diffusion equation:

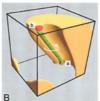
$$\partial_t \mathbf{u} = \partial_i \left(\mathbf{D}^{ij} \partial_j \mathbf{u} \right) + \mathbf{\Phi}(\mathbf{u}) \tag{1}$$

Cardiac tachycardia (A) versus fibrillation (B). Black lines: depolarization fronts, grey zones: tissue in recovery. Adapted from [1].

Outlook

- The state of ventricular fibrillation (leading to cardiac arrest) comes with multiple filaments, whose interactions need to be studied.
- Our formalism doesn't include the coupling with contraction mechanics yet.


Computational benefits


- · Current computer simulations solve (1) by forward integration, on a 3D grid with 5-100 variables.
- Simulations of the filament alone, based on (4) and asses time evolution of tachycardia pathologies.

its second-order terms provide a fast alternative to

Realizations

- We have obtained equations of motion for both rotor filaments and wave fronts.
- We take into account arbitrary tissue anisotropy, dispersion effects, bidomain models, parameter gradients and twist.
- The results are presented in terms of geometric invariants such as filament curvature and the tissue's Riemann tensor.

With anisotropy [3] Without anisotropy [3]

- Depolarization waves are initiated by nerve stimulation.
- In healthy state, near-plane waves propagate, and induce homogeneous contraction of the muscle: one trigger -> one wave -> one contraction
- Some people have tachycardia (100-200 beats/min.): the wave gets trapped in a loop (see Mexican wave).
- One wave -> many unsynchronized contractions
- Isopotential maps consist of spirals that rotate around their tips; the line connecting the tips in 3D: "filament".
- Rotor filaments are similar to hydrodynamic vortices, tornado cores and the eye of a hurricane.

3D = 2D + 1D

- · For weakly bent filaments, the three dimensional wave pattern is well approximated by a stack of _.. 2D spiral waves.
- Mathematics: gradient expansion with expansion parameter: $\lambda = \frac{d}{d} = \frac{filament\ thickness}{d}$

radius of curvature

• Inspired by cosmic strings [2])

Anisotropy = curvature

- Myocardium is highly anisotropic due to muscle fibres and cleavage planes.
- Anisotropy affects filament motion.
- Redefine distance ds using a metric tensor based on tissue diffusion properties [3]:

$$ds^{2} = \sum_{i=1}^{3} \sum_{j=1}^{3} g_{ij}(\mathbf{x}) dx^{i} dx^{j}, g_{ij} = (D^{-1})_{ij}$$
 (3)

(Generalization of Pythagoras theorem)

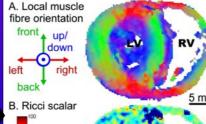
• Filament twisting and bending is studied in the resulting curved space.

Equation of motion

- We analytically derived [4] the equation of motion for filaments in generic anisotropic media.
- They move along normal and binormal vector:

$$\dot{\mathbf{X}} = \gamma_1 \frac{\mathbf{N}}{\rho} + \gamma_2 \frac{\mathbf{B}}{\rho} + \mathcal{O}(\lambda^2) \tag{4}$$

- Physical meaning: γ_1 = string tension.
- $\gamma_{1,2}$ can be evaluated numerically for a given heart model (1).


Statics: geodesic solution

- From (5): no motion $\dot{\mathbf{X}} \rightarrow 0$ if filament curvature $1/\rho \rightarrow 0$
- In the space (3), this corresponds to a geodesic (= curve of minimal length connecting two given points [3,4]).
- If the heart had been isotropic: \Rightarrow solution = straight line
- · Intuitively: a filament with string tension $\gamma_1 > 0$ tends to minimize its length. [5]

The Riemann tensor of the heart

- In curved space, it is important to work with coordinate invariant or tensor quantities.
- Curvature of space itself is contained in the Riemann curvature tensor R_{ijkl}.
- The trace of this tensor is a scalar invariant of the space, denoted $\boldsymbol{\mathcal{R}}$ (= Ricci scalar).
- Classification of spaces: \Re =0: flat space, \mathcal{R} >0: sphere-like, \mathcal{R} <0: saddle-like
- Using anatomical data (e.g. MRI scans), we were the first to calculate $\mathsf{R}_{\scriptscriptstyle\mathsf{iikl}}$ and ${\mathcal{R}}$ for a given heart.
- (*): Not yet. But we do our very best to gain better insights into the matter...

Rabbit heart: axial slice from DT-MRI

[mm-2] LV/RV:

left/right ventricle

Corrected angular velocity

• Spiral waves rotate slower or faster due to curvature effects $1/\rho$ (filament bending) and R_{ijkl} (curvature of surrounding space, i.e. tissue anisotropy).

$$\omega = \omega_0 + p_1 \rho^{-2} + p_2 \mathcal{R} + p_3 R_{1212}$$
 (5)

ullet The constant coefficients $p_{
m l,2,3}$ can be predicted numerically for a given electrophysiological heart model (1).

Acknowledgements:

This research was supported by the FWO – Flanders Research Foundation. The displayed MRI data were made available by Flavio F. Fenton.

[1] Panfilov A, Zemlin C, Chaos 12(3), 800-06 (2002), [2] Maeda K, Turok N, Phys Lett B, 202(3), 376-80 (1988) [3] Wellner M et al, PNAS 90(2), 8015-18 (2002), [4] Verschelde H, Dierckx H, Bernus O, Phys Rev Lett 99(16), 168104-1-4 (2007), [5] Biktashev V, Holden A, Zhang H, Phil Trans R Soc Lond A, 347,611-30 (1994).