M5 - Getting Started with Python for Data Scientists
Target audience
This course targets professionals and investigators from diverse areas with little to no Python-programming experience who wish to start using Python for their data manipulation, data exploration or statistical analysis.
Description
Python started off as a general-purpose programming language, but in the last decade it has become a popular environment for data science. The reason is that the community of Python users have recently created useful add-on packages which are suitable for data manipulation, preparation, visualization and analysis. This practical course introduces both base Python and the most important packages in a hands-on way with many exercises.
The contents of the course are:
- Introduction: Python and the Anaconda distribution
- Data types: numbers, strings, lists, tuples, sets and dictionaries
- Automation: control flow and self-defined functions
- Importing data and exporting results
- Managing data with NumPy and pandas
- Graphs with matplotlib and seaborn
- Statistical analysis with statsmodels
The objective of the course is that you are capable of doing data management, visualization and analysis in Python on your own.
Python is an open-source programming language which you can freely download (i.e. the Anaconda distribution). Python version 3 or higher is recommended.
Course prerequisites
The course is open to all interested persons. Knowledge of basic statistical concepts and experience with other programming languages are considered advantages, but not required for learning the Python language.
Exam / Certificate
There is no exam connected to this module. If you attend all five classes you will receive a certificate of attendance via e-mail at the end of the course.
Type of course
This is an on campus course. We offer blended learning options if, exceptionally, you can't attend a session on campus.
Schedule
5 Monday and Thursday evenings in December 2023: December 4, 7, 11, 14 and 18, 2023, from 5.30 pm to 9.30 pm.
Venue
Faculty of Science, Campus Sterre, Krijgslaan 281, 9000 Gent, Building S9, 3rd floor, Auditorium 3.
Teacher
Course material
Acces to Python scripts and data files
Book recommendations
A recommended handbook for further study is 'An introduction to statistics with Python' by Haslwanter, Thomas (2016), Vienna: Springer. ISBN 978-3-319-28316-6. Please note that you do not need a copy of this book to follow the course.
Fees
The participation fee is 1000 EUR for participants from the private sector. Reduced prices apply to students and staff from non-profit, social profit, and government organizations. The exam fee is € 35.
Employment | Fee (€) |
Industry, private sector, profession | 1000 |
Non-profit, government, higher eduction staff | 750 |
(Doctoral) student, unemployed | 450 |
Register
Register for this course
UGent PhD students
As UGent PhD student you can incorporate this 'specialist course' in your Doctoral Training Program (DTP). To get a refund of the registration fee from your Doctoral School (DS) please follow these strict rules and take the necessary action in time. The deadline to open a dossier on the DS website (Application for Registration) for this course is November 4, 2022.
Opening a dossier with your DS does not mean that you are enrolled for the course with our academy. You still need to register on the site.
It is you or your department that pays the fee first to our academy. The Doctoral School refunds that fee to you or your department once the course has ended.